Characterization of the Xen Project Code Review
Process: an Experience Report*!

Daniel Izquierdo-Cortazar Lars Kurth

Jesus M. Gonzalez-Barahona Santiago Duenas
Nelson Sekitoleko

April 3, 2019

Abstract

Many software development projects have introduced mandatory code
review for every change to the code. This means that the project needs to
devote a significant effort to review all proposed changes, and that their
merging into the code base may get considerably delayed. Therefore, all
those projects need to understand how code review is working, and the
delays it is causing in time to merge.

This is the case in the Xen project, which performs peer review using
mailing lists. During the first half of 2015, some people in the project
observed a large and sustained increase in the number of messages related
to code review, which had started some years before. This observation led
to concerns on whether the code review process was having some trouble,
and too large an impact on the overall development process.

Those concerns were addressed with a quantitative study, which is pre-
sented in this paper. Based on the information in code review messages,
some metrics were defined to infer delays imposed by code review. The
study produced quantitative data suitable for informed discussion, which
the project is using to understand its code review process, and to take
decisions to improve it.

keywords
data mining, software process, code review

1 Introduction

Peer review of proposed changes (patches) is being adopted as a best practice
to improve quality in free, open source software projects. Some drivers of this
trend are the fact that it is a relatively light-weight process, the existence of
tools supporting it, and a fast time-to-production approach, as compared to

*This is a preprint of the paper published in the Proceedings of the 13th Working Confer-
ence on Mining Software Repositories (MSR 2016), Austin (Texas, USA), May 13-14, 2016,
DOI 10.1145/2901739.2901778

TThe work presented in this paper has been funded in part by the European Union’s
Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant
agreement No 642954, and by the Spanish Government, under a Torres Quevedo grant, and
through project TIN2014-59400-R

traditional code inspection that emphasizes face to face meetings and uses of
check lists [5] [3] [4] [1].

Recent studies have further highlighted the benefits of performing tool-
supported code review: team awareness, finding of alternative solutions to
problems, and knowledge transfer [1]. With an increasing number of software
development projects emphasizing mandatory code review for every change to
the code, a number of factors come into play that may have an impact on
product and process quality, cost, and time-to-market [2] [5]: code review cov-
erage and participation [5], length of the review queue, experience of the patch
writer /reviewers, size of the patch [1], time-to-merge, neutrality of reviewers,
etc. All of them need to be measured and studied in practice to obtain a clear
understanding of how the code review process impacts the overall development
effort. This is especially true for free, open source software projects, whose de-
velopment effort is in most of the cases unknown [6].

One of those projects is Xen, which produces virtualization software for the
Linux kernel. All proposed changes in Xen follow a code review process which
is run in the development mailing list, using some tags and conventions that
make it possible to automate, at least in part, its analysis.

During the first semester of 2015, some people in the project had noticed
an increase of the messages related to code review. They were concerned of
which impact this could be causing on several key aspects of their development
efforts. Among them, the most important was the time-to-merge, or time from
the moment a change is proposed, to the time it is merged in the code base.
Those people were afraid that an increase in the number of messages could mean
an increase in the discussions to review a patch, and in the time that process
could take.

To understand the situation, and decide which measures to take, the project
commissioned a study, which was carried out by the authors of this paper. This
study analyzed the Xen code review process in order to address those concerns,
and to provide the project with data to evaluate the situation, take decisions,
and track the effect of those decisions. This paper presents the main results of
the study, and describes how it was performed.

The main objective of this study was to verify the apparent increase in
communication related to code review, and to determine if some key parameters
of the code review process, mainly time-to-merge, were deteriorating. In case
that would be happening, the study aimed to pinpoint the main causes of this
deterioration, so that corrective actions could be put in place.

In particular, some people were suspicious that the root of the problem could
be linked to a growing number of review comments for large “combined patches”
(patch series), which could be causing a very large growth of their time-to-review
during the period of study.

Therefore, we can state that the main research questions were:

RQ1 Is time-to-merge increasing, measured from the moment a change is pro-
posed to the moment it is finally merged into the code base?

RQ2 Is there an impact of size of “combined patches” (patch series), measured
as the number of individual patches in them, on time-to-merge for those
patch series?

2 Initial observations

The Xen community code review process takes place in mailing lists. Each
proposal of change to the code is sent to the mailing list, where it is publicly
reviewed by peer developers. In this process the project uses the following
terminology:

e Patch: the basic unit of change, consisting of the changes to one or more
files, that the author consider tightly related.

e Patch series: a combined patch, composed of more than one patch, which
have some interdependency. Usually, either all the patches in the series
are merged, or none is. In this paper, we consider patches submitted
individual as patch series of only one patch.

e Version: each of the successive proposals for a patch serie. Usually, a patch
serie is resubmitted several times, and tries to address the comments by
reviewers. Each of these resubmissions is a new version of the patch series.

Table 1 and Table 2 show some parameters that help to understand the
activity in the Xen project.

No. of commits | No. of emails | No. of Patches
34,494 257,572 146,977

Table 1: Some parameters related to the activity observed in Xen repositories
(2002-2015)

No. of Patch series | No. of patches | No. of matchings
17,722 33,853 13,271

Table 2: Activity directly related to code review for Xen. Matchings are the
number of patches that were matched with commits in the git repository (see
the section on methodology).

The analysis was focused on the 2012-2015 period, which was the period
of concern for the project. The evolution of the number of comments in the
mailing list, related to code review, during this period, is shown in Figure 1,
which clearly shows an increase during the period, therefore confirming the
initial concerns. Previous history is added for adding context.

Meanwhile, Figure 2 shows a slight increase in the number of new patch series
(including patch series composed of a single patch). Considering both charts
together, the initial concerns of a more complex review process, measured as
the number of comments per patch set, was confirmed.

2500 IEU0|LI.ItI0n .Of cotnmerjts ptler molnth .

2000

1500

1000

Number of comments

1] 1 L L L L L L L L L
2005 2006 2007 2008 200% 2010 2011 2012 2013 2014 2015
Time evolution

Figure 1: Number of comments per month related to code review

00 Evolution of patch series per month

250

150 -

Number of patches

= L L I L L
2005 2007 2009 2011 2013 2015
Time evolution

Figure 2: Number of new patch series (combined patches) proposed per month

3 Methodology

The code review process in the Xen project is similar to that of the Linux
kernel, and takes place through a mailing list. In order to convert messages in
a mailing list into organized information, we parsed mailing list archives, and
matched patches found in them to commits in the git repositories in order to
measure time-to-merge. The process was as follows:

Step 1. Retrieval of mailing list information. We used MLStats [7] to
retrieve mail messages from the development mailing list!, and store them in a
MySQL database.

Step 2. Retrieval of Git information. We used CVSAnalY [7] to retrieve in-
formation from the main Xen git repository?, and store it in a MySQL database
as well.

Step 3. Detection and classification of messages related to code review. The
relevant messages are those with the keyword PATCH in the subject. A new
patch series is identified by a message starting a new thread, with its composing

Thttp://lists.xen.org/archives/html/xen-devel/
2http://xenbits.xen.org/gitweb/7p=xen.git

patches in replies to it, in the same thread. New versions are detected as a new
threads with the same subject field, but a version number. The pattern in all
the subject fields related to code review is similar to:

[<Keyword PATCH> <version> <patch number>] <subject>

Unfortunately, there are small variations of this pattern, which led us to use
some regular expressions to match and identify all this information in subject
fields.

Messages may be tagged, providing information about its semantic in the
review process. Some tags are: "Acked-by’, ’Cc’, 'Fixes’, ’From’, "Reported-by’,
"Tested-by’, 'Reviewed-by’, 'Release-Acked-by’, ’Signed-off-by’, and 'Suggested-
by’. Although some of these tags are not really important for the results pre-
sented in this paper, they could be used to obtain more precise results.

Step 4. Merging information from CVSAnalY (git) and MLStats (mail-
ing list) databases®, including linking patches to commits. This produced a
consolidated database with the following tables:

e patch_serie: detected patch series.

e patch_serie_versions: each of the versions per patch serie.
e patches: all of the available patches.

e comments: comments received by a patch.

e people: people involved in the process.

e tags: tags found in each reply.

e commits: all of the commits.

Step 5. Analysis?. This consisted in querying the previous database to

obtain evidence to answer the relevant questions.

Table 3 shows the raw numbers about the information in the consolidated
database: number of patches identified in the mailing list, number of commits
identified in the git repository, and number of commits linked to patches in the
mailing list.

Year | No. of patches | No. of commits | No. of commits
matching
to patches
2012 | 1907 2296 954
2013 | 2345 2503 1396
2014 | 2035 2332 1315
2015 | 2060 2204 1244

Table 3: Number of patches, commits, and commits corresponding to patches
identified in the combined database (matched commits)

3 Available as an IPython Notebook
https://github.com/dicortazar/ipython-notebooks/blob/master/projects/
xen-analysis/xen_patches.py

4 Available as an IPython Notebook https://github.com/dicortazar/
ipython-notebooks/blob/master/projects/xen-analysis/Code-Review-Metrics.ipynb

Regarding to the numbers, commits is directly provided by the tools, while
other metrics rely on regular expressions. This is the case of patches. For
matching commits to patches, we used heuristics based on finding the subject
line of messages to the first line of the commit message, which could be wrong
in some cases, although is a very reliable method according to Xen developers.

The number of patches identified (that is, the number of code review pro-
cesses found) is, for the period of interest, large enough (up to 50%-60% of the
number of commits) to draw conclusions. But of course any conclusion is lim-
ited to to those code review processes. The number of patches linked to specific
commits is smaller (55%65% for 2013-2015). This is mainly because there are
other Xen-related git repositories that were not included in the analysis, but
were discussed in the mailing list. We confirmed this, with the help of Xen
developers, by a manual analysis of the patches that could be tracked to their
corresponding git commit messages.

In addition, some noise was found in the dataset, for example some patches
that were reported in 2015 bearing dates of 2016, yet when the most recent
commit included in the study was of October 13th 2015.

All this said, a sample of matches commits was analyzed manually, in col-
laboration with Xen developers, to ensure that no apparent bias was present.

4 Results
In the following discussion, the second semester of 2015 was removed both due
to having only partial data for it, and to ensure that most of the review processes

during the period of study had the chance of finishing.

Time to merge divided by year (without outliers)

=]
—eee o
—eee o

S

s

0
201251 201252 201351 201352 201451 201452 201551

Figure 3: Evolution of time to merge

e Answer to RQ1: Time-to-merge is under control.

Figure 3 shows the evolution of time to merge by semester. From 2012 to
2014, there is an increase in the time to merge. For example, in 2012 75%
of the patch series that were merged, were merged in less than 15 days,
while in 2014 this number doubled to around 30 days. But the second
semester of 2014 and the first semester of 2015 show a change in this
trend, coming back to shorter time-to-merge.

Ié?e to merge divided by number of patches (without outliers)

140

R

i

i

120 | |
i

100 | |
i

i

|

Days

I
ﬂ]___
]--
(I
(I

1 patch 2 patches 3 patches 4 patches = 4 patches

Figure 4: Time to merge patchsets (days) by number of patches

Therefore, although concerns were confirmed for the period until 2014, the
situation is reverting to controlled.

e Answer to RQ2: Time-to-merge is behaving in a similar way for all sizes
of patch series.

wTime to merge divided by year (without outliers) 1 patch

e
-
-

L

o
201251 201252 201351 201352 201451 201452 201551

Figure 5: Time to merge (days) for patch series composed of a single patch.

Figure 4 shows time-to-merge when classifying patch series by number of
patches per patch serie. As it may be expected, the higher the number
of patches per patch serie, the higher the time to merge. But Figure 5
and Figure 6 show how the evolution of time-to-merge for patch series of
1 patch, and of 5 or more patches, is very similar. Although patch series
with 5 or more patches take longer to review than patch series of one
patch, the trend is pretty similar between them, and to the one found in
Figure 3. The peak of the time to merge takes place in 2014 and then
starts to decrease.

5 Conclusions and further work

The analysis of the code review process in Xen provided data to better under-
stand its impact on time-to-merge. Data show an increase of time-to-merge

3m};ime to merge divided by year (without outliers) 5 patches

250 | e
|
|
200 |
|
|
|
I

W
= 150)
(=]

w0

-——-l
-—-

"

o
201251 201252 201351 201352 201451 201452 201551

=

Figure 6: Time to merge (days) for patch series composed of more than 4
patches.

from 2012 to 2014, and a decrease after that peak, starting during the second
semester of 2014. Small and large patch series show the same pattern.

The results were presented to the community, and validated with them?.
Most of the comments and concerns expressed were focused on the need of
increasing the fraction of commits that were linked to patches, but no other
serious problems were highlighted.

In addition to time-to-merge, some other metrics were discussed within the
community. However, the time to merge was the most representative metric for
its needs. Some other metrics that were considered, and could be the subject
of further studies, are: time to commit, time to re-work a patch, cycle time
(between each pair of versions), time to first review.

The proposed methodology focuses on how the Xen community reviews
pieces of code through the mailing lists. There are some other projects with
similar code review processes, such as the Linux Kernel where this method may
be applied as well.

As further work, more git repositories of interest to the Xen community will
be added to the study, such as mini-os, raisin, and osstest, which are reviewed
as well in the xen-devel mailing list. In addition, extra work should be done
to improve the detection of threads in the review process. We have found
some cases where a patch serie is divided into several patches, sent in several
threads instead of in the same one as expected. However, as developers are
adopting Patchbomb, a tool helping in the building of messages related to a
patch series, this process is becoming more and more automated, which helps
in the identification process.

6 Acknowledgments

Daniel Izquierdo is partially funded by the Torres Quevedo program of the
Spanish Government. Jesus M. Gonzalez-Barahona is partially funded by the
Spanish Government, through project TIN2014-59400-R. Nelson Sekitoleko is
funded by the Marie Sklodowska-Curie - Research Fellowship Programme of
the European Union, through the Seneca Consortium, grant agreement 642954.

Shttp://lists.xenproject.org/archives/html/xen-devel/2015-10/msg01808.html

Lars Kurth has participated in the design and validation of the study, as an
expert in the Xen community. The other authors have participated in the
design, execution and validation of the study.

References

[1]

A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern
code review. In Proceedings of the 2013 international conference on software
engineering, pages 712-721. IEEE Press, 2013.

O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. Investigating
technical and non-technical factors influencing modern code review. Empir-
ical Software Engineering, pages 1-28, 2015.

M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens. Modern code reviews
in open-source projects: which problems do they fix? In Proceedings of
the 11th working conference on mining software repositories, pages 202—211.
ACM, 2014.

S. Kollanus and J. Koskinen. Survey of software inspection research. The
Open Software Engineering Journal, 3(1):15-34, 20009.

S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of code
review coverage and code review participation on software quality: A case
study of the qt, vtk, and itk projects. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 192-201. ACM, 2014.

G. Robles, J. M. Gonzalez-Barahona, C. Cervigén, A. Capiluppi, and
D. Izquierdo-Cortézar. Estimating development effort in free/open source
software projects by mining software repositories: a case study of open-
stack. In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 222-231. ACM, 2014.

G. Robles, J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, and I. Herraiz.
Tools for the study of the usual data sources found in libre software projects.
International Journal of Open Source Software and Processes, 1(1):24-45,
2009.

