

Final Report

Project title (Acronym)

Building an international network of collections for reference of regulated and other important plant viruses and viroids (VirusCollect II)

Project duration:

Start date:	16-10-01
End date:	18-10-01

Contents

1.	Research	consortium partners	3
2.	Short proj	ject report	6
2.1.	Short e	xecutive summary	6
2.2.	Project	aims	6
2.3.	Activiti	es and Results	7
2.4.	Conclus	sions and recommendations	Э
2.5.	Benefit	s from trans-national cooperation10	C
3.	Publicatio	ns1:	1
3.1.	Article(s) for publication in the EPPO Bulletin1	1
3.2.	Article	for publication in the EPPO Reporting Service1	1
3.3.	Article(s) for publication in other journals1	1
3.4.	Publica	tion by other means1	1
4.	Open Eup	hresco data12	2
Арре	endix 1. Ov	verview of virus isolates provided by each partner13	3

1. Research consortium partners

Coordinator – Partner 1				
Organisation	Nederlandse Voedsel-en Warenautoriteit			
Name of Contact (incl. Title)	Dr Annelien Roenhorst	Gender	F	
Postal Address	P.O. Box 9102, 6700 HC Wageningen, The Netherlands			
E-mail	j.w.roenhorst@nvwa.nl			
Phone +31 651247174				

Partner 2				
Organisation	Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail			
Name of Contact (incl. Title)	Dr Pascal Gentit; Michèle Visage Gender M; F			
Postal Address	LSV – UBVO, 7 rue Jean Dixméras, 49044 Angers, Cedex 01, France			
E-mail	pascal.gentit@anses.fr			
Phone	+33 241207432			

Partner 3				
Organisation	Leibniz Institut DSMZ			
Name of Contact (incl. Title)	Dr Wulf Menzel; Dr. Stephan Winter	Gender	М; М	
Postal Address	Postal Address Inhoffenstraße 7B, 38124 Braunschweig, Germany			
E-mail wulf.menzel@dsmz.de; stephan.winter@dsmz.de				
Phone	+49 531 2616402			

Partner 4					
Organisation	Science and Advice for Scottish Agriculture				
Name of Contact (incl. Title)	Dr Christophe Lacomme; Carolyn Nisbet	Gender	M; F		
Postal Address	Postal Address 1 Roddinglaw road, Edinburgh EH12 9FJ, United Kingdom				
E-mail	christophe.lacomme@sasa.gsi.gov.uk; carolyn.nisbet@sasa.gsi.gov.uk				
Phone +44 131 2448916; +44 131 2448835					

Partner 5					
Organisations	National Food Chain Safety Office and Directorate of Plant Protection, Soil Conservation and Agri- environment - Laboratory of Virology, Velence and Plant Health and Molecular Biology National Reference Laboratory				
Name of Contact (incl. Title)	Dr Klára Nyerges; Dr László Krizbai	Gender	F; M		
Postal Address	- Ország út 23., H-2481 Velence, Hungary; - Budaörsi út 141-145., H-1118 Budapest, Hungary				
E-mail	nyergesk@nebih.gov.hu; krizbail@nebih.gov.hu				
Phone	+36 22 589240; +36 (1) 309-1000/1877				

Partner 6				
Organisation	Wageningen University and Research			
Name of Contact (incl. Title)	Dr René van der Vlugt	Gender	М	
Postal Address	P.O. Box 16, 6700AA Wageningen, The Netherlands			
E-mail	rene.vandervlugt@wur.nl			
Phone	+31 317480675			

Partner 7					
Organisation	All-Russian Plant Quarantine Centre (VNIIKR)				
Name of Contact (incl. Title)	Dr Yuri Shneyder Gender M				
Postal Address	Pogranichnaya str., 32 140150 Bykovo, Moscow Region, Russia,				
E-mail	yury.shneyder@mail.ru				
Phone	+7 499 271 38 24				

Partner 8				
Organisation	National Institute of Biology (NIB)			
Name of Contact (incl. Title)	Dr Nataša Mehle; Dr Maja Ravnikar	Gender	F; F	
Postal Address	Večna pot 111, 1000 Ljubljana, Slovenia			
E-mail natasa.mehle@nib.si; maja.ravnikar@nib.si				
Phone	+386 59 232 808; +386 59 232 801			

Partner 9				
Organisation	Central Institute for Supervising and Testing in Agriculture			
Name of Contact (incl. Title)	Dr Šárka Linhartová	Gender	F	
Postal Address	Šlechtitelů 23/773, 77900 Olomouc, Czech Republic			
E-mail	sarka.linhartova@ukzuz.cz			
Phone	+420 585570138			

2. Short project report

2.1. Short executive summary

The aim of the VirusCollect II project was to establish and extend an international network of collections of plant viruses and viroids (hereafter referred to as viruses) thereby making virus isolates available for reference at diagnostic and research laboratories in Plant Health. At present access to isolates of regulated viruses is limited and only the plant virus collection at DSMZ is officially accredited as reference producer.

Strengthening the infrastructure of plant virus collections is required because diagnostic tests on regulated organisms have to be accredited under the new Plant Health rules of the European Union that apply from December 14th 2019. The ability of laboratories of National Plant Protection Organizations (NPPOs) to fulfil this requirement will depend on public access to well-characterised virus isolates.

The collaboration between partners of the Euphresco projects NGS-detect and VirusCollect II and especially their joint meetings offered a fruitful platform for exchanging practices in characterisation and safeguarding of virus isolates for reference. Discussions on practices in High-throughput sequencing (HTS) and analysis, and on quality criteria for reference materials contributed to a common understanding of procedures, as well as to identify future needs and functions of plant virus collections.

Within the project more than 150 isolates of regulated and (related) non-regulated viruses have been made available. However, since identification of many isolates was based on only one technique, and/or sequence data were lacking or limited, not all of them qualify as reference material yet. Whether these isolates will be included in Q-bank depends on the criteria imposed on completeness of data and certainty of identification. The transfer of Q-bank to EPPO ensures the continuity of a platform for sharing data on availability and location of virus isolates for diagnostics and research.

Two successive VirusCollect projects have made clear that plant virus collections are not on the priority list of policy makers and researchers. Only those partners that benefited from allocated budgets were able to contribute substantially to Q-bank by characterising isolates and making them publicly accessible and available. In addition, the implementation of the Nagoya protocol appeared to increase administrative obligations of both curators and users of collection materials. Therefore, governments need to allocate specific budgets for the characterisation and maintenance of virus collections to enable NPPO laboratories to perform their official tasks.

2.2. Project aims

The aim of the VirusCollect II project was to establish and extend an international network of collections of plant viruses (hereafter referred to as viruses), thereby making virus isolates available for reference at diagnostic and research laboratories in Plant Health.

In the field of plant virology there is only one official ISO 17034 accredited collection of viruses: the German collection of Microorganisms and Cell cultures (DSMZ) of the Leibniz institute in Braunschweig. This collection includes only part of the currently regulated species. Many (regulated) viruses, if publicly available at all, are scattered over different collections hosted by National Plant Protection Organizations (NPPOs), research institutes

and universities. Obtaining reference materials in plant virology, therefore, is a challenging task (Roenhorst *et al.*, 2013).

The VirusCollect I and II projects were initiated to improve the public accessibility of isolates of (regulated) viruses in collections of individual institutions by:

- 1. providing locally available virus isolates by making them accessible via Q-bank Comprehensive databases on quarantine plant pests and diseases¹
- 2. extending Q-bank by providing data and safeguarding virus isolates characterised within research projects and regular diagnostics.

Strengthening the infrastructure of plant virus collections is becoming even more important when diagnostic tests on regulated organisms have to be accredited under the new Plant Health Regulation of the European Union coming into force December 14th 2019. Public access to well-characterised virus isolates for development and validation of tests will determine the ability of NPPO laboratories to fulfil this requirement.

2.3. Activities and Results

Quality criteria for collection materials

To guarantee the authenticity of virus isolates in a collection the minimum requirements as described by Roenhorst *et al.* (2017) should be applied. Preferably, these requirements are met for all isolates included in Q-bank. However, when applied too strictly, it appears that only few of the available virus isolates qualify for inclusion in Q-bank.

In the VirusCollect II project, partners provided data either for re-authenticated isolates from existing local collections, or for isolates from diagnostics or research projects. All isolates for which data were provided will be included in Q-bank, despite the fact that not all of them qualified as reference material; as it was agreed that it was important to ensure accessibility despite the fact that the isolates lack a full characterisation.

Accreditation

Regarding accreditation of (virus) collections, the following ISO standards are considered relevant:

- ISO Guide 34:2009 General requirements for the competence of reference material producers; <u>https://www.iso.org/standard/50174.html</u>
- ISO 17034:2016 General requirements for the competence of reference material producers; https://www.iso.org/standard/29357.html
- ISO 17025:2017 General requirements for the competence of testing and calibration laboratories; <u>https://www.iso.org/standard/66912.html</u>
- ISO 20387:2018 Biotechnology -- Biobanking -- General requirements for biobanking; https://www.iso.org/standard/67888.html
- ISO/WD Guide 85 Guidance for the production of reference materials having one or more assigned qualitative property values (under development); <u>https://www.iso.org/standard/75538.html?browse=tc</u>

At present, only the plant virus collection at DSMZ is officially accredited according to an ISO Standard as reference material producer (<u>https://www.dakks.de/en</u>). Accreditation requires compliance with two ISO Standards, i.e. ISO Guide 34 outlining the general requirements for the production of reference materials and ISO 17025 focusing on the requirements of testing and calibration laboratories. This combination will be replaced by the new ISO 17034, which

¹ In 2019 Q-bank will be accessible via EPPO Global Database.

combines both requirements in one Standard. Even if ISO 17025:2017 is implemented in most NPPO laboratories, the implementation of the Standard for reference material producers will not be possible for most of them. Therefore, the new ISO 20387 and/or ISO/WD Guide 85 might provide suitable alternatives, when the main focus of reference materials concerns qualitative characteristics.

Authentication and/or characterisation of virus isolates from existing local collections

Within this project, a few partners got the opportunity to work on virus isolates already present in their collection. For many 'old' isolates, sequence data had to be generated, since the isolates date back to before the molecular era. Conventional Sanger sequencing or high throughput sequencing (HTS) technologies were applied, which resulted in data ranging from short sequences to almost complete genome sequences. In total, more than 150 virus isolates have been made available. However, since identification of many isolates was based on only one technique, and/or sequence data were lacking or limited, not all of them qualify as reference material yet.

Virus isolates from research

In the VirusCollect project several virus isolates became available through the diagnostic activity of laboratories. It was noted that the increased use of HTS technologies in research is yielding almost complete genome sequences of known as well as unknown viruses. Safeguarding the corresponding isolates in a collection, therefore, seemed an obvious way of extending collections to support diagnostic activities.

Ownership and Nagoya protocol

The ratification of the Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization (Convention on Biological Diversity, 2011) has consequences for access to and exchange of reference materials in Plant Health. Since 2014, date when the Nagoya protocol came into force, a prior informed consent (PIC) and mutually agreed terms (MAT) have become a prerequisite for access to collection materials, especially for isolates of 'new' and emerging viruses encountered after this date. Moreover, the implementation of the Nagoya protocol also triggered discussions on the ownership of virus isolates in collections. At present, not all researchers and/or curators decided on the status of their collection materials and, therefore, not all of the virus isolates characterised during the NGS-detect project were available for sharing via Q-bank.

Q-bank and transfer of data to EPPO Global Database

Q-bank Comprehensive databases on guarantine plant pests and diseases (http://www.gbank.eu/) started as a Dutch initiative to strengthen the infrastructure in Plant Health (Bonants et al., 2013). To emphasise the international position of Q-bank and guarantee its continuity, it was desirable to transfer the database to EPPO. In September 2018 the EPPO Council agreed on inclusion of parts of the database in EPPO Global Database (EPPO-GD: https://gd.eppo.int/), in particular information on the availability of specimens/isolates and sequence data. The way information and data will be included in EPPO-GD depends on both the type of organism and the intended use. For example, barcodes do not apply to viruses, implying that sequence data are used in a different way for identification than for other organisms. Furthermore, the number of virus isolates to be included will depend on the criteria imposed on the certainty of identification. If isolates only qualify for inclusion when (almost) complete genome sequences have been determined, the number of isolates available for reference might be limited. If inclusion criteria are less stringent, more isolates will be available for potential users, who then should decide if additional characteristics have to be determined, based on their specific needs. It is clear that the transfer of Q-bank to EPPO Global Database will demand further discussions in different expert groups.

Quantification of reference materials

One-step reverse transcription droplet digital PCR can be applied for absolute quantification of viral RNA amounts. Quantification of reference materials allows their use as a reference tool for evaluation of the performance of tests. Furthermore, they can be used for the calibration of instruments in diagnostic laboratories. In the frame of the VirusCollect project the National Institute of Biology deployed droplet digital PCR for strains of *Potato virus* Y (Mehle *et al.*, 2018) and for different genotypes of *Pepino mosaic virus* (Mehle *et al.*, 2019; manuscript in preparation).

Future project VirusCurate

It was proposed by A. Fox (Fera, GB) to continue the efforts of the VirusCollect projects on sharing information and data on virus isolates and making them publicly accessible. A topic for collaboration was submitted through Euphresco: the topic (identified as VirusCurate) aims at using HTS to gain insights from virus collections and strengthening the infrastructure of plant virus collections. The use of HTS in Plant Health is revealing large numbers of previously unknown virus sequences, which in some case may concern viruses that are held in existing collections and have been previously characterised biologically and serologically. Sequencing of these 'old' virus isolates might provide the key to benefit from knowledge gained and published (long) before. Moreover, these efforts will strengthen the infrastructure of plant virus collections by providing public access to well-characterised isolates for reference purposes. VirusCurate may start in the Autumn 2019/Spring 2020.

2.4. Conclusions and recommendations

Transfer of Q-bank to EPPO Global Database

The transfer of Q-bank to EPPO Global Database is crucial for the public accessibility of virus isolates. In contrast to other plant pests, for viruses there is only one official collection at DSMZ in Braunschweig, Germany. Therefore, Q-bank provides an additional platform for sharing data on available isolates and their location. The transfer of Q-bank to EPPO ensures the long-term sustainability of this platform.

Nagoya protocol increases administrative obligations

The implementation of the Nagoya protocol increased the administrative obligations of both curators and users of collection materials. To enable easier access to collection materials for NPPO laboratories, simplified and tailored requirements for their specific uses of collection materials would be desirable.

Public plant virus collections require funding by governments

Two successive VirusCollect projects have made clear that plant virus collections are not on the priority list of policy makers and researchers. Only those partners that benefited from allocated budgets were able to contribute substantially to Q-bank by characterising of isolates and making them publicly accessible and available. Improving collections by aiming to share knowledge and safeguard virus isolates encountered during diagnostics or being part of research, failed because limited budgets did not allow people to spend time on these tasks.

To enable NPPO laboratories to fulfil future demands of the Official Controls Regulation (EU) 2017/625 and Plant Health Regulation' (EU) 2016/2031 of the European Union, it is recommended to strengthen the infrastructure for plant virus collections by providing allocated budgets for the characterisation and maintenance of virus isolates by governments (Overmann, 2015).

2.5. Benefits from trans-national cooperation

Euphresco projects as platform for exchanging practices in plant virology

The collaboration between partners of the Euphresco projects NGS-detect and VirusCollect and especially their joint meetings offered a fruitful platform for exchanging practices in characterisation and safeguarding of virus isolates for reference. Discussions on practices in High-throughput sequencing (HTS) and analysis, and on quality criteria for reference materials contributed to a common understanding of procedures, as well as to identify future needs and functions of plant virus collections. Moreover, these meetings provided opportunities for looking ahead and enhancing the coherence between upcoming and future Euphresco projects, such as 'Phytosanitary risks of newly introduced crops' (2018-A-293 PRONC), and 'Using HTS to gain insights from virus collections and strengthening the infrastructure of plant virus collections' (VirusCurate).

Benefits from trans-national cooperation include:

- Providing public access to isolates in plant virus collections by sharing information in Qbank
- Sharing experiences and practices of characterisation and maintenance of virus isolates in collections for reference
- Stimulating harmonisation of quality requirements on collection materials for reference
- Providing opportunities to back-up valuable collection materials
- Decreasing expenses on maintenance of local collections by enabling easy access to other collections
- Expanding expert networks and improving collaboration over projects

References

- Bonants P, Edema M, Robert V (2013). Q-bank, a database with information for identification of plant quarantine plant pest and diseases. EPPO Bulletin 43: 211-215.
- Convention on Biological Diversity (2011). Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity (<u>https://www.cbd.int/abs/doc/protocol/nagoyaprotocol-en.pdf</u> [accessed on 21 November 2018]).
- Mehle N, Dobnik D, Ravnikar M, Pompe Novak M (2018). Validated reverse transcription droplet digital PCR serves as a higher order method for absolute quantification of Potato virus Y strain. Analytical and Bioanalytical Chemistry 410: 3815–3825. DOI: 10.1007/s00216-018-1053-3
- Overmann J (2015). Significance and future role of microbial resource centres. Systematic and Applied Microbiology 38: 258–265.
- Roenhorst JW, Boonham N, Winter S, Menzel W & Van der Vlugt RAA (2013). The plant viruses and viroids database and collections of Q-bank. EPPO Bulletin 43: 238– 243.
- Roenhorst JW, Lacomme C, Nisbet C, Leichtfried T, Menzel W, Winter S *et al.* (2017). Euphresco project VirusCollect – Fulfilling the need for a common collection of plant viruses and viroids for reference. EPPO Bulletin 47: 41–47.

3. Publications

3.1. Article(s) for publication in the EPPO Bulletin

Roenhorst JW, Lacomme C, Nisbet C, Leichtfried T, Menzel W, Winter S *et al.* (2017). Euphresco project VirusCollect – Fulfilling the need for a common collection of plant viruses and viroids for reference. EPPO Bulletin 47: 41–47.

3.2. Article for publication in the EPPO Reporting Service

None.

3.3. Article(s) for publication in other journals

Mehle N, Dobnik D, Ravnikar M, Pompe Novak M (2018). Validated reverse transcription droplet digital PCR serves as a higher order method for absolute quantification of Potato virus Y strain. Analytical and Bioanalytical Chemistry 410, 3815–3825. DOI: 10.1007/s00216-018-1053-3.

3.4. Publication by other means

Posters

- Mehle N, Dobnik D, Ravnikar M, Pompe Novak M. Droplet digital PCR serves as a higher order method for absolute quantification of Potato virus Y strains. Power of Viruses, Poreč, Croatia, 16-18 May 2018.
- Mehle N, Dobnik D, Kutnjak D, Pompe Novak M, Ravnikar M. One-step RT-ddPCR for quantification of Potato virus Y. 16th Triennial Meeting of the Virology Section of the European Association of Potato Research & 8th Annual Meeting of PVYwide Organization, Ljubljana, Slovenia, 31 May-3 June 2016.

4. Open Euphresco data

Information on virus isolates

Information on virus isolates characterised within this project, including their location, will be made accessible via the EPPO Global Database. Details on the contribution of each partner are provided in the tables in Appendix 1.

Appendix 1. Overview of virus isolates provided by each partner

Note that the following tables give an overview of isolates available for sharing. At present, not all isolates qualify as reference material.

Table 1 Virus isolates provided by ANSES, France (Partner 2)						
Virus species	Acronym	Original host plant	Original code	Q-bank code		
Beet mosaic virus	BtMv	Beta vulgaris		BtMV_2016_005 Spinach beet		
Bean common mosaic virus	BCMV	Phaseolus vulgaris		BCMV_2017_013 Bean		
Bidens mosaic virus	BiMV	Alstroemeria	2016PL05012	BiMV_2016_001 Alstroemeria		
Canna yellow streak <i>virus</i>	CaYSV	Canna indica	2013CA0P0071	CaYSV_2013_001 Canna		
Clover yellow vein <i>virus</i>	CIYVV	Phaseolus vulgaris		CIYVV_2017_001 Bean		
Daphne mottle virus	DapMV	Daphne		DapMV_2016_001 Daphne		
Impatiens necrotic spot virus	INSV	Nemesia		INSV_2017_002 Nemesia		
Lettuce mosaic virus	LMV	Lactuca sativa	LMV0	LMV_2015_001 Lettuce		
Moroccan watermelon	MWMV	Cucurbita pepo		MWMV_2015_001		
mosaic virus Onion yellow dwarf virus	OYDV	Allium cepa	H00329816	Zucchini OYDV_2014_001		
Ornithogalum mosaic virus	OrMV	Gladiolus		Onion OrMV_2016_001		
Papaya ringspot virus	PRSV	Cucurbita pepo	DSMZ PV-0401	Gladiolus PRSV_2014_001		
Potato virus A	PVA	Solanum tuberosum		Zucchini PVA_2014_011		
Potato virus Y	PVY	Solanum	2017PL05173	Potato PVY_2017_013		
Squash vein yellowing virus	SqVYV	lycopersicum Citrullus lanatus	1297112-	Potato SqVYV_2012_001		
Tomato spotted wilt virus	TSWV	Solanum	12GU27B	Watermelon TSWV_2016_003		
Watermelon mosaic virus	WMV	lycopersicum Cucurbita pepo	2017PA0P0365	Tomato WMV_2017_001		
Zucchini yellow mosaic virus	ZYMV	Cucumis melo	GO-8-16-COU	Zucchini ZYMV_2016_001 Melon		

Table 2 Virus isolates provided by DSMZ, Germany (Partner 3)

Virus species	Acronym	Original host plant	Original code	Q-bank code*
Iresine viroid 1	IrVd-1	Portulaca	DSMZ PV-1179	IrVd-1_2015_ Purslane
Eggplant mottled dwarf virus	EMDV	Hydrangea macrophylla	DSMZ PV-1127	EMDV_2014_ Hydrangea
Pepino mosaic virus [Peruvian]	PepMV	Solanum muricatum	DSMZ PV-0554	PepMV_1970_ Pepino
Pepino mosaic virus [Ch2]	PepMV	Solanum lycopersicum	DSMZ PV-0716	PepMV_2001_ Tomato
Pepino mosaic virus [US1]	PepMV	Solanum lycopersicum	DSMZ PV-0975	PepMV_2009_ Tomato
Pepino mosaic virus [EU]	PepMV	Šolanum jasminoides	DSMZ PV-1110	PepMV_2013_ Jasmine

				nightshade
Pepino mosaic virus	PepMV	Solanum	DSMZ PV-1125	PepMV_2014_
[Peruvian]		lycopersicum	(56A)	Tomato
Physostegia chlorotic mottle	PhCMoV	Physostegia	DSMZ PV-1182	PhCMoV_2014_
virus		virginiana		Physostegia
Potato virus A	PVA	Solanum tuberosum	DSMZ PV-0760	PVA_2002_
			(B11)	Potato
Potato virus A	PVA	Solanum tuberosum	DSMZ PV-0768	PVA_2002_
			(M)	Potato
Potato virus A	PVA	Solanum tuberosum	DSMZ PV-0772	PVA_2002_
			(CAN)	Potato
Potato virus S	PVS	Solanum tuberosum	DSMZ PV-0758	PVS_2000_
			(Chile 31)	Potato
Potato virus S	PVS	Solanum muricatum	DSMZ PV-0739	PVS_2001_
				Potato
Potato virus S	PVS	Solanum tuberosum	DSMZ PV-0757	PVS 2002
			(Chile 28)	Potato
Potato virus S	PVS	Solanum curtilobum	DSMZ PV-1186	PVS 2003
			(P2)	Solanum
				curtilobum
Potato virus S	PVS	Solanum tuberosum	DSMZ PV-1200	PVS 2003
			(E1)	Potato
Potato virus S	PVS	Solanum tuberosum	DSMZ PV-1201	PVS 2003
			(B11)	Potato
Potato virus S	PVS	Solanum phureja	DSMZ PV-1203	PVS 2003
			(CO1)	Solanum phureja
Potato virus S	PVS	Solanum tuberosum	DSMŹ PV-0838	PVS 2004
			(CH1)	Potato
Potato virus X	PVX	Unknown	DSMŹ PV-0847	PVX 2004
				Unknown
Potato virus X	PVX	Solanum jasminoides	DSMZ PV-1152	PVX 2015
		-		Jasmine
				nightshade
Pelargonium zonate spot	PZSV	Solanum	DSMZ PV-1183	PŽSV 2015
virus		lycopersicum		Tomato
Wild potato mosaic virus	WPMV	Solanum muricatum	DSMZ PV-1194	WPMV 2016
·		-	-	Pepino

* Q-bank codes will be assigned as soon as Q-bank is included in EPPO Global Database.

Table 3 Virus isolates provided by SASA, United Kingdom (Partner 4)

Virus species	Acronym	Original host plant	Original code	Q-bank code*
Potato mop top virus	PMTV	Solanum tuberosum	C1665-3	PMTV_2016_ Potato
Potato mop top virus	PMTV	Solanum tuberosum	C1671-1	PMTV_2016_
Potato mop top virus	PMTV	Solanum tuberosum	RD1701-4	Potato PMTV_2017_ Potato
Potato virus Y [NA-Wilga]	PVY	Solanum tuberosum	5467	PVY_2015_ Potato
Potato virus Y [NA-Wilga]	PVY	Solanum tuberosum	6392	PVY_2015_ Potato
Potato virus Y [EU-NTN]	PVY	Solanum tuberosum	10088	PVY_2010_
Potato virus Y [N-Wilga]	PVY	Solanum tuberosum	4388	Potato PVY_2010_ Potato
Potato virus Y [N-Wilga]	PVY	Solanum tuberosum	6409	PVY_2010_ Potato
Potato virus Y [NA-NTN]	PVY	Solanum tuberosum	9561	Potato PVY_2010_ Potato
Potato yellow blotch virus ¹	PYBV	<i>Solanum tuberosum</i> (breeding line 99m- 022-026)		PYBV_2008_ Potato
Tobacco rattle virus	TRV	Solanum tuberosum	C1632	TRV_2016_ Potato

				Potato
Tobacco rattle virus	TRV	Solanum tuberosum	TRV-Spey	TRV_2016_
				Potato

* Q-bank codes will be assigned as soon as Q-bank is included in EPPO Global Database.

¹ New species (Nisbet C, Monger WA, Ross S, Holmes RF, Nova Y, Thomson C, Goodfellow HA, Lacomme C, Jeffries CJ (2019) Biological and molecular characterization of Potato yellow blotch virus, a new species of the genus Potyvirus. Plant Pathology 68, 251-260.

Table 4 Virus isolates provided by NEBIH, Hungary (Partner 5)

Virus species ¹	Acronym	Original host plant	Original code	Q-bank code*
Plum pox virus [M]	PPV	<i>Prunus persica</i> cv. Mariska	PPV 10/4-5-6	
Pum pox virus [D]	PPV	<i>Prunus armeniaca</i> cv. Gönci magyar kajszi	PPV 10/25-27	
Plum pox virus [D]	PPV	<i>Prunus persica</i> cv. Meystar	PPV 10/61-62- 63	
Pum pox virus [D]	PPV	<i>Prunus domestica</i> cv. President	PPV 11/1-3	
Plum pox virus [M]	PPV	Prunus armeniaca	PPV 11/67-68- 69	
Pum pox virus [M-Rec]	PPV	<i>Prunus domestica</i> cv. Besztercei Nm 122	PPV 12/61-62- 63	
Plum pox virus [M]	PPV	<i>Prunus domestica</i> cv. Besztercei NM 122	PPV SK 68	
Pum pox virus [M]	PPV	Prunus persica	PPV SK 278	
Plum pox virus [M]	PPV	<i>Prunus armeniaca</i> cv. Bergeron	PPV SK 292	
Pum pox virus [D]	PPV	Prunus persica	PPV SK 302	
Plum pox virus [D]	PPV	Prunus dulcis	PPV SK 304	
Plum pox virus [M-Rec]	PPV	<i>Prunus armeniaca</i> cv. Ceglédi óriás	PPV SK 321	
Prune dwarf virus	PDV	<i>Prunus cerasus</i> cv. Érdi bőtermő	PDV 13	
Prune dwarf virus	PDV	<i>Prunus cerasus</i> cv. Érdi bőtermő	PDV 48/1	
Prune dwarf virus	PDV	<i>Prunus spinosa</i> cv. Plena	PDV 223	
Prunus necrotic ringspot virus	PNRSV	Prunus domestica	PNRSV 28	
Prunus necrotic ringspot virus	PNRSV	Prunus avium	PNRSV 57C	
Prunus necrotic ringspot virus	PNRSV	<i>Prunus dulcis</i> cv. Grosse tendre rigorose	PNRSV 63	
Prunus necrotic ringspot virus	PNRSV	<i>Prunus persica</i> cv. Elberta 603	PNRSV 66	
Prunus necrotic ringspot virus	PNRSV	<i>Prunus domestica</i> cv. Besztercei	PNRSV 147	
Prunus necrotic ringspot virus	PNRSV	<i>Prunus cerasus</i> cv. LPP4/1L	PNRSV 208	

* Q-bank codes will be assigned as soon as Q-bank is included in EPPO Global Database.

¹ Isolates are available from natural hosts, but since sequence data are lacking, these will not be included in Q-bank yet.

Table 5 Virus isolates provided by NVWA and WUR, the Netherlands (Partner 1 and 6)					
Virus species	Acronym	Original host plant	Original code	Q-bank code*	
Bell pepper mottle virus	BePMoV	Capsicum annuum	Path 0	BePMoV_1979_	
Carrot mottle virus	CMoV	Daucus carota	Dc041	Pepper CmoV_1982_	
Carrot mottle virus	CMoV	Daucus carota	DC108I	Carrot CMoV_1983_	
0	001414/			Carrot	
Cucumber green mottle mosaic virus	CGMMV	Cucumis sativus	K3	CGMMV_1973_ Cucumber	
Cucumber necrosis virus	CNV	Daphne mezereum	Dap1	CNV_1971_ February daphne	
Lettuce mosaic virus	LMV	Lactuca sativa	Ls1	LMV_1987_	
Odontoglossum ringspot	ORSV	Odontoglossum	NAKS	Lettuce ORSV_1993_	
virus		-		Odontoglossum	
Olive latent virus 1	OLV1	Fragaria	OLV1_2018_W UR frag002	OLV1_2018_ Strawberry	
Pepper mild mottle virus	PMMoV	Capsicum annuum	Sp3	PMMoV_1991_	
Pepper mild mottle virus	PMMoV	Capsicum annuum	Path1-2-3	Pepper PMMoV_1978-	
Pepper mottle virus	PepMoV	Capsicum annuum	PepMoV 2017	Pepper PepMoV_2017_	
	·		WUR_001	Pepper	
Pepper veinal mottle virus	PVMV	Capsicum frutescens	CI	PVMV_1973_ Chili pepper	
Potato aucuba mosaic virus	PAMV	Solanum tuberosum	Albion	PAMV_1968_	
Potato virus X	PVX	Solanum tuberosum	802	Potato PVS_1939_	
				Potato	
Potato virus X	PVX	Solanum tuberosum	805	PVX_1986_ Potato	
Potato virus X	PVX	Solanum tuberosum	804	PVX_1991_	
Potato virus X	PVX	Solanum tuberosum	951	Potato PVX 1954	
	1 17		001	Potato	
Potato virus X	PVX	Solanum tuberosum	903	PVX_1960_	
Potato virus Y	PVY	Solanum	Tom5_4	Potato PVY_1989_	
Tobacco etch virus	TEV	lycopersicum Nicotiana tabacum	PV-308	Tomato TEV_1996_	
				Tobacco	
Zucchini green mottle mosaic virus	ZGMMV	Cucurbita pepo	99907708	ZGMMV_2009_ Zucchini	

Table 5 Virus isolates provided by NVWA and WUR, the Netherlands (Partner 1 and 6)

* Q-bank codes will be assigned as soon as Q-bank is included in EPPO Global Database.

Table 6 Virus isolates provided by VNIIKR, Russia (Partner 7)

Virus species	Acronym	Original host plant	Original code	Q-bank code*
		0 ()	0.11.0	
Impatiens necrotic spot virus	INSV	Streptocarpus sp.	StI-6	INSV_2013_ Streptocarpus
Plum pox virus [D]	PPV	Prunus domestica	D-007	PPV_2013_ Plum
Plum pox virus [D]	PPV	Prunus domestica	D-899	PPV_2012_ Plum
Apple chlorotic leaf spot virus	ACLSV	Malus domestica	StM-1	ACLSV_2018_ Apple
Apple chlorotic leaf spot virus	ACLSV	Malus domestica	StM-2	ACLSV_2018_ Apple
Apple chlorotic leaf spot virus	ACLSV	Malus domestica	StM-3	ACLSV_2018_ Apple

* Q-bank codes will be assigned as soon as Q-bank is included in EPPO Global Database.

Virus species	Acronym	Original host plant	Original code	Q-bank code*
Chrysanthemum stem necrosis virus	CSNV	Chrysanthemum sp.	NIB V38	CSNV_2001_003 Chrysanthemum
Henbane mosaic virus	HMV	Solanum lycopersicum	D159/15	HMV_2015_ Tomato
Potato virus Y	PVY	Solanum tuberosum cv Desiree	V 151	PVY_2007_ Potato

* Q-bank codes will be assigned as soon as Q-bank is included in EPPO Global Database.

Virus species ¹	Acronym	Original host plant	Original code	Q-bank code*
Alfalfa mosaic virus	AMV			
Apple chlorotic leaf spot virus¹	ACLSV			
Apple mosaic virus	ApMV			
Apple stem pitting virus	ASPV	<i>Malus</i> sp.	P322	ASPV_2014_ Apple
Arabis mosaic virus	ArMV	<i>Vitis vinifera</i> cv. Ryzlink vlašský	8702758	ArMV_2004_ Grapevine
Bean yellow mosaic virus	BYMV	Canna sp.	400497	BYMV_2004_ Canna
Broad bean wilt virus 1	BBWV-1			Gainia
Calibrachoa mottle virus	CbMV CGRMV	Brunus avium	100551	
Cherry green ring mottle virus		Prunus avium	400554	CGRMV_2004_ Cherry
Chrysanthemum stunt viroid	CSVd	<i>Chrysanthemum</i> sp. cv. Creamist	903606	CSVd_2009_ Chrysanthemum
Chrysanthemum virus B Citrus exocortis viroid	CVB CEVd	Solanum jasminoides	1001100	CEVd_2010_ Jasmine
Columnea latent viroid	CLVd	Unknown	P352a	nightshade CLVd_2015_ Unknown
Cucumber msoaic virus	CMV			UNKNOWN
Hop mosaic virus	HpMV			
Impatiens necrotic spot virus	INSV	Cardamine hirsuta	1005501	INSV_2010_ Haiı bittercress
Lettuce mosaic virus	LMV	Unknown	8903791	LMV_2004_ Unknown
Pepino mosiac virus	PepMV	Solanum lycopersicum	400003	Chikilowi
Pepino mosaic virus	PepMV	Solanum Iycopersicum cv. Tricia F1	801839	PepMV_2008_ Tomato
Pepper mild mottle virus	PMMoV	Capsicum annum cv. Stalagnit	300005	PMMoV_2004_ Pepper
Potato spindle tuber viroid	PSTVd	Solanum rantonnetii	903671	PSTVd_2009_ Blue potato bush
Potato virus M	PVM			I
Potato virus S	PVS			
Potato virus X	PVX	_ .	B 4 4 5	
Prune dwarf mosaic virus	PDV	Prunus avium	P327	PDV_2014_Plum
Prunus necrotic ringspot virus	PNRSV	<i>Rosa</i> sp.	P223	PNRSV_2010- Rose
Radish mosaic virus	RaMV			
Raspberry bushy dwarf virus	RBDV	Consisum	D245	
Tobacco mild green mosaic virus	TMGMV	Capsicum annuum	P245	TMGMV_2011_ Pepper
Tobacco mosaic virus	TMV	Petunia x hybrida cv.	P101	Pepper TMV_2011_

Euphresco project report

		Rose Wein		petunia
Tobacco rattle virus Tobacco ringspot virus	TRV TRSV	Impatiens walleriana	1104116	TRSV_2011_ Impatiens
Tobacco streak virus Tomato apical stunt viroid	TSV TASVd	Solanum rantonnetii	1300148	TASVd_2015_ Blue potato bush
Tomato aspermy virus Tomato black ring virus	TAV TBRV	Unknown	P364	TBRV_2015- Unknown
Tomato bushy stunt virus Tomato chlorotic dwarf viroid	TBSV TCDVd	Petunia x hybrida	906566	TCDVd_2011_ Petunia
Tomato mosaic virus	TMV	<i>Solanum</i> sp.	1404533	ToMV_2014_ Solanum
Konjac mosaic virus Lettuce mosaic virus Plum pox virus Potato virus A Potato virus Y Tomato spotted wilt virus	KoMV LMV PPV PVA PVY TSWV			
Turnip mosaic virus	TuMV	<i>Brassica rapa</i> subsp. <i>chinensis</i> cv. Wong Bok	8904022	TuMV_2007_ Turnip
Turnip yellow moaic virus	TYMV			
Watermelon mosaic virus	WMV	Cucumis sativus	9206901	WMV_2008_ Cucumber
Zucchini yellow mosaic virus	ZYMV	Cucumis sativus	7508	ZYMV_2000_ Cucumber

* Q-bank codes will be assigned as soon as Q-bank is included in EPPO Global Database. ¹ Isolates are available, but since sequence data are lacking, these will not be included in Q-bank yet.