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Abstract7

This is the second of a two-part series devoted to the automatic voice condition analysis of voice pathologies,

being a direct continuation to the paper ”On the design of automatic voice condition analysis systems.

Part I: review of concepts and an insight to the state of the art”. The aim of this study is to examine

several variability factors affecting the robustness of systems that automatically detect the presence of voice

pathologies by means of audio registers. Multiple experiments are performed to test out the influence

of the speech task, extralinguistic aspects (such as sex), the acoustic features and the classifiers in their

performance. Some experiments are carried out using state-of-the-art classification methodologies often

employed in speaker recognition. In order to evaluate the robustness of the methods, testing is repeated across

several corpora with the aim to create a single system integrating the conclusions obtained previously. This

system is later tested under cross-dataset scenarios in an attempt to obtain more realistic conclusions. Results

identify a reduced subset of relevant features, which are used in a hierarchical-like scenario incorporating

information of different speech tasks. In particular, for the experiments carried out using the Saarbrüecken

voice dataset, the area under the ROC curve of the system reached 0.88 in an intra-dataset setting and ranged

from 0.82 to 0.94 in cross-dataset scenarios. These results let us open a discussion about the suitability of

these techniques to be transfered to the clinical setting.

Keywords: Robust Automatic Voice Condition Analysis, Universal Background Models, Extralinguistic8

Aspects of the Speech, Cross-Dataset Validation.9

1. Introduction10

Voice impairments arise due to misuse, infections, physiological or psychogenic causes, or due to the11

presence of other systematic disorders (including neurological), vocal abuse, surgery, trauma, congenital12

anomalies, irradiation, chemicals affecting vocal folds, etc. [1]. The classical approach to detect voice13

impairments consists on an instrumental (objective) and perceptual (subjective) evaluation, which are com-14

plemented by other types of examinations to determine the existence of a voice disorder and its grade of15

impairment. In order to assist medical specialists in the the diagnosis procedures, a field called automatic16
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voice condition analysis (AVCA) has arisen, providing advantages to traditional detection procedures such17

as objectiveness or non-invasiveness due to the use of speech signals.18

During the first part of this review entitled ”On the design of automatic voice condition analysis systems.19

Part I: review of concepts and an insight to the state of the art”, some relevant concepts regarding AVCA20

systems have been described, introducing the most widely employed methodologies that are found in the21

design of these automatic systems. This second paper explores the design of AVCA systems, carrying out a22

variety of tests with differing types of speech tasks, types of features and accounting for diverse variability23

factors. The aim is to design a single generalist AVCA system that is latter tested under cross-dataset24

scenarios. Some techniques that constitute state-of-the-art in speaker recognition systems and based on the25

idea of Gaussian Mixture Models (GMM) are also tested out. GMM are generative models that represent26

the probability density function of a training dataset by means of a linear combination of G multivariate27

Gaussian components. If the amount of training data is large, it is possible to accomplish a well-trained28

GMM representing the data; but when it is scarce, other approaches are preferred. In this respect, it is29

often useful to model, via GMM, a larger auxiliary dataset different to the training dataset. The resulting30

model is termed Universal Background Model (UBM) and serves as an initialisation which is then used to31

adapt specific -better trained and more generalist- models using the training data. These adapted models32

are termed GMM-UBM and have been widely employed in several speaker recognition tasks [2]. A variation33

to GMM-UBM is termed GMM-SVM, which is aimed at combining the discriminatory capabilities of SVM34

into the GMM framework [3]. Likewise, a further improvement to the GMM-UBM are the i-Vectors (IV)35

[4], which rely on the concept of GMM-UBM and factorial analysis for modelling the training dataset in a36

total variability space. IV are often accompanied by a Probabilistic Linear Discriminative Analysis (PLDA),37

which seeks to compensate for the effects of variability factors in the training data [5].38

This paper is organised as follows: section 2 introduces the datasets and the methodological setup of the39

four major experiments followed in this paper; section 3 presents the obtained results; section 4 introduces40

some discussions, whereas section 5 presents some concluding remarks.41

2. Experimental setup42

This section presents the different experimental setups followed throughout the paper. The section begins43

with a description of the datasets used for training and testing the systems developed, and later presents four44

methodological frameworks used to test the influence of the speech task, the acoustic features, the classifiers45

and certain extralinguistic aspects.46

2.1. Acoustic material47

Three datasets containing normophonic and pathological recordings are used as training corpora: Hospital48

Universitario Pŕıncipe de Asturias (HUPA), Hospital Gregorio Marañón (GMar) and Saarbrücken (SVD) voice49

disorders corpora. Similarly, four ancillary datasets are also utilised for the construction of the UBM. The50
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ancillary datasets include the EUROM and PhoneDat-I corpora which are composed of normophonic registers51

of speakers reading passages and pronouncing words, the well-known Massachussets Ear and Eye Infirmary52

(MEEI) partition of normophonic and dysphonic registers, and the Albayzin dataset which contains recordings53

of sentences uttered in Spanish. Additionally two extra corpora are used for cross-dataset trials: the Hospital54

Doctor Negŕın dataset (DN) and the Aplicación de las Tecnoloǵıas de la Información y las Comunicaciones55

(ATIC) corpora. A brief description of each one of these datasets is presented next:56
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Figure 1. Histograms representing the distribution of patients according to their sex and age for the (a) HUPA, (b)

GMar and (c) SVD corpora.

2.1.1. HUPA dataset57

Recorded at the Pŕıncipe de Asturias hospital in Alcalá de Henares, Madrid, Spain [6]. The dataset58

contains the sustained phonation of the vowel /a/ of 366 adult Spanish speakers (169 pathological and 19759

normophonic). Registers have been recorded using the Kay Computerized Speech Lab Analysis station 4300B60

with a sampling frequency of 50 kHz and 16 bits of resolution. Pathological voices contain a wide variety61

of organic pathologies including nodules, polyps, oedemas, carcinomas, etc. The distribution of registers62

according to the sex and age of the speaker is shown in Figure 1a.63
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2.1.2. GMar dataset64

Composed of registers of Spanish speakers phonating the vowels /a/, /i/ and /u/. The dataset has been65

recorded at the Gregorio Marañón Hospital, Madrid, Spain, using the MediVozCaptura system [7] with a66

sampling frequency of 22050 Hz and 16 bits of resolution. The corpus is composed of 202 audio recordings,67

from which 95 are of normophonic and 107 of pathological speakers. The distribution of registers for the68

vowel /a/, according to the sex and age of the speakers is introduced in Figure 1b.69

2.1.3. SVD dataset70

It holds a collection of audio registers from more than 2000 normophonic and pathological German71

speakers [8, 9]. The dataset was recorded by the Institut für Phonetik at Saarland University and the72

Phoniatry Section of the Caritas Clinic St. Theresia in Saarbrücken, Germany. The corpus comprises73

recordings of the sustained phonation of vowels /a/, /i/ and /u/ uttered at normal, high and low pitch,74

as well as with rising-falling pitch. Besides, it incorporates recordings of the sentence Guten Morgen, wie75

geht es Ihnen? (Good morning, how are you? ). Registers have been recorded using a sampling frequency76

of 50 kHz and 16 bits of resolution. For the purposes of this paper only the vowels /a/, /i/ and /u/ at77

normal pitch and the running speech recordings have been utilised, having defined a subset of the dataset78

after removing those registers with a low dynamic range or interferences. After this process, 1538 registers79

of speakers aged between 16 and 69 years are obtained (568 normophonic and 970 pathological). Figure 1c80

depicts the distribution according to the sex and age of the speakers in the dataset.81

2.1.4. Ancillary datasets82

As commented above, four ancillary datasets are used in this work. The first, the EUROM corpus, comprises83

recordings of 60 speakers in each of seven European languages: Danish, Dutch, British English, French,84

German, Norwegian and Swedish [10]. It has been explicitly designed to aid to the phonetic comparison of85

languages, with similar materials and recording protocols. In this manner, each corpus has been recorded at86

20 kHz and 16 bit of resolution in an anechoic room and balancing the acoustic content among the different87

languages. In this paper only the German corpus is employed, for which a partition within the corpus called88

Many Talker set is used. It consists of 63 speakers which are asked to perform two tasks: (i) reading of 10089

numbers in the range of 0 to 9999 grouped in 5 blocks of 20 numbers; (ii) reading of 5 sentences coming90

from 40 texts. The second, the Albayzin dataset, is a Spanish corpora designed for speech recognition91

purposes [11] and which is composed of three sets: phonetic, application and Lombard speech. Only the92

phonetic corpus is considered in this work. It contains 6800 recordings of 204 speakers uttering phonetically93

balanced phrases, which have been digitised using a sampling frequency of 16 kHz and 16 bits of resolution.94

The third, the PhoneDat-I dataset, contains 200 phonemically balanced artificial German sentences and two95

readings, namely ”the North wind” fable and ”a Butter story” [12]. The corpus contains around 20000 files96

uttered by 200 German speakers. All registers have been recorded at a sampling rate of 16 kHz and 16 bit of97

resolution. Finally, the MEEI voice disorders dataset contains 710 recordings of English speakers, phonating98
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the vowel /a/ and reading the first sentence of the Rainbow Passage [13]. The dataset has been recorded99

at sampling frequencies ranging from 10 to 50 kHz. To ensure a balance in the pathologies under study,100

a subset of the dataset is chosen in [14]. The resulting partition comprises 226 speakers: 173 pathological101

and 53 normophonic. The registers have been previously edited to remove the beginning and ending of each102

utterance, hence omitting the effects of vowel onsets and offsets.103

2.1.5. Corpora for the cross-dataset trials104

Two corpora are considered for cross-dataset trials. One one hand, the DN partition has been recorded105

by Hospital Dr. Negŕın in Las Palmas de Gran Canaria, Spain. It contains 181 registers of Spanish speakers106

phonating the vowel /a/ [15]. The registers have been recorded at 22050 Hz and 16 bits of resolution. A107

partition of 130 registers has been randomly extracted and used for evaluation purposes.108

On the other hand, the ATIC dataset contains recordings of 79 Spanish speakers (58 dysphonic and 21109

normophonic) phonating the vowel /a/ [16]. Pathological voices have been obtained from public and private110

Otorhinolaryngology services in Málaga, Spain, whereas normophonic speakers are recorded from teachers111

and students recruited at Málaga University. Registers have been recorded in quiet rooms under controlled112

conditions, digitized at 16 bits and 44100 Hz.113

2.2. Methodological setup114

Four main experiments are carried out in this paper. The aim is to explore the influence of different115

variability factors that typically affect the performance of AVCA systems. Additionally, the paper studies the116

influence on the performance of different classification techniques often employed in the speaker recognition117

field.118

2.2.1. Experiment 1: variability due to the acoustic material and the feature set119

This experiment contains a series of trials using a variety of feature sets and acoustic material. This120

allow a direct comparison about the influence of the speech task in AVCA systems, as well as insight about121

the consistency of the considered features when the acoustic material varies. Likewise, and since no single122

feature can offer enough discrimination power to completely characterise the properties of dysphonia and123

normophonia, this allows to study the characteristics rendering the best results in subsequent classification124

labours. This might potentially permit the design of AVCA systems based on complementary features125

describing distinct properties of dysphonia.126

Trials are performed using all the available acoustic material of the HUPA, SVD and GMar corpora. It is127

worth noting that not all the acoustic features, which will be mentioned next, can be extracted from running128

speech, as they rely on conditions -such as stationarity- that cannot be always met. For instance, certain129

perturbation features depend on the existence of a periodic glottal excitation, assumption that cannot be130

fulfilled on unvoiced segments of speech. As an alternative to directly analyse running speech, literature131
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often reports procedures based on retrieving voiced segments of speech using voiced-unvoiced algorithms132

[17, 18]. This methodology is considered as well in the following trials.133

A total of 9 trials are carried out in experiment 1 : 1 trial using the HUPA dataset (sustained phonation of134

the vowel /a/); 3 trials with GMar (sustained phonations of vowels /a/, /i/, /u/); and 5 with SVD (sustained135

phonations of vowels /a/, /i/, /u/, raw running speech, and voiced segments of the running speech task).136

The setup followed during each trial is presented in Fig. 2a and can be described as follows:137

I. Preprocessing: all registers are downsampled to 20 kHz (the lowest sampling frequencies of all the138

available datasets) and max-normalised by dividing the signal by its absolute largest value. Then, a139

framing and a Hamming windowing procedure is followed, where the length of the window is determined140

depending on the feature sets that are extracted, and the overlap is varied to ensure that all the sets141

of characteristics contain the same number of frames.142

II. Characterisation: this stage has the goal of extracting features capable of portraying the properties143

of normophonic and dysphonic conditions. The idea is to extract for each windowed frame, a d-144

dimensional vector of characteristics, ~x = {x[1], · · · , x[d]} which is associated to a label `, describing145

properties of the segment. The sets of characteristics that are considered in this paper are descriptors146

of vocal quality. These are illustrated in Table 2b and are described next:147

• Perturbation features (Pert set): measure the presence of additive noise resulting from an in-148

complete glottal closure of the vocal folds, and the presence of modulation noise which is the149

result of irregularities in the movements of the vocal folds. Three perturbation metrics are em-150

ployed: Normalised Noise Entropy (NNE) [19], Cepstral Harmonics-to-Noise Ratio (CHNR) [20]151

and Glottal-to-Noise Excitation Ratio (GNE) [21].152

• Spectral and cepstral features (SCs set): measure the harmonic components of the voice. This set153

of features encloses Perceptual Linear Prediction coefficients (PLP) [22], Mel-Frequency Cepstral154

Coefficients (MFCC) [23], Smoothed Cepstral Peak Prominence (CPPS) [24] and Low-to-High155

Frequency Spectral Energy Ratio (LHr) [25]. The number of PLP and MFCC coefficients are156

varied in the range [10, 20] with steps of 2.157

• Features based on modulation spectrum (MSs set): rely on the computation of the modulation158

spectrum, that characterises the modulation and acoustic frequencies of input voices [26]. The159

features considered in the set are: Modulation Spectrum Homogeneity (MSH), Cumulative In-160

tersection Point (CIL), Rate of Points above Linear Average (RALA) and Modulation Spectrum161

Percentile (MSP)m, where the sub-index is referred to the percentile that is used, i.e. MSP25,162

MSP75 and MSP95 [27, 28].163

• Complexity (Comp set): this family of parameters characterises the dynamics of the system and164

its structure. Several features are extracted, which are further grouped according to the properties165

they measure. Hence: (i) the first subset comprises dynamic invariants (Dyn subset) extracted166
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from a reconstructed attractor such as the Correlation Dimension (D2), the Largest Lyapunov Ex-167

ponent (LLE) [29], and the Recurrence Period Density Entropy (RPDE) [30]; (ii) the second subset168

contains features which measure long-range correlations (LR subset), such as Hurst Exponent (He)169

and Detrended Fluctuation Analysis (DFA) [31, 30]; (iii) the third subset includes regularity es-170

timators (Reg subset) which are based on entropy-like quantifiers. It encompasses Approximate171

Entropy (ApEn) [32], Sample Entropy (SampEn) [33], Modified Sample Entropy (mSampEn) [34],172

Gaussian Kernel Sample Entropy (GSampEn) [35] and Fuzzy Entropy (FuzzyEn) [36]; (iv) finally,173

the fourth subset includes entropy estimators (Ent subset) such as Permutation Entropy (PE)174

[37, 38], Rényi Hidden Markov Model Entropy (rHMMEn) and Shannon Hidden Markov Model175

Entropy (sHMMEn) [23, 39].176

For the trials based on sustained phonation, Hamming windows of 40 ms are employed for the Pert and177

SCs sets to ensure that each frame contains at least one pitch period, whereas windows of 55 ms length178

are used in the Comp sets as suggested in [23]. Likewise, for experiments in the MSs set, segments of179

180 ms are utilised as in [27, 28].180

For those trials involving running speech, two different scenarios are considered. In the first, only181

segments representing voice are extracted from the speech. These segments are extracted automatically182

by means of the MAUS software, as described in [40]. The second makes use of the raw running speech183

registers, but using window lengths in the range [10, 30] ms with 5 ms steps. These values are selected184

to avoid violating the stationarity assumptions. A voice activity detector has been also employed to185

reject unwanted segments [41].186

III. Decision making: Given a training set of observations X = {~x1, · · · , ~xn, · · · , ~xN}, associated to a label187

vector ~̀ = {`1, · · · , `n, · · · , `N}, the aim of the decision making procedure is to learn a mapping from188

the input observations to the labels. GMM classifiers are used for modelling class membership before189

taking decisions using log-likelihood functions.190

IV. Evaluation of results: The Area Under the ROC curve (AUC) is the preferred measure of performance191

evaluation. A k-folds cross-validation procedure has been employed setting the number of folds to192

k = 11. Detection-Error Tradeoff (DET) curves and standard performance metrics for a binary193

classifier are considered for each one of the aforementioned sets of features: Accuracy (ACC), Sensitivity194

(SE), Specificity (SP).195

2.2.2. Experiment 2: design of a hierarchical system based on the sex of the speaker196

The effects of the extralinguistic trait of sex in the design of AVCA systems is explored. The interest of197

this approach in AVCA is in the possibility of constructing hierarchical-like schemes taking into account the198

variability introduced by certain extralinguistic factors separately. The idea is to segment the population199

according to extralinguistic characteristics to train more accurate models. As a result, the complexity of the200
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Set Subset Features
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(b) Feature sets and subsets used for characterisation.

Figure 2. (a) methodology followed in this paper for the design of the AVQA system; (b) table containing all the

considered sets of features.

voice pathology detection task is decreased, simpler signal processing models are generated, and a subsequent201

performance improvement is expected. To analyse the impact of the sex of the speakers in detection tasks,202
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a sex-independent and a sex-dependent system (an AVCA for female speakers and another for males) are203

designed.204

Three trials are carried out using the partitions of the vowel /a/ belonging to the HUPA, SVD and GMar205

dataset. The setup followed for all the trials is presented in Figure 2a, whereas the main stages are described206

next:207

1. Preprocessing: all registers are downsampled to 20 kHz and max-normalised. For the sex-dependent208

systems the datasets are decomposed according to sex of the speaker.209

2. Characterisation: Only MFCC features are extracted in the current experiment. The number of MFCC210

coefficients is varied in the range [10, 20] with steps of 2. Hamming windows of 40 ms with a 50% of211

overlapping between consecutive frames are employed.212

3. Classification: decision making is carried out using a GMM classifier, varying the number of Gaussian213

components as {2i} : i ∈ Z; 1 ≤ i ≤ 9.214

4. Evaluation of results: the same metrics used in the experiment 1 are considered.215

2.2.3. Experiment 3: testing out the performance of classification techniques used in speaker recognition216

The performance of classifiers relying on the idea of UBMs in conjunction with MFCC features, a setup217

that has been proven useful in speaker recognition tasks -but that has not been widely explored in AVCA218

systems- is studied. In this experiment only the registers of the vowel /a/ and running speech belonging219

to the SVD partition are examined, thus defining two trials. In the one using sustained phonation, three220

configurations are defined in accordance to the auxiliary datasets that are used to train the UBM and221

compensation models: (i) configuration C1 employs normophonic registers of HUPA corpora; (ii) configuration222

C2 uses normophonic and dysphonic recordings of HUPA, MEEI and GMar (vowel /a/ only); (iii) configuration223

C3 employs normophonic data of HUPA, MEEI, GMar and vowels extracted from EUROM to compare the influence224

of using acoustic material coming from different speech tasks (running speech, sustained vowels /a/, /i/ or225

/u/). With respect to EUROM, vowels are used to match as much as possible the acoustic content of the226

SVD partition. Since there is access to the phonological transcription of the audio files, these segments are227

extracted automatically by means of the MAUS software, as described in [40].228

For the trial using running speech, diverse ancillary datasets are employed for training the UBM and229

compensation models: (i) configuration C1: employs normophonic and dysphonic recordings of the vowels /230

a/, /i/, /u/ of the HUPA and GMar datasets, plus normophonic vowels extracted from the EUROM and Albayzin231

corpora; (ii) configuration C2: considers normophonic-only recordings of the vowels /a/, /i/, /u/ of the HUPA232

and GMar datasets, plus normophonic vowels extracted from the EUROM and Albayzin corpora; (iii) con-233

figuration C3: characterises the normophonic sentences of MEEI, EUROM and Albayzin; (iv) configuration234

C4: characterises the normophonic sentences of EUROM; (v) configuration C5: characterises the normophonic235

sentences of EUROM and PhoneDat-I.236
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Table 1 summarises the trials and the configurations in experiment 3, whereas the experimental setup is237

introduced graphically in Figure 2a and described as follows:238

1. Preprocessing: for the trial involving sustained phonation, 40 ms Hamming windows with a 50% of239

overlapping between consecutive frames are employed, whereas for the running speech experiments,240

the length of the window is defined according to the best outcomes of experiment 2 (where lengths241

were varied in the range [10, 30] ms with steps of 5 ms).242

2. Characterisation: MFCC features are extracted from each one of the frames obtained in the prepro-243

cessing stage. The number of MFCC coefficients is varied between [10, 20] with steps of 2 coefficients.244

3. Decision machines: GMM, GMM-UBM, IV, PLDA and GMM-SVM classifiers are employed. The245

number of Gaussian components is varied in such a manner that {2i} : i ∈ Z; 1 ≤ i ≤ 9.246

4. Evaluation of results: the same procedure followed in previous experiments is carried out.247

Table 1. Tested configurations for training the UBM models in experiment 3.

Configuration Datasets Speech tasks Content

Sustained phonation

C1 HUPA /a/ No.

C2 HUPA, MEEI, GMar /a/ No. + Dy.

C3 HUPA, MEEI, GMar, EUROM /a/+/i/+/u/+RSv. No.

Running speech

C1 HUPA, GMar, EUROM, Albayzin /a/+/i/+/u/+RSv. No. + Dy.

C2 HUPA, GMar, EUROM, Albayzin /a/+/i/+/u/+RSv. No.

C3 MEEI, EUROM, Albayzin RSr. No.

C4 EUROM RSr. No.

C5 EUROM, PhoneDat-I RSr. No.

RSr.: raw running speech; RSv.: vowels extracted from running speech; No.: normophonic; Dy.: dysphonic

2.2.4. Experiment 4: combination of the best systems.248

This experiment is built around the lessons learnt during the first three experiments. Presumably it is249

to be of a hierarchical type, it will use a subset of informative features, and will employ all the available250

acoustic material to provide a single decision about the condition of speakers.251

Two trials are considered in the current experiment: (i) One which provides a single decision about252

the condition of patients by combining the results of the systems based on the vowels /a/, /i/, /u/ and253

the running speech task of the SVD dataset; (ii) other designed to test the capabilities of the system in a254

cross-dataset scenario. In particular, the system is assessed using the HUPA, ATIC, DN and GMar corpora.255

The methodological stages that are followed in both trials are presented in Figure 2a and are described256

next:257

1. Preprocessing: all registers are downsampled to 20 kHz and max-normalised. for the trials involving258
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sustained phonation, 40 ms Hamming windows with a 50% of overlapping are used. For those using259

running speech, the length of the window is defined according to the outcomes of experiment 1.260

2. Characterisation: two systems are considered. The first is designed with those features providing the261

best results in experiment 1. To this end, three dimensionality reduction methods are employed to rank262

features from the most to the least relevant, in the search for a decrease in the computational burden,263

an improvement in the accuracy of the analyses, and the avoidance of problems such as the curse of264

dimensionality [42]. This analysis is performed independently for the HUPA, SVD and GMar datasets265

by means of three selection techniques [43]: Maximal Information Maximisation (MIM), Minimal266

Redundancy Maximal Relevance (mRMR) and Joint Mutual Information (JMI).267

To generalise results across datasets, acoustic material and features, a scoring procedure is now per-268

formed. In this manner and with the results of the ranking techniques and for a certain dataset, the269

scoring procedure rewards the best features with a low score, while penalizing the worst with a large270

value. These scores are then summed up across datasets and feature selection techniques. At the271

end, the features with the lowest scores are regarded as the most informative and consistent and are272

employed for further testing.273

In addition to this system, another is designed with MFCC features as it is to be used for the speaker274

recognition classification techniques. If the hierarchical system is build up (in accordance to results275

of experiment 2 ), the number of MFCC coefficients is varied in the range [10, 20] with steps of 2,276

otherwise, the parameter that render the best results in experiment 1 is used.277

3. Decision machines: GMM classifiers are used to train the system employing the most consistent set278

of features. The MFCC system utilises the classifiers that render the highest efficiency as given by279

the results of experiment 3. The number of Gaussian components is varied in such a manner that280

{2i} : i ∈ Z; 1 ≤ i ≤ 9.281

4. Fusion of results: logistic regression is employed to fuse the system using the most consistent features282

and a GMM classifier, and the system based on MFCC and classification based on UBM. A further283

fusion is considered to combine the information coming from diverse speech tasks, and thus, to provide284

a single decision about the condition of speakers.285

5. Evaluation of results: the same evaluation procedures followed in previous experiments is carried out.286

3. Results287

3.1. Experiment 1: variability due to the acoustic material and the type of features288

In total 9 trials are performed: one using the vowel /a/ in HUPA; three for the vowels /a/, /i/, /u/ in289

GMar; and three for the vowels /a/, /i/, /u/, and two using running speech in the SVD corpus.290
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Set Subset ACC SP SP AUC

Pert - 76.61 ± 4.30 0.77 0.77 0.85

MSs - 71.77 ± 4.57 0.74 0.70 0.79

CPPS+LHr 62.10 ± 4.93 0.60 0.64 0.69

MFCC 69.62 ± 4.67 0.66 0.74 0.79SCs

PLP 66.94 ± 4.78 0.58 0.77 0.80

LR 56.18 ± 5.04 0.51 0.62 0.60

Dyn 65.59 ± 4.83 0.63 0.68 0.75

Reg 69.89 ± 4.66 0.68 0.72 0.78

Comp

Ent 75.00 ± 4.40 0.75 0.75 0.83
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Figure 3. Experiment 1 : results for the vowel /a/ in the HUPA database.

3.1.1. HUPA dataset:291

The performance metrics of all the considered sets of features and the DET curves of the best performing292

subsets, using the vowel /a/ of the HUPA dataset are presented in Figure 3.293

From the obtained outcomes it can be observed that the best results -in terms of AUC- are provided294

by the Pert set (0.85), whereas in the SCs set, MFCC and PLP achieve an almost equivalent performance295

(AUC of 0.80 and 0.79 respectively). Likewise, the subset Ent achieves the best results within the Comp set296

(0.83) while LR provides the worst (0.60).297

3.1.2. GMar dataset:298

The performance metrics of all the considered sets of features and the DET curves of the best performing299

subsets, for the vowels /a/, /i/ and /u/ in the GMar dataset are presented in Figure 4.300

Respecting the vowel /a/, the best outcomes arise when using the Ent subset in Comp (AUC=0.83).301

Similarly, MSs, Pert and the whole SCs set provide acceptable outcomes, with AUC ranging from 0.73 to302

0.77. By contrast, and for the vowel /i/, MSs achieves the best results (0.76), followed by the Pert set and the303

Reg subset, which accomplish in both cases an AUC of 0.73. Finally, and when the vowel /u/ is studied, the304

best results are given by the LR and the Ent subsets (AUC of 0.74 and 0.73 respectively). Notwithstanding,305

the PLP subset and the MSs set provide comparable results (0.73 and 0.72 respectively).306

3.1.3. SVD dataset307

The performance metrics of all the considered sets of features and the DET curves of the best performing308

subsets, for the vowels /a/, /i/ and /u/ are presented in Figure 5a.309

Considering the vowel /a/, the best efficiency arises with the Pert set (AUC=0.78), followed by MFCC310

and PLP whose performance is alike (0.77 and 0.76 respectively). Within the Comp set, Ent and Reg311

provides the best performance (0.75 and 0.74 respectively). With regards to the vowel /i/, MFCC and PLP312

features accomplish the best results in the trial (AUC of 0.76 and 0.75 respectively), followed by other good313

performing sets such as Pert and MSs (AUC of 0.72 and 0.70 respectively). In a similar fashion, the results314
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Vowel /a/

Set Subset ACC SP SE AUC

Pert - 65.35 ± 6.56 0.65 0.65 0.77

MSs - 67.82 ± 6.44 0.65 0.70 0.76

CPPS+LHr 66.83 ± 6.49 0.67 0.66 0.73

MFCC 69.31 ± 6.36 0.69 0.69 0.77SCs

PLP 68.81 ± 6.39 0.67 0.70 0.76

LR 56.18 ± 5.04 0.51 0.62 0.60

Dyn 65.59 ± 4.83 0.63 0.68 0.75

Reg 69.89 ± 4.66 0.68 0.72 0.78

Comp

Ent 75.00 ± 4.40 0.75 0.75 0.83

Vowel /i/

ACC SP SE AUC

66.32 ± 6.72 0.65 0.68 0.73

67.82 ± 6.44 0.65 0.70 0.76

60.53 ± 6.95 0.62 0.59 0.67

60.53 ± 6.95 0.61 0.60 0.65

58.42 ± 7.01 0.60 0.57 0.65

61.05 ± 6.93 0.59 0.64 0.65

64.74 ± 6.79 0.63 0.67 0.70

61.58 ± 6.92 0.48 0.75 0.73

60.53 ± 6.95 0.61 0.60 0.68

Vowel /u/

ACC SP SE AUC

61.36 ± 7.19 0.64 0.59 0.70

63.64 ± 7.11 0.63 0.64 0.72

59.09 ± 7.26 0.58 0.60 0.68

62.50 ± 7.15 0.62 0.63 0.68

67.05 ± 6.94 0.70 0.64 0.73

61.36 ± 7.19 0.64 0.59 0.74

58.52 ± 7.28 0.52 0.64 0.70

63.07 ± 7.13 0.60 0.66 0.68

63.07 ± 7.13 0.67 0.59 0.73
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Figure 4. Experiment 1: results for the vowels /a/, /i/ and /u/ in the GMar database.

for the vowel /u/ crown MFCC and PLP as one of the best performing features when vowels are considered,315

but closely followed by the remaining.316

Figure 5b presents the performance metrics of all the considered sets of features and the DET curves of317

the best performing subsets in the SVD dataset, for the running speech task using the raw acoustic material;318

whereas Figure 5c introduces the results when using vowels extracted from the running speech registers.319

With regards to the trial using the raw speech, it is observed that both PLP and MFCC features perform320

almost equivalently (0.85 for PLP and 0.86 for MFCC). In a similar way, the window length that achieves321

the best results is in this case of 20 ms.322

Respecting the trial using extracted vowels from running speech, it is worth noting that it was not possible323

to employ the same characterisation stage as in when using sustained phonation, as there are some practical324

reasons that difficult this type of analysis. In particular, the window length that is employed in some sets325

of features is too long to allow the extraction of characteristics. This is expected, as running speech is326

composed of fast transitions between silence, voiced or unvoiced sounds and intervals of sustained phonation327

are not produced frequently. Indeed, for characterisation with the MSs set it is necessary to include voiced328

segments with a window size of 180 ms. However, there are not vocal segments with such length in the329
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Vowel /a/

Set Subset ACC SP SE AUC

Pert - 68.79 ± 2.32 0.68 0.69 0.78

MSs - 66.67 ± 2.35 0.60 0.70 0.73

CPPS+LHr 61.12 ± 2.44 0.61 0.61 0.68

MFCC 70.48 ± 2.28 0.67 0.73 0.77SCs

PLP 71.07 ± 2.27 0.70 0.72 0.77

LR 61.31 ± 2.43 0.59 0.63 0.68

Dyn 63.78 ± 2.40 0.62 0.65 0.73

Reg 67.75 ± 2.34 0.55 0.75 0.74

Comp

Ent 68.08 ± 2.33 0.68 0.68 0.75

Vowel /i/

ACC SP SE AUC

64.37 ± 2.39 0.64 0.65 0.72

63.20 ± 2.41 0.64 0.63 0.70

57.87 ± 2.47 0.55 0.59 0.62

68.73 ± 2.32 0.67 0.69 0.76

68.21 ± 2.33 0.67 0.69 0.75

59.04 ± 2.46 0.57 0.60 0.61

62.29 ± 2.42 0.62 0.63 0.68

63.46 ± 2.41 0.62 0.65 0.69

61.25 ± 2.43 0.60 0.62 0.65

Vowel /u/

ACC SP SE AUC

59.88 ± 2.45 0.59 0.60 0.66

61.05 ± 2.44 0.53 0.66 0.67

58.13 ± 2.47 0.55 0.60 0.63

65.41 ± 2.38 0.64 0.66 0.71

64.69 ± 2.39 0.62 0.66 0.71

58.06 ± 2.47 0.57 0.59 0.64

61.51 ± 2.43 0.58 0.64 0.68

63.78 ± 2.40 0.50 0.72 0.67

59.95 ± 2.45 0.57 0.62 0.66

Vowel /a/ Vowel /i/ Vowel /u/
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a. Results for vowels /a/, /i/ and /u/

Running speech - raw speech

Set Length ACC SP SE AUC

CPPS+LHr 25 ms 62.26 ± 2.46 0.60 0.64 0.67

MFCC (18) 20 ms 80.32 ± 2.02 0.74 0.84 0.86

PLP (18) 20 ms 77.90 ± 2.11 0.65 0.85 0.85
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b. Results using the raw running speech task.

Running speech - extracted vowels

Set ACC SP SE AUC

Pert 66.69 ± 2.39 0.67 0.67 0.74

CPPS+LHr 56.15 ± 2.52 0.52 0.58 0.58

MFCC (16) 76.96 ± 2.14 0.70 0.81 0.84

PLP (18) 75.55 ± 2.18 0.67 0.80 0.82
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c. Vowels extracted from running speech.

Figure 5. Experiment 1: results for the SVD database using (a) the vowels /a/, /i/ and /u/; (b) the raw running

speech task; (c) vowels extracted from the running speech task.
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SVD dataset. This behaviour is also encountered when analysing complexity features, where the number of330

segments whose length is 55 ms is greatly restricted. For this reason, the reported results only employ sets331

using windows of 40 ms, i. e., Pert and SCs to characterise voiced segments of speech. The outcomes indicate332

that the MFCC features provide the best results (AUC = 0.86) next to PLP (AUC = 0.85). In comparison333

with the outcomes of the running speech trial, there is a light decrease of performance when using the vowels334

extracted from the speech.335

3.1.4. General comments336

During this experiment several sets of features have been employed for detection tasks, using different337

datasets of sustained vowels and running speech. By virtue of the obtained results, we can infer that there338

is no single feature or set of features that always perform better than the others. Indeed, depending on339

the type of acoustic material or the particularities of the corpus, a certain set of features outperforms the340

others. Despite that, there are some interesting observations indicating tendencies of good performance. For341

instance, Pert has proven to be useful for detection purposes as ascertained by the large AUC values that342

varied from 0.66 using the vowel /u/ and SVD, to 0.85 for the HUPA dataset (or to 0.86 if running speech is343

considered). In a similar fashion, the SCs set provides large AUC values that ranged from 0.71 for the vowel344

/u/ and the SVD dataset, to 0.8 for the HUPA dataset. In most of the cases (except for the vowel /i/ of the345

GMar dataset), either PLP or MFCC outperformed the results of CPPS+LHr. Regarding the MSs set, the346

performance of the whole subset remains among the highest compared to the remaining sets, with an AUC347

that varies from 0.67 for the vowel /u/ and the SVD corpus, to 0.79 using HUPA. Finally, and respecting the348

complexity features, the results indicate that the subset providing the worst general performance is LR as349

in almost all cases (but for GMar and vowel /u/), it is surpassed by the remaining subsets. Similarly, the350

performance of Reg and Ent tends to be superior to that of Dyn.351

In reference to the acoustic material employed, some trends are observed as well. Revisiting the results352

of the trials using sustained phonation, it can be inferred that the vowel /a/ achieves, in all cases, better353

results than vowels /i/ and /u/, no matter the set that is analysed. When including running speech into the354

analysis, it is found that the spectral/cepstral features are in general better when the sentence is employed355

in comparison to the use of a sustained phonation. By contrast, for the Pert set, the vowel /a/ provides a356

better performance than when using running speech. In an attempt to compare speech material of different357

nature with the same set of features, Figure 6 presents the best DET curves for all the trials involving the SVD358

and GMar corpora. MFCC features are depicted as they are calculated in all tests, including those based on359

running speech. The outcomes suggest that -despite the difficulties of comparing results- there is a certain360

tendency to favour the employment of acoustic material based on running speech when spectral/cepstral361

analysis is considered. In addition, in both cases the vowel /a/ presents a better performance in comparison362

to using vowels /i/ or /u/.363

It is important to highlight that a a fair comparison between speech tasks is difficult, as there are certain364

differences in the amount of acoustic material that is available when speech and voice are compared. As365
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(a) DET curve for the SVD dataset.
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(b) DET curve for the GMar dataset.

Figure 6. Experiment 1: DET curves using MFCC features and speech material of different nature belonging to (a)

SVD dataset; and (b) GMar dataset. RS.: running speech; RSv.: vowels extracted from running speech.

a matter of example, and taking the SVD dataset, the trial using the raw running speech material includes366

219.000 frames into the analysis, whereas 36.691 voiced frames are encountered when including only vowels367

extracted from speech. By contrast, the analysis of the sustained phonation of the vowel /a/ is conformed368

by 95.422 frames.369

In a direct comparison of the two detection tasks using running speech, it is found that better results370

are obtained when no voiced detector is included. This might be simply a consequence of having used an371

automatic system for the segmentation of the voice recordings, as some errors might be introduced during372

this process, specially when pathological voice is considered. In any case, disregarding the use of voiced373

detectors comes with the added benefit of reducing the complexity of the AVCA system, at expenses of374

having to process irrelevant information.375

3.2. Experiment 2: Effects of extralinguistic traits.376

Figure 7 introduces the performance metrics of the sex-independent and sex-dependent systems trained377

for each one of the employed datasets.378

Results indicate that in the HUPA dataset, there is a tendency to a performance enhancement when the379

sex of the speaker is accounted in the classification (AUC=0.81 vs. AUC=0.79). This is expected since380

modelling female and male systems separately lead to a larger AUC (0.85 and 0.81 respectively) compared381

to a sex-independent scenario (0.79). The outcomes of the trial involving SVD also suggest that, in comparison382

to a sex-independent system, there is a certain tendency towards an efficiency improvement when the sex is383

deemed in the design of AVCA systems (AUC=0.78 when the sex is considered vs. AUC=0.77 when it is384

not). Unlike the previous trial, the female-only models achieve higher detection rates than the ones provided385

by the male-only models (AUC=0.79 vs. AUC=0.77). In the case of GMar, the same tendency of the previous386
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Subtype ACC SP SE AUC

Fe.+Ma. 73.66 ± 4.47 0.72 0.70 0.81

Fe.: MFCC(20) 73.45 ± 5.76 0.71 0.75 0.81S.D.

Ma.: MFCC(20) 73.97 ± 7.12 0.69 0.80 0.85

S.I. MFCC(12) 69.62 ± 4.67 0.71 0.77 0.79
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a. Results for the HUPA database.

Type Subtype ACC SP SE AUC

Fe. + Ma. 70.74 ± 2.27 0.68 0.73 0.78

Fe.: MFCC(18) 72.17 ± 2.91 0.70 0.73 0.79S.D.

Ma.: MFCC(16) 68.68 ± 3.62 0.63 0.71 0.77

S.I. MFCC(18) 70.48 ± 2.28 0.67 0.73 0.77
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b. Results for the SVD database.

Type Subtype ACC SP SE AUC

Fe.+Ma. 70.79 ± 6.27 0.72 0.70 0.78

Fe.: MFCC(16) 70.45 ± 7.78 0.69 0.72 0.77S.D.

Ma.: MFCC(10) 71.43 ± 10.58 0.76 0.66 0.82

S.I. MFCC(20) 69.31 ± 6.36 0.69 0.69 0.77
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c. Results for the GMar database.

Figure 7. Experiment 2 : performance metrics and DET curves of the sex-dependent (S.D.) and sex-independent

(S.I.) system using the (a) HUPA, (b) SVD and (c) GMar corpus. Fe.:Female, Ma.:Male.

two trials is observed, i. e., the model considering the sex of the speakers outperforms the sex-independent387

system (AUC=0.78 vs. AUC=0.77). Just as with the HUPA dataset, the results of the male-only models388

outperform those of the female-only ones (AUC=0.82 and AUC=0.77 respectively).389

Despite the simplicity of the trials, some interesting observations arise. On one hand, and respecting390
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the inclusion of sex information, the outcomes indicate that accounting for the speaker’s sex improves the391

efficiency in pathology detection tasks. Indeed, in the three datasets there is an absolute performance392

improvement which varied between 4% (using HUPA) to 0.3% (using SVD) compared to the sex-independent393

detector. It is worth noting that, in general, the best sex-independent and the best female/male detection394

systems establish a distinct number of MFCC coefficients. Ultimately, this may be a symptom of having395

decomposed the problem according to the speaker’s sex that induce to different ”optimal” operation points,396

i. e., the number of coefficients maximising performance for female models is not necessarily the same for397

male ones or when both sexes are considered in conjunction. This might be explained by the significant398

differences in the vocal tract and vocal folds of male and female speakers, which in turn has consequences399

on spectral characteristics of speech. Since MFCC characterise these spectral properties, it is reasonable to400

find these differing operation points for female and male models. Another interesting observation is that the401

systems trained with female voices generally performed worse than those trained with male data; occurring402

in two trials except when the SVD dataset was considered. This phenomenon has long been recognised403

in other speech-based applications, where a decreased performance is often achieved in systems based on404

spectral/cesptral characterisation and female speech [44]. Within the AVCA field, authors in [45], have also405

reported a reduced performance of systems based on female data. A possible explanation of this phenomenon,406

might be related to the differences in f0 between male and females which has consequences in the the407

spectral/cepstral analyses. Similarly, the presence of a glottal gap which occurs more frequently for female408

speakers, and which is correlated to breathiness, might be a counfounding factor as well. Notwithstanding,409

it is difficult to conclude as there is not enough evidence supporting such behaviour and there is even a410

negative result about this particular.411

3.3. Experiment 3: testing out the performance of classification techniques used in speaker recognition412

The current experiment explores the usefulness of classification techniques employed in speaker recogni-413

tion in labours of pathological detection. Two trials are carried out using sustained phonation and running414

speech of the SVD dataset. Different configurations, presented in Table 1, are followed to train the UBM-based415

classifiers.416

3.3.1. Trial using sustained phonation417

Three configurations are tested out by varying the type of acoustic material that is employed for training418

the UBM and the compensation models in the IV and PLDA schemes, allowing the examination of interesting419

scenarios: (i) configuration C1, a short amount of normophonic data is employed; (ii) configuration C2 the420

amount of normophonic data is increased; (iii) configuration C3 normophonic and dysphonic registers are421

utilised in conjunction. The best obtained results for each one of the tested configurations are depicted in422

Figure 8a.423

From the obtained outcomes it can be observed that a GMM-UBM model does not provide any further424

improvement with respect to the baseline GMM. However, when using more complex systems that stand425
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Configuration Classifier ACC SP SE AUC

– GMM 70.48 ± 2.28 0.67 0.73 0.77

GMM-UBM 69.27 ± 2.37 0.68 0.70 0.76

IV 67.15 ± 2.41 0.66 0.68 0.75

PLDA 71.66 ± 2.31 0.70 0.73 0.79
C1

GMM-SVM 71.18 ± 2.32 0.69 0.73 0.77

GMM-UBM 69.20 ± 2.37 0.69 0.69 0.76

IV 68.38 ± 2.38 0.66 0.70 0.75

PLDA 72.76 ± 2.28 0.72 0.73 0.79
C2

GMM-SVM 72.01 ± 2.30 0.69 0.74 0.77

GMM-UBM 68.24 ± 2.39 0.67 0.69 0.75

IV 70.77 ± 2.33 0.71 0.71 0.78

PLDA 71.32 ± 2.32 0.69 0.73 0.80
C3

GMM-SVM 71.73 ± 2.31 0.70 0.73 0.78
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a. Trial using sustained phonation.

Configuration Classifier ACC SP SE AUC

– GMM 80.32 ± 2.02 0.74 0.84 0.86

GMM-UBM 76.70 ± 2.15 0.75 0.78 0.84

IV 71.79 ± 2.29 0.70 0.73 0.79

PLDA 74.01 ± 2.23 0.74 0.74 0.82
C1

GMM-SVM 77.03 ± 2.14 0.75 0.78 0.85

GMM-UBM 78.44 ± 2.09 0.72 0.82 0.86

IV 73.00 ± 2.25 0.71 0.74 0.81

PLDA 75.62 ± 2.18 0.75 0.76 0.85
C2

GMM-SVM 78.17 ± 2.10 0.76 0.80 0.85

GMM-UBM 78.44 ± 2.09 0.72 0.82 0.86

IV 73.00 ± 2.25 0.71 0.74 0.81

PLDA 75.62 ± 2.18 0.75 0.76 0.85
C3

GMM-SVM 78.71 ± 2.08 0.76 0.80 0.86

GMM-UBM 76.96 ± 2.14 0.74 0.79 0.84

IV 72.73 ± 2.26 0.72 0.73 0.81

PLDA 75.62 ± 2.18 0.74 0.76 0.84
C4

GMM-SVM 77.77 ± 2.11 0.71 0.81 0.86

GMM-UBM 78.64 ± 2.08 0.73 0.82 0.85

IV 70.65 ± 2.31 0.69 0.71 0.79

PLDA 76.09 ± 2.17 0.74 0.77 0.83
C5

GMM-SVM 79.25 ± 2.06 0.76 0.81 0.86
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b. Trial using running speech.

Figure 8. Experiment 3 : performance of the GMM-based classifiers in the detection of pathologies using the SVD

dataset: (a) for the partition of vowel /a/ and the three tested conditions; (b) for the partitions using running speech.
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on the idea of UBM models some subtle improvements are attained. In particular two considerations can426

be made. First, the PLDA provides the best efficiency in terms of AUC (0.80). Second, the best results427

almost always involve the use of normophonic-only registers for training UBM and compensation models428

(MEEI, GMar, HUPA and EUROM). Indeed, increasing the amount of normophonic material provides performance429

improvements as ascertained by comparing the results of configuration C1 (which only employs one dataset430

of normophonic recordings) to configuration C3 (which employs 4 dataset of normophonic registers).431

3.3.2. Trial using running speech432

The current trial employs the running speech partition of the SVD corpus, and different combinations of433

ancillary datasets that define five configurations that allow the examination of interesting scenarios: (i) con-434

figuration C1, normophonic and dysphonic vowels plus voiced segments extracted from running speech are435

used; (ii) configuration C2, normophonic data of sustained phonations and normophonic vowels extracted436

from running speecha are employed; (iii) configuration C3, normophonic sentences are considered; (iv) con-437

figuration C4, normophonic sentences uttered in the same language as SVD are utilised; (v) configuration C5,438

similar to the latter but increasing the amount of registers used for training. The best results for each one439

of the configurations are presented in Figure 8b.440

Despite the best absolute results -as ascertained by the DET curves and the AUC value- are given by the441

simple GMM classifier, it is worth comparing the influence of the ancillary datasets in the performance of442

speaker recognition classification techniques. In this respect, configuration C3 provides the best performance,443

indicating that the inclusion of acoustic material based on sustained phonation does not contribute to any444

enhancement (see configuration C2). By contrast, configuration C1 attains, generally, the lowest AUC.445

This suggests that using normophonic and dysphonic registers for training the UBM and compensation446

models does not improve the results. Configuration C4 is intended to test the behaviour of the system447

when the auxiliary dataset matches the language of the target partition, while configuration C5 is similar to448

configuration C4 but employing two auxiliary datasets. However, again, no further improvements in efficiency449

are found.450

3.4. Experiment 4: Combination of the best systems.451

The current experiment is aimed at designing AVCA systems with the insight obtained from the previous452

trials. The idea is to employ the best set of features in experiment 1, considering the hierarchical models453

of experiment 2 and the speaker recognition techniques of experiment 3. The acoustic material of different454

sources is then fused by means of logistic regression.455

Following this approach, a strategy based on feature selection is followed to rank the most consistent456

and generalist set via MIM, mRMR, JMI and a scoring procedure of the features analysed in experiment 1.457

The top-10 best characteristics for each dataset, and the top-10 global best set after having used the scoring458

procedure are presented in Table 2.459
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Table 2. Experiment 4: top-ranked features from each dataset.

HUPA SVD GMar Global best

GNE CHNR RALA GNE

PE GNE GNE CHNR

RALA RALA CPPS RALA

CHNR PE CHNR PE

MSP25 DFA He CPPS

LLE He LLE LLE

CPPS MSP95 CIL MSP95

MSP95 LLE GSampEn DFA

MSH MSH DFA He

ApEn GSampEn PE CIL

Results indicate that GNE, CHNR and RALA are the most consistent features amongst datasets and460

speech tasks. PE and CPPS are also proficient, but in the case of the first it is just ranked in 10-th position461

when using the GMar corpus, whereas the latter is not even included in the ranking of the SVD. As a result, an462

AVCA based solely on GNE, CHNR and RALA for characterisation and GMM classifiers to output decision463

scores is considered. In accordance to the results in experiment 2, the proposed systems should account for464

the sex of the speakers in a hierarchical-like categorisation procedure. Finally, the information of the most465

consistent features is fused at score level with the one provided by the UBM-based classifiers in experiment466

3. Regarding the latter, and when using sustained phonation, PLDA systems trained with normophonic467

data are employed. For the case of running speech, the GMM algorithm is employed as it has been shown468

to provide better results than more complex schemes. The whole procedure is summarised graphically in469

Figure 9.470

Figure 9. Experiment 4: resulting methodology after having considered the outcomes of experiments 1, experiment 2

and experiment 3.
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3.4.1. Trial in a intra-dataset scenario471

The results after considering the methodology in Figure 9, using the vowels /a/, /i/, /u/, and the sentence472

in the SVD dataset are introduced in Figure 10a.473

ACC SP SE AUC

Vowel /a/ 75.42 ± 2.19 0.74 0.76 0.84

Vowel /i/ 72.33 ± 2.27 0.70 0.73 0.81

Vowel /u/ 72.20 ± 2.28 0.71 0.73 0.80

R.S. 80.66 ± 2.01 0.70 0.86 0.87

All speech 81.40 ± 1.98 0.71 0.87 0.88
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a. Results of the experiment in an intra-dataset scenario.

Database Vowel ACC SP SE AUC

GMar

/a/ 72.00 ± 7.19 0.60 0.83 0.82

/i/ 62.67 ± 7.74 0.47 0.77 0.75

/u/ 72.67 ± 7.13 0.71 0.74 0.79

All 74.00 ± 7.02 0.64 0.83 0.82

HUPA /a/ 74.46 ± 4.43 0.65 0.85 0.87

ATIC /a/ 78.21 ± 9.16 0.90 0.74 0.93

DN /a/ 82.87 ± 5.49 0.76 0.89 0.94

b. Results of the experiment in cross-dataset scenarios.

Figure 10. Experiment 4 : Performance metrics for the trials in: (a) a intra-dataset scenario; (b) cross-dataset

scenario.

The outcomes indicate that the fusion of different speech tasks increases performance, achieving in the474

best case scenario an AUC of 0.88 and a DET curve that is better than the remaining in all operation points.475

3.4.2. Trial in a cross-dataset scenario476

The current trial is focused on training an AVCA system with data of SVD and the methodology in Figure477

9, but following a cross-dataset scenario tested in other four partitions: (i) vowels /a/, /i/ and /u/ of GMar;478

(ii) the vowel /a/ in HUPA; (iii) registers of the vowel /a/ in ATIC; (iv) and recordings of the vowel /a/ in DN.479

The best results for all the tested partitions are presented in Table 9b.480

In general terms the results are acceptable, with an AUC varying between 0.75 to 0.94. When the481

vowel /a/ is considered AUC is always superior to 0.82. In particular for the GMar corpus, no performance482

enhancement is obtained when all the vowels are fused.483
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4. Discussion484

Results indicate that a segmentation according to the sex of the speaker improves the performance, which485

in absolute terms varies between 0.3% to 4% depending on the dataset. These results are in line with those486

found in literature, where the classification accuracy of an automatic detector of pathology is lightly improved487

by using a manual segmentation of the dataset according to the sex of the speakers [46]. Results suggest488

that partitioning the dataset according to this extralinguistic criterion improves performance, indicating the489

usefulness of hierarchical systems that decompose the voice pathology detection problem into smaller sub-490

problems. Indeed, it has been found that the best operation points for female and male systems differ. This491

is expected as the vocal tract and vocal folds of both sexes differ, which in turn produces subsequent changes492

in spectral characteristics that consequently impacts the AVCA systems. Accounting for these differences493

separately simplifies the detection problem and provides performance enhancements.494

With respect to the trials involving different sets of features, it has been demonstrated that, as expected,495

no single measurement characterises entirely the phenomena related to dysphonia. This suggests that mul-496

tidimensional approaches should be followed to design AVCA systems. Outcomes indicate that measures497

based on perturbation and cepstrum produce positive results in detection of pathologies. Indeed, as it has498

been ascertained during experiment 4, the most consistent features are GNE, RALA and CHNR (along with499

CPPS and PE). The feasibility of these features has also been extensively demonstrated by the individual500

classification they provide, suggesting the feasibility of using this type of features for detection purposes.501

Interestingly, these characteristics come from different contexts. However, a performance improvement is502

usually obtained when they work in conjunction, evidencing its complementarity.503

In reference to the experiment 3 involving the speaker recognition classification techniques, it has been504

found that these classifiers have performed well when sustained phonation is used along with ancillary data505

of normophonic sustained phonation. By contrast, none of the datasets has contributed to enhance the506

performance when using running speech. In this regard, it is worth noting that the SVD dataset is composed507

of a single sentence that is uttered by German speakers, whereas Albayzin uses diverse sentences produced508

by Spanish speakers and MEEI contains registers of a text uttered in English. This mismatch might have509

affected the results as phonetics differs among languages. In an attempt to examine an scenario on which510

both ancillary and target coprora share the same language, configuration C4 and configuration C5 have been511

included. Notwithstanding, results indicate that not even under this setting the performance improved. In512

this particular case, we might attribute the diminished performance to the mismatch between the acoustic513

content of SVD, and that of EUROM and/or PhoneDat-I. A premise in the speaker recognition field, is that514

when the lexical content employed for the ancillary corpora matches with the one used for enrolment, a515

better performance is generally obtained [47]. When there is a mismatch, it is often necessary to include516

more data to generate more robust models that operate under a text-independent scenario. This is the reason517

for which the trial using sustained phonation of SVD reported positive outcomes as the ancillary dataset is518

composed of sustained vowels, matching with the lexical information of the SVD partition. Moreover, since519
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sustained phonation is relatively unaffected by language this effect is minimised. Finally, it is worth to520

remark that a common tendency that is observed in both trials is that better results are often obtained when521

normophonic data is used to construct models. A hypothesis explaining this, might be related to normophonic522

phonation having a more compact representation in the feature space (as there does not exist variability due523

to pathologies), which in turn permits a better adjustment of the initialisation models of the UBM systems.524

It is still necessary, though, to study the influence of dysphonic recordings in the training of compensation525

models. This also highlights the need of having more data available for the study of AVCA systems. Hence,526

translating methodologies used in speaker recognition (such as those based on UBM classifiers), should start527

by considering a translation of equivalent datasets to the AVCA field.528

Outcomes also highlight the necessity of larger and better balanced corpora that fully describe variability529

factors such as age and sex, as these seem to affect AVCA systems. There is a large room for improving530

the systems presented in the current experiment, including a more thorough study of other types of features531

and classifiers correlating to ageing voices and/or to sexual conditions. In addition, other factors influencing532

performance should also be investigated, including accents, vocal effort, etc. An additional aspect that533

might be worth to consider, is in the study of methodologies that include more effectively extralinguistic534

information into the system, be it in the form of an a-priori probability or in a regression-like scheme.535

5. Conclusions536

The state of the art in AVCA systems reports lots of works evaluated under well controlled scenarios,537

providing results that suggest that the problem is almost solved. However, despite of these promising538

results, these systems are still far away from the clinical setting, because their accuracies are obtained in539

laboratory conditions and are quite dependent on the dataset used. With the aim to present more truthful540

results, this paper contributes with a more realistic baseline system, which can be used in the future for541

comparison purposes. To this respect, this paper analizes several variability factors affecting the robustness542

of these systems. Multiple experiments were performed to test out the influence on the performance of the543

speech task, extralinguistic aspects (such as sex), the acoustic features and the classifiers. The methodology544

followed has been developed to obtain dataset-independent results, so that they could be extrapolated to545

other corpora. In this sense, an analysis of several factors affecting the design of automatic voice pathology546

detection systems has been presented. Extralinguistics such as sex have been studied in hierarchical-like547

schemes, along with different sets of features in a variety of datasets containing speech material of diverse548

types. Moreover, speaker recognition classification techniques have been explored, fed with an acoustic549

material based on both sustained phonations and running speech.550

Results demonstrate that including extralinguistic information regarding the sex of the speaker enhances551

the performance of an automatic detector of pathologies, suggesting that decomposing the pathology detec-552

tion problem into sub-problems according to a certain extralinguistic criterion, decreases the complexity of553

the underliying models and therefore improves the efficiency of the system.554
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In reference to the types of speech tasks that have been evaluated, results suggest that the sustained555

vowel /a/ always achieve better results in comparison to other types of vowels. Notwithstanding, these556

results are outperformed when cepstral analysis and running speech is considered. Results also suggest that557

fusing the acoustic material of different speech tasks (vowels /a/, /i/, /u/, running speech) -via logistic558

regression- improves the performance of the system even further. This fusion stage has demonstrated its559

utility to combine information of heterogeneous but complementary systems, into a single decision machine560

that behaves better than the individual systems.561

The speaker recognition classifiers have moderately improved results for those cases where sustained562

vowels are used in conjunction with ancillary corpora based on normophonic phonations. By contrast,563

nothing can be concluded regarding the use of running speech and these classifiers, as the phonetic mismatch564

between target and ancillary corpora has presumably affected the resulting UBM-based classifiers. Moreover,565

due to the unavailability of datasets containing dysphonic registers of running speech, an analysis on the566

effects of this acoustic material on the training process of UBM models remains an open issue. Despite that,567

it is safe to say that the results reported in this paper, involving the usage of UBM-based classifiers and568

running speech are not positive.569

Besides, outcomes suggest that no single parameter is capable of completely characterising vocal pathol-570

ogy, and therefore multidimensional approaches are needed to enhance classification results. This fact has571

been reported through the analysis of several sets of features and speech tasks. The most coherent features,572

as ascertained in several trials, are two estimators of perturbation noise and one descriptor of dispersion573

based on the modulation spectrum; namely, GNE, CHNR and RALA. Interestingly, the latter is a novel574

characteristic that has been recently introduced in [27, 28].575

Regarding the results in numeric terms, the system trained with the SVD dataset following the approach576

in experiment 4 achieves an ACC of 81%, which to the best of the author’s knowledge one of the best and577

more realistic results reported in the literature for this corpus. In a cross-dataset scenario the AUC of the578

system reached values ranging from 0.75 to 0.94, demonstrating that the procedures followed are robust to579

handle mismatches between training and testing conditions. It is worth noting that there exist in literature580

works reporting values superior to the ones in this paper, but many of those have only included a small581

portion of the dataset or have limited their analyses to a restricted number of voice pathologies. We expect582

that the results presented in this paper will help to establish a baseline for future comparisons following583

procedures that can be replicated by other researchers.584

In general terms, it can be concluded that a methodology based in hierarchical detection, characterisation585

through a reduced set of consistent features and fusion of different speech tasks enhances the performance586

of the system. The cross-dataset trials have been demonstrated the robustness of the proposed AVQA587

system to mismatches in recording conditions, providing more realistic outcomes compared to intra-dataset588

experiments. As future work we plan to examine the feasibility of the system in a clinical setting, where the589

proposed system is evaluated and assessed as an assistive tool in the detection of pathologies. Similarly, we590
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plan to study the influence of other extralinguistics such as age, This include an in-depth analysis to correlate591

chronological to physiological age, and to establish frontiers to differentiate among age groups (young, elders,592

etc.). Similarly, paralinguistic information such as mood and accent are to be studied.593
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