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Abstract— The explosion of mobile devices and content, 

server virtualization, and advent of cloud services are 

among the trends driving the networking industry to re-

examine traditional network architectures. Software-

Defined Networking (SDN) is an emerging architecture 

that is dynamic, manageable, cost-effective, and adaptable, 

making it ideal for the high-bandwidth, dynamic nature of 

today’s applications. Currently, it continues to be crucial 

for businesses to monitor their networks in order to be 

productive and avoid serious threats from network failures 

and server downtime, demanding accuracy and timeliness. 

In this paper, we focus on this trade-off between 

monitoring accuracy and timeliness. We propose Cheapo – 

an adaptive algorithm for monitoring frameworks in SDN, 

which provides an API for flow statistics collection at 

different aggregation levels. The proposed approach 

provides highly accurate information without producing 

unnecessary network traffic. 
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I. INTRODUCTION  

As networks evolve and become more complex and 
advanced, the need for network monitoring is remaining 
constant to drive decisions for network management and 
optimization. As stated in [1], it continues to be crucial for 
businesses to monitor their networks in order to be productive 
and avoid serious threats from network failures and server 
downtime. As more and more businesses deploy networking to 
support various business activities, and as traffic generated by 
human-operated devices becomes dwarfed by massive growth 
in data flowing to and from IoT devices, network environments 
will become much more fluid. At the same time, the 
importance of networks will grow tremendously [24] — in fact, 
any digitally transformed business will need to achieve 
excellence in networking that today is achieved mostly in 
verticals that revolve around data processing and manipulation.  

Generally, network monitoring can analyze different facts 
such as performance in real-time [25], meaning that if a failure 
or issue is detected, alerts are triggered in runtime. This rapid 
relay of information means that tools and mechanisms are able 
to act in real-time to adapt the network resources accordingly 
in order to take corrective actions, thus minimizing potential 

downtime. In addition, network monitoring eliminates the need 
for a physical system administrator and manual checks [22]. 
This can result for a company into savings for both time and 
expenses, since the problem is addressed into an effective way. 
Another major benefit is the reporting generated from network 
monitoring. Such reports can help in the identification of 
patterns and trends in system performance, as well as in the 
demonstration of the requirements into upgrades or 
replacements. What is more, in such cases, performance 
baselines can also be easily established. To this end, network 
monitoring frameworks can assist in the identification of 
specific areas of a network that are facing problems [23]. In 
that case, it becomes easy to pinpoint the issue, resulting into 
cost and time savings in cases that the problem needs to be 
addressed. 

In recent years, Software Defined Networking (SDN) has 
emerged with the promise to facilitate network 
programmability and to ease the management tasks. Accurate 
and timely statistics are essential for multiple network 
management tasks, like load balancing, traffic engineering, 
Service Level Agreement (SLA) enforcement, accounting and 
intrusion detection [3]. Furthermore, management applications 
may need to monitor network resources at different aggregation 
levels. In SDN architectures, monitoring information is a key 
factor for management and orchestration. The challenge is to 
minimize the footprint of monitoring frameworks and the 
overhead of monitoring data collection. However, decisions 
regarding adaptable and dynamic monitoring should be made 
without any potential miss of information that could affect 
runtime decisions.   

To address these challenges, in this paper we propose 
Cheapo, an adaptive algorithm that is applicable to monitoring 
frameworks in SDNs. Cheapo has been used and validated in a 
current well-established monitoring framework, Prometheus 
[10] is used in “SONATA NFV: Agile Service Development 
and Orchestration in 5G Virtualized Networks” project [4]. The 
purpose of this project is to support the management of 5G 
services under the SDN/NFV paradigm. Cheapo, comes to 
introduce smart decision logic on probe level (i.e. monitoring 
data collection level). In other words, through Cheapo it will be 
possible to take decisions (such as reducing the period of a 
measurement) or calculating the time interval, on the probe 
level, in order to reduce unnecessary traffic and make the 
network more cost-efficient. 



The rest of this paper is organized as follows. Section II 
presents the related work on the field of monitoring in Internet 
Protocol (IP) networks as well as in SDNs. Section III 
introduces the proposed solution with initial evaluation results, 
followed by explanatory figures describing its architecture, 
while Section IV describes our conclusions and future plans. 

II. RELATED WORK  

Currently, there are multiple flow based network 
monitoring tools for SDNs. This section provides a short 
description of some approaches developed and performed into 
SDNs, which can also be included into cloud computing 
services. 

OpenFlow [6] is a protocol used in SDNs for communication 
between a network device and a controller server. This 
particular architecture separates packet forwarding and high-
level routing decisions, whereby packet forwarding is 
performed by the switch hardware and high-level routing 
decisions are performed by a controller server. What is more, it 
should be noted that OpenFlow has emerged as the de facto 
standard for communication between the controller and the 
switches into an SDN-based infrastructure. cAdvisor [9] (i.e. 
container Advisor) provides container users an understanding 
of the resource usage and performance characteristics of their 
running containers. It is a running daemon that collects, 
aggregates, processes, and exports information about running 
containers. More specifically, it is able to keep resource 
isolation parameters for each container, as well as historical 
resource usage, histograms of complete historical resource 
usage and network statistics. JFlow [7] is a Juniper Networks 
proprietary flow monitoring implementation. Juniper 
Networks® J Series Services Routers and SRX Series Services 
Gateways generate summarized flow records for sampled 
packets from the Packet Forwarding Engine (PFE). Such flow 
records are exported in an RFC or NetFlow-compliant standard 
packet format to an external flow information collector. JFlow 
is interoperable with any NetFlow supported flow collector, 
and as a result of that the external flow collector can be any 
third-party software that collects data exported from Juniper 
Networks devices. In the data plane functionality, OpenSketch 
[8] provides a simple three-stage pipeline (including hashing, 
filtering, and counting), which can be implemented with 
commodity switch components and support many 
measurement tasks. On the other hand, in the control plane 
functionality, OpenSketch provides a measurement library that 
automatically configures the pipeline and allocates resources 
for different measurement tasks. Prometheus [10] is an open-
source system monitoring and alerting toolkit originally built at 
SoundCloud, that joined the Cloud Native Computing 
Foundation in 2016 as the second hosted project after 
Kubernetes [26]. Among the main features of Prometheus are 
that it provides a multi-dimensional data model (time series 
identified by metric name and key/value pairs), including a 
flexible query language to leverage this dimensionality. 
Furthermore, there exist no reliance on distributed storage, 
since single server nodes are autonomous, while time series 
collection happens via a pull model over HTTP. It should be 
added that with regards to the pushing time series, they are 
supported through an intermediary gateway, while targets are 

discovered through service discovery or static configuration, 
including multiple modes of graphing and dashboarding 
support. 

In general, there has been an eternal shrinkage [20] 
between the accuracy of statistical data collection and the use 
of resources for monitoring in networks generally. What is 
more, monitoring in SDNs should also help to offset general 
resource costs and measurement accuracy as discussed by the 
authors in [13]. Variable-rate adaptive sampling techniques 
have been proposed in different contexts [28] to improve 
resource consumption, while providing satisfactory levels of 
accuracy of the collected data. Such techniques for saving 
resources while attaining a higher percentage of precision have 
been extensively discussed in the literature on environmental 
sensor networks [14], [15], [16], [17], [18], [19]. The main 
focus of these sampling techniques is to efficiently collect data 
using the sensor while trying to minimize the power 
consumption of the latter, which is often considered as a rare 
source for the sensors. Adaptive sampling techniques have also 
been studied in the context of traditional IP networks. 
However, as far as we know, adaptive sampling for SDN 
tracking has not been explored yet. 

One should have in mind that the exchange between 
resource use and accuracy [12] have different expressivity, 
whereas each one of them is suitable for actions with different 
spatial and temporal properties. In other words, a given 
measurement job can be achieved with different accuracy using 
different prototypes. From our point of view, if SDNs 
supported all three measurement artefacts [29], an interesting 
challenge for SDN would be to manage different resources in 
multiple parallel tasks. Typically, the resource allocated to a 
particular measurement task (e.g. TCAM for meters, bandwidth 
limits for transmitting measurements to the controller) limits 
the accuracy of the results. 

Recently, the authors in [11] proposed an adaptive SDN-
based monitoring method, focusing on the detection of 
abnormalities. In short, they manage to switch the aggregation 
level of packet forwarding rules between different grading 
levels of traffic measurement.  

In our case, we propose Cheapo, an adaptive variable rate 
sampling algorithm that makes a time scale adjustment, that 
will be built on top of SONATA and Prometheus Monitoring 
Framework. In a few words, into a SDN’s point of presence 
(POP), VNFs [27] are running in the form of services. In order 
for the monitoring framework to correctly perform its task, 
VNFs must collect their data at any way and push them 
towards another agent.  

After our research, we realized that a static frequency time 
interval gives high accuracy data but produce unnecessary 
traffic at the same time. In that case, Cheapo comes to replace 
the static variable with an adoptable algorithm that will 
continuously adapt the time interval according to the network 
state, in order to keep a balance between the accuracy of the 
data and the traffic inside the network. 



III. PROPOSED APPROACH 

A. Baseline Approach 

The proposed approach is not coupled to a specific 
monitoring framework but can be applied to any monitoring 
mechanism. It aims at adapting during runtime the monitoring 
time intervals in order to ensure that the data collected and 
transmitted to other architectural components for runtime 
decision making are data that actually drive decisions and not 
all raw data. The internal architecture of  SONATA Monitoring 
Framework enhanced with the proposed algorithm (i.e. 
Frequency Analyzer) is cited in the following figure (Fig. 1). 

 
Fig. 1 Monitoring Framework high-level architecture 

 

B. The Downside of a Static Threshold   

As we can realize, probes, collect data from the running 
services and are then pushing its data towards the Push 
Gateway. The time interval for the probes to push its data 
towards the Push Gateway is usually a static variable/rule set 
by the service developer or the monitoring framework itself. 
For instance, if a metric value riches a specific threshold, the 
probe pushes data towards the Push Gateway.  

The aforementioned approach has several disadvantages. 
For example, if thresholds are set too high, critical information 
might be missed or identified late resulting to potential service 
degradations or outages. On the other hand, if these thresholds 
are set too low, the volume of alerts can be overwhelming. In 
the proposed approach, we aim at removing the “static” 
approach in monitoring through a runtime adaptable scheduling 
algorithm that proposes time intervals based on the obtained 
monitoring information.  

C. An Adaptive Monitoring Algorithm 

As we previously mentioned, the proposed approach is not 
coupled to a specific monitoring framework. In other words, 
we propose that probes are due to collect data with linear 
increase of the time. Supposing that every 1 sec, probes are 
storing the data collected to a local storage and they compare 

the values with the data collected on the next 1 sec. In the case 
that the difference of their values is more than a given 
threshold, then we can realize that there was a change in our 
network (i.e. “bad” change, we may expect for a bandwidth 
value of 20Mbps but only 10Mbps return at the probe). In such 
a case, we should allow the monitor manager to be informed 
about that change. Consequently, probes are sending their 
values to the Push Gateway taking note of the time that the 
specific data change occurred. Afterwards, probes must divide 
the time the change happened with a specific number α, 
resulting into the so-called Timeout. By the time that the probes 
will start re-capturing the data, they will now have information 
that they will collect and compare with a linear time interval 
until that specific Timeout. After the Timeout period ends, 
probes are due to collect and compare data with exponential 
time interval. Fig. 2 shows the time’s change after a “bad” 
change to the network. 

 

 
Fig. 2. Timeout Adjustment (Time/α) 

 
As it is seen in Fig. 2, the X axis shows the linear increase 

of the time that probes collect data. The latter starts from the 1st 
sec and increases linearly, until it riches the 10th sec, and then 
continues with exponential increase of the time. In parallel, the 
algorithm compares the Delta of the gathered data at the time t 
and t+1. At the 15th sec., a significant change (i.e. big Delta) on 
the value of the parameter collected by the probes was 
occurred. We assume that instead of the expected 20Mbps 
Bandwidth, was returned a value of 10Mbps  at the probe. This 
means, that an error has occurred (i.e. “bad” change) 
concerning the network’s behavior. Consequently, probes will 
transmit their data towards the push gateway, setting the new 
Timeout at (15 / α). In that case, the equation returns the value 
of 5. As a result, the probe knows that for a specific period of 
time, data must be collected with a linear increase of time, with 
a duration of 5 sec. Afterwards, it must continue the data 
collection with an exponential increase of time, as shown in 
Fig. 2, until it riches the 25th sec – max timeout set by the start 
of the process. 

However, there is also the case of a “good” change (i.e. we 
may expect for a Bandwidth value of 10Mbps but 20Mbps 
might return at the probe). In such a case, probes are using the 
same tactic of collecting the data. Shortly, they start collecting 
and comparing data with linear time interval until they rich the 
Timeout. In the case that the difference of their values is less 



than a given threshold, then we realize that there was a change 
in our network (i.e. “good” change). In that case, we should 
also let the monitor manager know about that change. The 
main difference is that we can realize that the network status is 
in “good” shape. Consequently, after the probes provide their 
data to the monitoring manager, they multiply the time the 
change happened with a specific number β (Fig. 3). As a result, 
the next Timeout that the probes will be collecting data with a 
linear increase of the time will be more than the previous one. 
Afterwards, the same approach is used for the next decisions 
taken by the probes. It should be clear that in that case, the 
probes are collecting and transmitting their data with a chance 
of continuously changing the value of the Timeout value.  

 
Fig. 3. Timeout Adjustment (Time*β) 

 
A similar approach is described in Fig. 3. In that case the X 

axis shows the linear increase of the time that probes collect 
data. The latter starts from the 1st sec and increases linearly 
until it riches the 5th sec. Consequently, at the 5th sec, a change 
of a meter occurs. The probe will transmit its data towards the 
push gateway, increasing the Timeout by (Current time * β). In 
this scenario, the equation returns the value of 18. That means 
that the probe will continue the data collection following a 
linear increase of the time until the new Timeout (i.e. 18th sec.). 
In the case that there is no change by this time, probe will 
continue the data collection with exponential increase of the 
time interval until it reaches the max timeout variable. 
Afterwards, the whole process starts from the beginning using 
the very first timeouts set by the monitoring framework. 

IV. COCLUSIONS AND FUTURE WORK 

In this paper, we have introduced Cheapo – a scheduling 
algorithm for monitoring frameworks in SDN. Shortly, Cheapo 
has been described as an adaptable algorithm which can be 
affiliated by any monitoring framework in order to prevent any 
unnecessary traffic to the network, but can also provide 
accuracy of the monitoring data and make the network cost-
efficient at the same time. 

In general, we have identified the rationale behind this 
Timeout adjustment is that we maintain a higher pushing 
frequency for data that significantly contribute to link 
utilization, while we maintain a lower pushing frequency for 
data that do not significantly contribute towards link utilization 
at that moment. 

As a future work, and in the frame of 5GTANGO EU-
funded project [21] the described approach will be adapted and 
further enhanced in order to facilitate decision making with 
respect to the data that is transmitted, addressing security and 
privacy constraints. 
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