
Cheapo: An Algorithm for runtime adaption of time

intervals applied in 5G Networks

Marios Touloupou, Evgenia Kapassa, Athanasios Kiourtis, Dimosthenis Kyriazis

Department of Digital Systems

University of Piraeus

Piraeus, Greece

{mtouloup, ekapassa, kiourtis, dimos}@unipi.gr

Abstract— The explosion of mobile devices and content,

server virtualization, and advent of cloud services are

among the trends driving the networking industry to re-

examine traditional network architectures. Software-

Defined Networking (SDN) is an emerging architecture

that is dynamic, manageable, cost-effective, and adaptable,

making it ideal for the high-bandwidth, dynamic nature of

today’s applications. Currently, it continues to be crucial

for businesses to monitor their networks in order to be

productive and avoid serious threats from network failures

and server downtime, demanding accuracy and timeliness.

In this paper, we focus on this trade-off between

monitoring accuracy and timeliness. We propose Cheapo –

an adaptive algorithm for monitoring frameworks in SDN,

which provides an API for flow statistics collection at

different aggregation levels. The proposed approach

provides highly accurate information without producing

unnecessary network traffic.

Keywords— NFV/SDN; 5G Networks; Monitoring; Network

Services; Cost-efficient Monitoring

I. INTRODUCTION

As networks evolve and become more complex and
advanced, the need for network monitoring is remaining
constant to drive decisions for network management and
optimization. As stated in [1], it continues to be crucial for
businesses to monitor their networks in order to be productive
and avoid serious threats from network failures and server
downtime. As more and more businesses deploy networking to
support various business activities, and as traffic generated by
human-operated devices becomes dwarfed by massive growth
in data flowing to and from IoT devices, network environments
will become much more fluid. At the same time, the
importance of networks will grow tremendously [24] — in fact,
any digitally transformed business will need to achieve
excellence in networking that today is achieved mostly in
verticals that revolve around data processing and manipulation.

Generally, network monitoring can analyze different facts
such as performance in real-time [25], meaning that if a failure
or issue is detected, alerts are triggered in runtime. This rapid
relay of information means that tools and mechanisms are able
to act in real-time to adapt the network resources accordingly
in order to take corrective actions, thus minimizing potential

downtime. In addition, network monitoring eliminates the need
for a physical system administrator and manual checks [22].
This can result for a company into savings for both time and
expenses, since the problem is addressed into an effective way.
Another major benefit is the reporting generated from network
monitoring. Such reports can help in the identification of
patterns and trends in system performance, as well as in the
demonstration of the requirements into upgrades or
replacements. What is more, in such cases, performance
baselines can also be easily established. To this end, network
monitoring frameworks can assist in the identification of
specific areas of a network that are facing problems [23]. In
that case, it becomes easy to pinpoint the issue, resulting into
cost and time savings in cases that the problem needs to be
addressed.

In recent years, Software Defined Networking (SDN) has
emerged with the promise to facilitate network
programmability and to ease the management tasks. Accurate
and timely statistics are essential for multiple network
management tasks, like load balancing, traffic engineering,
Service Level Agreement (SLA) enforcement, accounting and
intrusion detection [3]. Furthermore, management applications
may need to monitor network resources at different aggregation
levels. In SDN architectures, monitoring information is a key
factor for management and orchestration. The challenge is to
minimize the footprint of monitoring frameworks and the
overhead of monitoring data collection. However, decisions
regarding adaptable and dynamic monitoring should be made
without any potential miss of information that could affect
runtime decisions.

To address these challenges, in this paper we propose
Cheapo, an adaptive algorithm that is applicable to monitoring
frameworks in SDNs. Cheapo has been used and validated in a
current well-established monitoring framework, Prometheus
[10] is used in “SONATA NFV: Agile Service Development
and Orchestration in 5G Virtualized Networks” project [4]. The
purpose of this project is to support the management of 5G
services under the SDN/NFV paradigm. Cheapo, comes to
introduce smart decision logic on probe level (i.e. monitoring
data collection level). In other words, through Cheapo it will be
possible to take decisions (such as reducing the period of a
measurement) or calculating the time interval, on the probe
level, in order to reduce unnecessary traffic and make the
network more cost-efficient.

The rest of this paper is organized as follows. Section II
presents the related work on the field of monitoring in Internet
Protocol (IP) networks as well as in SDNs. Section III
introduces the proposed solution with initial evaluation results,
followed by explanatory figures describing its architecture,
while Section IV describes our conclusions and future plans.

II. RELATED WORK

Currently, there are multiple flow based network
monitoring tools for SDNs. This section provides a short
description of some approaches developed and performed into
SDNs, which can also be included into cloud computing
services.

OpenFlow [6] is a protocol used in SDNs for communication
between a network device and a controller server. This
particular architecture separates packet forwarding and high-
level routing decisions, whereby packet forwarding is
performed by the switch hardware and high-level routing
decisions are performed by a controller server. What is more, it
should be noted that OpenFlow has emerged as the de facto
standard for communication between the controller and the
switches into an SDN-based infrastructure. cAdvisor [9] (i.e.
container Advisor) provides container users an understanding
of the resource usage and performance characteristics of their
running containers. It is a running daemon that collects,
aggregates, processes, and exports information about running
containers. More specifically, it is able to keep resource
isolation parameters for each container, as well as historical
resource usage, histograms of complete historical resource
usage and network statistics. JFlow [7] is a Juniper Networks
proprietary flow monitoring implementation. Juniper
Networks® J Series Services Routers and SRX Series Services
Gateways generate summarized flow records for sampled
packets from the Packet Forwarding Engine (PFE). Such flow
records are exported in an RFC or NetFlow-compliant standard
packet format to an external flow information collector. JFlow
is interoperable with any NetFlow supported flow collector,
and as a result of that the external flow collector can be any
third-party software that collects data exported from Juniper
Networks devices. In the data plane functionality, OpenSketch
[8] provides a simple three-stage pipeline (including hashing,
filtering, and counting), which can be implemented with
commodity switch components and support many
measurement tasks. On the other hand, in the control plane
functionality, OpenSketch provides a measurement library that
automatically configures the pipeline and allocates resources
for different measurement tasks. Prometheus [10] is an open-
source system monitoring and alerting toolkit originally built at
SoundCloud, that joined the Cloud Native Computing
Foundation in 2016 as the second hosted project after
Kubernetes [26]. Among the main features of Prometheus are
that it provides a multi-dimensional data model (time series
identified by metric name and key/value pairs), including a
flexible query language to leverage this dimensionality.
Furthermore, there exist no reliance on distributed storage,
since single server nodes are autonomous, while time series
collection happens via a pull model over HTTP. It should be
added that with regards to the pushing time series, they are
supported through an intermediary gateway, while targets are

discovered through service discovery or static configuration,
including multiple modes of graphing and dashboarding
support.

In general, there has been an eternal shrinkage [20]
between the accuracy of statistical data collection and the use
of resources for monitoring in networks generally. What is
more, monitoring in SDNs should also help to offset general
resource costs and measurement accuracy as discussed by the
authors in [13]. Variable-rate adaptive sampling techniques
have been proposed in different contexts [28] to improve
resource consumption, while providing satisfactory levels of
accuracy of the collected data. Such techniques for saving
resources while attaining a higher percentage of precision have
been extensively discussed in the literature on environmental
sensor networks [14], [15], [16], [17], [18], [19]. The main
focus of these sampling techniques is to efficiently collect data
using the sensor while trying to minimize the power
consumption of the latter, which is often considered as a rare
source for the sensors. Adaptive sampling techniques have also
been studied in the context of traditional IP networks.
However, as far as we know, adaptive sampling for SDN
tracking has not been explored yet.

One should have in mind that the exchange between
resource use and accuracy [12] have different expressivity,
whereas each one of them is suitable for actions with different
spatial and temporal properties. In other words, a given
measurement job can be achieved with different accuracy using
different prototypes. From our point of view, if SDNs
supported all three measurement artefacts [29], an interesting
challenge for SDN would be to manage different resources in
multiple parallel tasks. Typically, the resource allocated to a
particular measurement task (e.g. TCAM for meters, bandwidth
limits for transmitting measurements to the controller) limits
the accuracy of the results.

Recently, the authors in [11] proposed an adaptive SDN-
based monitoring method, focusing on the detection of
abnormalities. In short, they manage to switch the aggregation
level of packet forwarding rules between different grading
levels of traffic measurement.

In our case, we propose Cheapo, an adaptive variable rate
sampling algorithm that makes a time scale adjustment, that
will be built on top of SONATA and Prometheus Monitoring
Framework. In a few words, into a SDN’s point of presence
(POP), VNFs [27] are running in the form of services. In order
for the monitoring framework to correctly perform its task,
VNFs must collect their data at any way and push them
towards another agent.

After our research, we realized that a static frequency time
interval gives high accuracy data but produce unnecessary
traffic at the same time. In that case, Cheapo comes to replace
the static variable with an adoptable algorithm that will
continuously adapt the time interval according to the network
state, in order to keep a balance between the accuracy of the
data and the traffic inside the network.

III. PROPOSED APPROACH

A. Baseline Approach

The proposed approach is not coupled to a specific
monitoring framework but can be applied to any monitoring
mechanism. It aims at adapting during runtime the monitoring
time intervals in order to ensure that the data collected and
transmitted to other architectural components for runtime
decision making are data that actually drive decisions and not
all raw data. The internal architecture of SONATA Monitoring
Framework enhanced with the proposed algorithm (i.e.
Frequency Analyzer) is cited in the following figure (Fig. 1).

Fig. 1 Monitoring Framework high-level architecture

B. The Downside of a Static Threshold

As we can realize, probes, collect data from the running
services and are then pushing its data towards the Push
Gateway. The time interval for the probes to push its data
towards the Push Gateway is usually a static variable/rule set
by the service developer or the monitoring framework itself.
For instance, if a metric value riches a specific threshold, the
probe pushes data towards the Push Gateway.

The aforementioned approach has several disadvantages.
For example, if thresholds are set too high, critical information
might be missed or identified late resulting to potential service
degradations or outages. On the other hand, if these thresholds
are set too low, the volume of alerts can be overwhelming. In
the proposed approach, we aim at removing the “static”
approach in monitoring through a runtime adaptable scheduling
algorithm that proposes time intervals based on the obtained
monitoring information.

C. An Adaptive Monitoring Algorithm

As we previously mentioned, the proposed approach is not
coupled to a specific monitoring framework. In other words,
we propose that probes are due to collect data with linear
increase of the time. Supposing that every 1 sec, probes are
storing the data collected to a local storage and they compare

the values with the data collected on the next 1 sec. In the case
that the difference of their values is more than a given
threshold, then we can realize that there was a change in our
network (i.e. “bad” change, we may expect for a bandwidth
value of 20Mbps but only 10Mbps return at the probe). In such
a case, we should allow the monitor manager to be informed
about that change. Consequently, probes are sending their
values to the Push Gateway taking note of the time that the
specific data change occurred. Afterwards, probes must divide
the time the change happened with a specific number α,
resulting into the so-called Timeout. By the time that the probes
will start re-capturing the data, they will now have information
that they will collect and compare with a linear time interval
until that specific Timeout. After the Timeout period ends,
probes are due to collect and compare data with exponential
time interval. Fig. 2 shows the time’s change after a “bad”
change to the network.

Fig. 2. Timeout Adjustment (Time/α)

As it is seen in Fig. 2, the X axis shows the linear increase

of the time that probes collect data. The latter starts from the 1st
sec and increases linearly, until it riches the 10th sec, and then
continues with exponential increase of the time. In parallel, the
algorithm compares the Delta of the gathered data at the time t
and t+1. At the 15th sec., a significant change (i.e. big Delta) on
the value of the parameter collected by the probes was
occurred. We assume that instead of the expected 20Mbps
Bandwidth, was returned a value of 10Mbps at the probe. This
means, that an error has occurred (i.e. “bad” change)
concerning the network’s behavior. Consequently, probes will
transmit their data towards the push gateway, setting the new
Timeout at (15 / α). In that case, the equation returns the value
of 5. As a result, the probe knows that for a specific period of
time, data must be collected with a linear increase of time, with
a duration of 5 sec. Afterwards, it must continue the data
collection with an exponential increase of time, as shown in
Fig. 2, until it riches the 25th sec – max timeout set by the start
of the process.

However, there is also the case of a “good” change (i.e. we
may expect for a Bandwidth value of 10Mbps but 20Mbps
might return at the probe). In such a case, probes are using the
same tactic of collecting the data. Shortly, they start collecting
and comparing data with linear time interval until they rich the
Timeout. In the case that the difference of their values is less

than a given threshold, then we realize that there was a change
in our network (i.e. “good” change). In that case, we should
also let the monitor manager know about that change. The
main difference is that we can realize that the network status is
in “good” shape. Consequently, after the probes provide their
data to the monitoring manager, they multiply the time the
change happened with a specific number β (Fig. 3). As a result,
the next Timeout that the probes will be collecting data with a
linear increase of the time will be more than the previous one.
Afterwards, the same approach is used for the next decisions
taken by the probes. It should be clear that in that case, the
probes are collecting and transmitting their data with a chance
of continuously changing the value of the Timeout value.

Fig. 3. Timeout Adjustment (Time*β)

A similar approach is described in Fig. 3. In that case the X

axis shows the linear increase of the time that probes collect
data. The latter starts from the 1st sec and increases linearly
until it riches the 5th sec. Consequently, at the 5th sec, a change
of a meter occurs. The probe will transmit its data towards the
push gateway, increasing the Timeout by (Current time * β). In
this scenario, the equation returns the value of 18. That means
that the probe will continue the data collection following a
linear increase of the time until the new Timeout (i.e. 18th sec.).
In the case that there is no change by this time, probe will
continue the data collection with exponential increase of the
time interval until it reaches the max timeout variable.
Afterwards, the whole process starts from the beginning using
the very first timeouts set by the monitoring framework.

IV. COCLUSIONS AND FUTURE WORK

In this paper, we have introduced Cheapo – a scheduling
algorithm for monitoring frameworks in SDN. Shortly, Cheapo
has been described as an adaptable algorithm which can be
affiliated by any monitoring framework in order to prevent any
unnecessary traffic to the network, but can also provide
accuracy of the monitoring data and make the network cost-
efficient at the same time.

In general, we have identified the rationale behind this
Timeout adjustment is that we maintain a higher pushing
frequency for data that significantly contribute to link
utilization, while we maintain a lower pushing frequency for
data that do not significantly contribute towards link utilization
at that moment.

As a future work, and in the frame of 5GTANGO EU-
funded project [21] the described approach will be adapted and
further enhanced in order to facilitate decision making with
respect to the data that is transmitted, addressing security and
privacy constraints.

ACKNOWLEDGMENT

This work has been partially supported by the 5GTANGO
project, funded by the European Commission under Grant
number H2020ICT-2016-2 761493 through the Horizon 2020
and 5G-PPP programs (http://5gtango.eu).

REFERENCES

[1] "The Importance of Monitoring Your Networks",
https://www.opsview.com/resources/network/blog/importance-
monitoring-your-networks

[2] "The Importance of Network Monitoring", https://itnow.net/the-
importance-of-network-monitoring/

[3] S.R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A
low cost network monitoring framework for software defined networks”,
In Network Operations and Management Symposium (NOMS), pp. 1-9,
2014 IEEE

[4] "SONATA NFV: Agile Service Development and Orchestration in 5G
Virtualized Networks", http://www.sonata-nfv.eu/

[5] P. Trakadas, P. Karkazis, HC. Leligou, T. Zahariadis, S. Kolometsos,
“Implementation of a Monitoring Framework to Support the
Management of 5G Services” [under press]

[6] “Open Datapath”, https://www.opennetworking.org/sdn-
resources/openflow

[7] A. C. Myers, “JFlow: Practical mostly-static information flow control,”
in Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM, 1999, pp. 228–241

[8] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proceedings 10th USENIX Symposium on
Networked Systems Design and Implementation, NSDI, vol. 13, 2013.

[9] “Cadvisor”, https://github.com/google/cadvisor

[10] “From metrics to insight”, https://prometheus.io/

[11] Y. Zhang, “An adaptive flow counting method for anomaly detection in
sdn,” in Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies. ACM, 2013, pp. 25–30

[12] M. Moshref, M. Yu, & R. Govindan, Resource/accuracy tradeoffs in
software-defined measurement. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking (pp.
73-78). ACM, 2013, August.

[13] M. Moshref, M. Yu, and R. Govindan, “Resource/Accuracy Tradeoffs in
Software-Defined Measurement,” in Proceedings of HotSDN 2013,
August 2013, to appear

[14] A. Jain and E. Y. Chang, “Adaptive sampling for sensor networks,” in
Proceeedings of the 1st international workshop on Data management for
sensor networks: in conjunction with VLDB 2004. ACM, 2004, pp. 10–
16.

[15] B. Gedik, L. Liu, and P. Yu, “Asap: An adaptive sampling approach to
data collection in sensor networks,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 18, no. 12, pp. 1766–1783, 2007.

[16] A. D. Marbini and L. E. Sacks, “Adaptive sampling mechanisms in
sensor networks,” in London Communications Symposium, 2003.

[17] J. Kho, A. Rogers, and N. R. Jennings, “Decentralized control of
adaptive sampling in wireless sensor networks,” ACM Transactions on
Sensor Networks (TOSN), vol. 5, no. 3, p. 19, 2009.

[18] C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri, “An adaptive
sampling algorithm for effective energy management in wireless sensor
networks with energy-hungry sensors,” Instrumentation and
Measurement, IEEE Transactions on, vol. 59, no. 2, pp. 335–344, 2010.

[19] R. Willett, A. Martin, and R. Nowak, “Backcasting: adaptive sampling
for sensor networks,” in Information Processing in Sensor Networks,

2004. IPSN 2004. Third International Symposium on, 2004, pp. 124–
133.

[20] R. S. Chowdhury, M. F. Bari, R. Ahmed, & R. Boutaba, Payless: A low
cost network monitoring framework for software defined networks. In
Network Operations and Management Symposium (NOMS), 2014 IEEE
(pp. 1-9). IEEE, May 2014

[21] “5G DEVELOPMENT AND VALIDATION PLATFORM FOR
GLOBAL INDUSTRY-SPECIFIC NETWORK SERVICES AND
APPS” http://5gtango.eu/

[22] “Basics of Network Monitoring” http://www.solarwinds.com/basics-of-
network-monitoring

[23] “Common Home Network Problems” https://www.lifewire.com/top-
home-networking-problems-and-mistakes-817736

[24] “Networks 2020”
https://www.avaya.com/en/documents/networks_2020_idc_report_4229
1317.pdf?t=0

[25] “Why Network Monitoring?" https://www.spiceworks.com/it-
articles/why-network-monitoring/

[26] “Production-Grade Container Orchestration” https://kubernetes.io/

[27] “NFV vs. VNF: What's the difference?”
http://searchsdn.techtarget.com/answer/NFV-vs-VNF-Whats-the-
difference

[28] J. Wang, Ji, X., Zhao, S., Xie, X., & J. Kuang. Context-based adaptive
arithmetic coding in time and frequency domain for the lossless
compression of audio coding parameters at variable rate. EURASIP
Journal on Audio, Speech, and Music Processing, 2013(1), 9.

[29] A. Yassine., H. Rahimi, & S. Shirmohammadi,. Software defined
network traffic measurement: Current trends and challenges. IEEE
Instrumentation & Measurement Magazine, 18(2), 42-50, 2015.

