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Abstract: 

In the past decade nanomaterials (NMs) have emerged as important tools for manipulating growth and yield of crop 

plants. Of these NMs, nano-titanium dioxide (nano-TiO2) has been shown to play various roles in growth and 

development of crop plants under abiotic stresses. Present work was carried out to evaluate the role nano-TiO2 in 

the protection of plants against water stress (WS) and to select the best of nano-TiO2. The results show that WS 

caused a significant reduction in growth attributes, chlorophyll (Chl) content, leaf relative water content (LRWC) 

and activity of nitrate reductase (NR) enzyme. Whereas, an increase was noticed in reactive oxygen species (ROS), 

carbonic anhydrase (CA) activity, electrolyte leakage, and lipid peroxidation in water stressed plants. In addition, 

plants under WS also showed an increase in the activities of antioxidant enzymes and accumulation of proline (Pro) 

and glycine betaine (GB) content. However, application of nano-TiO2 (5, 10, 15, and 20 mg L-1) to water-stressed 

plants further enhanced the activities of antioxidant enzymes, CA activity, and Pro and GB content. Nano-TiO2-

induced increase in ROS, CA, Pro and GB resulted in a decrease in ROS level, electrolyte leakage and lipid 

peroxidation leading to increase in LRWC, Chl content, NR activity and growth of the plants. Furthermore, an 

additional increase in the level of nano-TiO2 to 25 mg L-1 could not alleviate water stress and showed adverse 

effects. 
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INTRODUCTION: 

Water stress (WS) is one of the devastating 

environmental problems which adversely affects 

growth and production of crop plants across the 

globe.  According to World Resources Institute 

(WRI), 14 of the 33 countries most likely to be water-

stressed in 2040 are in the Middle East and Saudi 

Arabia is one of these countries. As far as Tabuk 

region is concerned, lower humidity and high 

temperature of the region jointly accelerate the rate of 

evaporation. Being sessile in nature plants are always 

exposed to the detrimental conditions of WS. Water 

stress inhibits photosynthetic capacity, and enzyme 

activities, and induces production of reactive oxygen 

species (ROS). Excessive generation of ROS creates 

oxidative stress and causes peroxidation of 

membrane lipids, and damages proteins and nucleic 

acids [1]. Oxidative stress also triggers cytotoxicity, 

genotoxicity [2,3] and suppresses growth and 

productivity of the crops [4]. All these detrimental 

effects ultimately contribute to reduced yield and low 

nutritive value of crop products. However, to counter 

oxidative stress, plants are fitted with a system of 

enzymatic antioxidants viz. superoxide dismutase 

(SOD), catalase (CAT), ascorbate peroxidase (APX), 

glutathione reductase (GR) which continuously 

scavenges harmful ROS. Whereas, plants counter 

osmotic stress by enhancing the accumulation of 

organic osmolytes such as proline (Pro) and glycine 

betaine (GB) which assist the plants in maintaining 

normal hydration level of cells. 

 

Therefore, to cope with the detrimental situation, 

induction of water stress-tolerance capacity within 

the plant, through up-regulation of antioxidant 

enzymes, and accumulation of osmolytes would be of 

considerable importance for better growth and yield 

of crop plants 

 

Application of nanomaterials (NMs), designed for 

sustainable crop production, reduces nutrient losses, 

suppresses disease and enhances the yields [5]. 

Nanomaterials influence key life events of the plants 

that include seed germination, seedling vigor, root 

initiation, growth and photosynthesis to flowering.  

Additionally, NMs have been implicated in the 

protection of plants against oxidative stress as they 

mimic the role of antioxidative enzymes such as 

superoxide dismutase (SOD), catalase (CAT) and 

peroxidase (POX). Several studies reveal that NMs 

can improve growth and yield of crop plants by 

enhancing seed germination, water and fertilizer 

absorption, antioxidant system, enzyme activities, 

and photosynthesis and nitrogen metabolism [6,7]. 

NMs have been shown to play important role in plant 

growth and development. Nano-TiO2 enhances seed 

germination, seedling growth and photosynthesis and 

activities of antioxidant enzymes [8]. Lei et al. [9] 

observed that nano-TiO2 alleviates accumulation of 

malondialdehyde content by induction of plant 

antioxidant systems. It has been reported that                

nano-TiO2 treated seeds produced plants that had 

73% more dry weight, three times higher 

photosynthetic rate, and 45% increase in     

chlorophyll-a formation [10]. A significant increase 

in photosynthetic pigments and crop yield was 

recorded in nano-TiO2 treated maize plants.  

 

Fava bean (Vicia faba L.; Family Fabaceae) is one of 

the important crops grown in Tabuk region. Fava 

bean is a leguminous crop and is consumed mostly as 

dried seed while, a little portions is consumed as 

fresh kernel. The crop is also becoming increasingly 

important in Saudi diets due to the high lysine 

content of the seed, which encourages the use of fava 

bean as a protein supplement [11,12]. Proteins in 

legume seeds represent from about 20% (dry weight) 

in pea and beans up to 38–40% in soybean and lupin 

[13,14]. Therefore legume seeds are among the 

richest food sources of proteins and amino acids for 

human and animal nutrition. In spite of being such an 

important crop, production and quality of fava bean 

does not meet the requirements of the increasing 

population. On the other hand, meager or no 

information is available on the effect nano-TiO2 on 

yield and quality and on the tolerance of fava bean 

plants to WS. 

 

Therefore, considering the role of nano-TiO2 in 

plants, the present work was carried out to select the 

best doe of nano-TiO2 that could improve the 

production and quality of fava bean by enhancing 

water stress-tolerance capacity of the plants.  

MATERIALS AND METHODS: 

Plant culture and treatments 

Seeds of fava bean (Vicia faba L.) were purchased 

from local market of Tabuk. Before sowing, healthy 

and uniform seeds were selected and surface 

sterilized with 1% sodium hypochlorite for 10 min, 

then vigorously rinsed with double distilled water 

(DDW). Surface sterilized seeds were sown in plastic 

pots containing soil/vermiculite mixture (1:1). After 

sowing, the well-watered (100% field capacity) pots 

were kept for two weeks under natural illuminated 

conditions with an average day/night temperature of 

30/10±3◦C. After two weeks plants were exposed to                    

nano-TiO2 and water stress (WS). The treatments 

were given as: (i) Double distilled water (DDW; 

control: T1); (ii) WS (T2); (iii) 5 mg L-1 nano-TiO2 + 



IAJPS 2019, 06 (03), 6963-6972                  M. Nasir Khan et al                      ISSN 2349-7750 

 

 

 
w w w . i a j p s . c o m  

 

Page 6965 

WS (T3); (iv) 10 mg L-1 nano-TiO2 + WS (T4); (v) 15 

mg L-1 nano-TiO2 + WS (T5); (vi) 20 mg  L-1 nano-

TiO2 + WS (T6); (vii) 25 mg  L-1 nano-TiO2 + WS 

(T7). Plants were considered as water stressed by 

maintaining soil water content at 30% through 

withholding water supply. During the water stress 

period, soil relative water content was monitored 

daily, and WS was continued up to 9 days when the 

desired level of soil relative water content (30%) was 

achieved. Plants treated with DDW only were 

considered as control. After one week of treatment, 

the effect of water stress and nano-TiO2 on fava bean 

plants was tested by assessing following parameters. 

 

Estimation of growth characteristics 

Response of plants to water stress and nano-TiO2 was 

assessed in terms of plant height, loss of plant height, 

fresh weight per plant, loss of fresh weight. 

Assay of carbonic anhydrase (CA) and nitrate 

reductase (NR) activity 

The activity of CA (E.C. 4.2.1.1) was measured using 

the method as described by 

Dwivedi and Randhawa [15]. The enzyme activity 

was expressed as µM CO2 kg-1 leaf FW S-1. 

 

Activity of NR (E.C. 1.6.6.1) was estimated by the 

method of Jaworski [16]. The OD of the content was 

recorded at 540 nm. Activity of NR was expressed as 

µM NO-
2 g-1 leaf FW h-1 

Estimation of Leaf chlorophyll (Chl) content 

Leaf Chl content was estimated using the method of 

Lichtenthaler and Buschmann [17]. The data were 

expressed as mg g-1 leaf FW. 

Determination of leaf relative water content 

(LRWC) and electrolyte leakage 

Leaf relative water content (LRWC) was measured 

by adopting the method of Yamasaki and Dillenburg 

[18]. Electrolyte leakage was measured as described 

by Lutts et al. [19]. 

Determination of hydrogen peroxide (H2O2) and 

superoxide (O2
•−) content, and lipid peroxidation 

The hydrogen peroxide (H2O2) and superoxide (O2•−) 

content were determined according to Velikova et al. 

[20] and Elstner and Heupel [21], respectively. Lipid 

peroxidation was determined by estimating the 

content of thiobarbituric acid reactive substances 

(TBARS) as described by Cakmak and Horst [22]. 

TBARS content was expressed as nM g-1 leaf FW. 

 

Determination of proline (Pro) and glycine betaine 

(GB) content 

Proline (Pro) content was determined 

spectrophotometrically adopting the ninhydrin 

method of Bates et al. [23]. Glycine betaine (GB) 

content was estimated by the method of Grieve and 

Grattan [24].  

Assay of antioxidant enzymes 

Activity of SOD, POX, CAT, APX, and GR was 

determined according to Beauchamp and Fridovich 

[25], Upadhyaya et al. [26], Cakmak and Marschner 

[27], Nakano and Asada [28] and Foyer and Halliwell 

[29], respectively. 

Statistical analysis 

Each treatment was replicated three times. The data 

were analyzed statistically with SPSS-17 statistical 

software (SPSS Inc., Chicago, IL, USA). Means were 

statistically compared and critical difference (CD) 

was calculated at 5% level. 

RESULTS AND DISCUSSION: 

Growth characteristics 

The results of the study show that WS reduced plant 

height and fresh weight by 44.93% and 59.39%, 

respectively as compared to the control (Table 1). 

Plants under stress exhibited enhanced levels of 

electrolyte leakage, TBARS and ROS that might 

have resulted in reduced Chl content, and NR 

activities that caused suppressed growth of stressed 

plants. Poor dry matter accumulation in shoot and 

leaf growth are the major morphological changes 

under WS conditions [30]. Therefore, reduced shoot 

length possessed lesser number of leaves with 

reduced leaf area that could not capture sufficient 

solar energy resulting in poor carbon assimilation and 

thus reduced fresh weight [31]. These results are also 

in agreement with the findings of Aghdam et al. [32], 

Shivhare and Lata [33] and Gurumurthy et al. [34]. 

The stressed plants treated with nano-TiO2 showed an 

improvement in the growth parameters from 5 to 20 

mg L-1 nTiO2, whereas further increment in the 

concentration of nano-TiO2 to 25 mg L-1 exhibited 

adverse effects and caused reduction in growth 

parameters. Therefore, among five concentrations, 20 

mg L-1 nano-TiO2 proved best in protecting plants 

against WS (Table 1). It has been worked out that 

nano-TiO2 enhances dry matter accumulation, seed 

germination, seedling growth and photosynthesis 

[35]. Zheng et al. [10] observed that nano-TiO2 

assists in water absorption and improves seed 

germination. Moreover, Navarro et al. [36] suggested 

that NMs could sequester nutrients on their surfaces, 

and thus, serve as nutrient stock. NMs also regulate 

aquaporins, the water channels, which regulate water 

permeability and play important role in seed 

germination and plant growth [37]. It has also been 

reported that nano-TiO2 accelerates photosynthetic 
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carbon assimilation by activating rubisco that could 

promote rubisco carboxylation, thereby increasing 

growth of the plants [38]. Plant exposure to NMs 

causes activation of genes responsible for water 

channel protein and also for better cell growth by 

regulating cell cycle, these effects of NMs reflect in 

the form of improved growth of the plants [5,39]. 

 

                Table 1 Effect water stress and nano-TiO2 on the growth parameters of Vicia faba  

 

Treatments 

Parameters 

Plant height 

(cm) 

Loss of plant  

height 

Fresh 

weight per 

plant (g) 

Loss of 

fresh weight 

DDW (control) 6.9 00.00 3.62 00.00 

WS 3.8 44.93 1.47 59.39 

5 mg L-1 nano-TiO2 + WS 3.9 43.48 1.43 60.49 

10 mg L-1 nano-TiO2 + WS  4.2 39.13 1.68 53.59 

15 mg L-1 nano-TiO2 + WS 5.1 26.09 2.13 41.16 

20 mg L-1 nano-TiO2 + WS  5.8 15.94 2.87 20.72 

25 mg L-1 nano-TiO2 + WS 4.7 31.88 1.59 56.08 

CD at 5% 0.049 1.26 0.043 1.64 

 WS: water stress; values are mean of three replicates 

 

 

Activities of CA and NR, and leaf Chl content and 

LRWC 

It is evident from Table 2 that WS enhanced the 

activity of CA enzyme by 15.8% as compared with 

the control. However, a decrease in the activity of NR 

enzyme, Chl content and LRWC was recorded. 

Water-stressed plants show 68.6%, 51.4% and 44.2% 

reduction in NR, leaf Chl content, and LRWC, 

respectively in comparison with their respective 

controls. The CA, a chloroplast-localized enzyme, 

catalyzes the reversible hydration of CO2, and 

maintains its constant supply to rubisco, a key 

enzyme responsible for the fixation of CO2. In 

addition to its role in CO2 fixation, CA plays vital 

role in the protection of plants under stresses [40]. 

Under drought stress CA activity was upregulated 

that controlled ROS levels and helped the plants to 

counter cytotoxic concentration of ROS [41]. NR is 

the key enzyme that catalyzes the rate-limiting step 

of N assimilation. Activity of NR is associated with 

the rate of photosynthesis and the availability of 

carbon skeletons through both transcriptional and 

posttranslational controls [42]. A decrease in NR 

activity under drought stress has also been reported 

by Foyer et al. [43]. Chlorophyll is one of the 

important tools to evaluate the severity of the plants 

to drought-induced water stress. Excessive 

accumulation of ROS causes pigment photo-

oxidation, instability of protein complexes and 

increase in the activity of Chl-degrading enzyme 

chlorophyllase [44] leading to Chl degradation [45-

47].  

 

However, water-stressed plants supplemented with 

nano-TiO2 showed a parallel increase with increasing 

concentration of nano-TiO2 from 5 to 20 mg L-1 

nTiO2. Water-stressed plants treated with 20 mg L-1 

nano-TiO2 showed an increase of 42.1%, 88.7%, 

32.4% and 78.5% in CA, NR, Chl content and 

LRWC, respectively as compared with water-stressed 

plants (Table 2). The results also show that nano-

TiO2 at the rate of 25 mg L-1 did not show any further 

increase in these parameters, but a decrease was 

noticed in CA, and NR activities, and Chl content and 

LRWC (Table 2). Application of nano-TiO2 

suppressed the generation of H2O2 and O2
•− content 

and improved LRWC which protected Chl molecules 

from photo-oxidative damage and resulted in 

improvement of Chl content (Table 2). In addition, 

nano-TiO2-induced reduction in ROS was associated 

with the reduction in electrolyte leakage and TBARS 

and increase in LRWC (Tables 2 and 3) that provided 

a favourable environment for the biosynthesis of Chl 

and normal activities of CA and NR enzymes. 

Enhanced level of Chl content by nano-TiO2 has also 

been reported in drought stressed plants of Linum 

usitatissimum [32]. Our results also corroborate the 

findings of Hruby et al. [48], Khan [49], Khan and 

Alzuaibr [50], and Ahmad et al. [51] who observed 

that nano-TiO2 improves activities of NR and CA 

enzymes and level of Chl content. 
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Table 2 Effect water stress and nano-TiO2 on CA and NR activity, leaf Chl content and leaf relative water content of 

Vicia faba 

 

  

Treatments 

Parameters 

CA activity 

(µM CO2 kg-1 leaf FW s-1) 

NR activity 

(µM NO-
2 g-1 leaf FW h-1) 

Leaf Chl 

content  

(mg g-1 FW) 

LRWC 

(%) 

DDW (control) 236.58 366.71 2.86 98.42 

WS 274.02 115.29 1.39 44.07 

5 mg L-1 nano-TiO2 + WS 288.39 143.54 1.42 51.61 

10 mg L-1 nano-TiO2 + WS  291.61 151.82 1.49 63.71 

15 mg L-1 nano-TiO2 + WS 311.70 211.74 1.61 69.82 

20 mg L-1 nano-TiO2 + WS  389.47 217.52 1.84 78.51 

25 mg L-1 nano-TiO2 + WS 321.29 166.38 1.46 71.43 

CD at 5% 3.61 2.74 0.059 3.28 

WS: water stress; values are mean of three replicates 

  

Electrolyte leakage, thiobarbituric acid reactive 

substances (TBARS), and hydrogen peroxide 

(H2O2) and superoxide (O2
•−) content 

Electrolyte leakage represents the degree of damage 

to cell membrane integrity and stability in response to 

the stress. The results exhibited that water-stressed 

plants showed an increase of 83.8% in electrolyte 

leakage as compared with the control plants (Table 

3). Water-stressed plants supplemented with nano-

TiO2 showed a reduction in electrolyte leakage with 

increasing concentration from 5 to 20 mg L-1 of nano-

TiO2. However, the highest level of nano-TiO2 (25 

mg L-1) did not show a further decrease in electrolyte 

leakage (Table 3).   

 

Effect of nano-TiO2 on water stress-induced 

peroxidation of membrane lipids was assessed by 

determining thiobarbituric acid reactive substances 

(TBARS). Results show that WS enhanced the level 

of TBARS by 77.3% as compared with the control 

(Table 3). Stressed plants show a parallel increase in 

electrolyte leakage with increased level of TBARS 

because electrolyte leakage is the result of 

peroxidation of membrane lipids. Water-stressed 

plants show a decrease in TBARS with increasing 

levels of nano-TiO2 from 5 to 20 mg L-1 nano-TiO2. 

Lowest level of TBARS was recorded in water-

stressed plants treated with 20 mg L-1 nano-TiO2 

which showed 36.0% reduction as compared with 

water-stressed plants. However, a further increase in 

the level of nano-TiO2 (25 mg L-1) showed 

deleterious effect and caused increase in TBARS 

(Table 3).  

 

Water stress also causes oxidative stress which was 

evaluated by analyzing ROS (H2O2 and O2
•−) level. 

Perusal of the data shows that WS significantly 

elevated ROS level (Table 3). Exposure of plants to 

WS enhanced H2O2 and O2
•− content by 87.5% and 

94.6%, respectively compared with the control. 

Increasing levels of nano-TiO2 from 5 to 20 mg L-1 

reduced the generation of ROS and 20 mg L-1 proved 

most effective which reduced  H2O2 and O2
•− content 

by 35.4% and 45.2%, respectively as compared to 

water-stressed plants not treated with nano-TiO2. On 

the contrary, 25 mg L-1 nano-TiO2 caused an increase 

in H2O2 and O2
•− content (Table 3). Water stress 

induced overproduction of ROS (H2O2 and O2
•−) that 

caused peroxidation of membrane lipids and leakage 

of electrolytes (Table 3) [5, 50, 52]. On the other 

hand, stressed plants supplemented with nano-TiO2 

showed an increase in the activities of antioxidant 

enzymes (Fig. 2 A-E) that inhibited ROS production 

and caused reduction in the level of ROS [53] leading 

to reduced TBARS and electrolyte leakage [5,50]. 
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Vicia fabacontent of  •−
2Oand  2O2and H ,electrolyte leakage, TBARSon  2TiO-stress and nanoEffect water  3Table  

  

 

Treatments 

Parameters 

Electrolyte 

leakage (%) 

TBARS 

DW) 1-(nM g 

content 2O2H 

leaf DW) 1-(µM g 

content •−
2O 

leaf DW) 1-(µM g 

DDW (control) 9.58 12.58 76.31 3.92 

WS 17.61 22.31 143.10 7.63 

+ WS2 TiO-nano 1-5 mg L 16.56 22.07 136.47 7.49 

+ WS 2 TiO-nano 1-10 mg L 16.37 19.84 134.52 6.28 

+ WS 2TiO-nano 1-15 mg L 9.04 16.39 113.80 5.36 

+ WS  2TiO-nano 1-20 mg L 6.47 14.27 92.49 4.18 

+ WS 2TiO-nano 1-25 mg L 10.82 21.71 118.05 6.86 

CD at 5% 1.82 1.19 3.53 1.04 

WS: water stress; values are mean of three replicates 

Proline (Pro) and glycine betaine (GB) content 

The results show that water-stressed plants 

accumulated 16.6% and 23.8% more Pro and GB 

content, respectively than the control plants (Fig. 1). 

Plants counter osmotic stress by accumulating 

osmolytes such as Pro and GB which play crucial 

role in osmotic adjustment of plants under stress. Our 

results are in agreement with the findings of Khan et 

al. [54,55], and Shivhare and Lata [33] who observed 

increased accumulation of these osmolyets under 

drought stress. In addition, a further increase in these 

osmolytes was noted in water-stressed plants treated 

with nano-TiO2. Of the five given levels, 20 mg L-1 

nano-TiO2 gave highest values and caused an 

increase of 67.8% and 50.6% in Pro and GB content, 

respectively as compared with the stressed plants. 

However, a further increase in the concentration of 

nano-TiO2 (25 mg L-1) suppressed the level of 

osmolytes (Fig. 1 A and B    ). It has been observed 

that nano-TiO2 induces the synthesis of hydrogen 

sulfide in plants under drought stress [50]. In 

addition, hydrogen sulfide has been shown to induce 

the synthesis of Pro and GB content that stabilize 

biological membranes and protects the plants against 

adverse effects of abiotic stresses [56,57]. Moreover, 

increased accumulation of Pro and GB content 

elevates osmotic pressure which enhances water 

uptake capacity of treated plants [50] as shown by 

improved LRWC (Table 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Effect of water stress and nTiO2 on proline content (A) and glycine betaine content (B) of Vicia faba plants 

under water stress. [(i) Double distilled water (DDW; control: T1); (ii) WS (T2); (iii) 5 mg L-1 nano-TiO2 + WS 

(T3); (iv) 10 mg L-1 nano-TiO2 + WS (T4); (v) 15 mg L-1 nano-TiO2 + WS (T5); (vi) 20 mg  L-1 nano-TiO2 + WS 

(T6); (vii) 25 mg  L-1 nano-TiO2 + WS (T7)]. WS: water stress; values are mean of three replicates 
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Activities of antioxidant enzymes 

It is evident from the results that exposure of plants 

to water stress elevated the activities of antioxidant 

enzymes (SOD, POX, CAT, APX and GR) (Fig. 2 A-

E). To counter oxidative stress plants are equipped 

with a system of antioxidant enzymes which is 

activated in response to a stress stimulus [33,34] and 

maintains optimum level of ROS. Moreover, 

application of nano-TiO2 to stressed plants further 

enhanced the activities of these antioxidant enzymes. 

For instance, WS enhanced the activities of SOD, 

POX, CAT, APX and GR by 45.2%, 27.5%, 41.6%, 

13.6% and 19.4%; whereas 20 mg L-1 nTiO2 

enhanced these activities by 95.8%, 70.5%, 80.7%, 

69.2% and 64.8%, respectively as compared with 

their respective controls (Fig. 2 A-E). It is well 

documented that NMs stimulate the activities of 

antioxidant enzymes and protect plants against 

various abiotic stresses [5]. Mohammadi et al. [57] 

and Khan and Alzuaibr [50] observed that nanoTiO2 

enhances the activities of antioxidant enzymes which 

regulate excessive generation of ROS and results in 

reduced TBARS and electrolyte leakage (Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Effect of water stress and nTiO2 on the activities of SOD (A), POX (B), CAT (C), APX (D) and GR (E) of 

Vicia faba plants under water stress. [(i) Double distilled water (DDW; control: T1); (ii) WS (T2); (iii) 5 mg L-1 

nano-TiO2 + WS (T3); (iv) 10 mg L-1 nano-TiO2 + WS (T4); (v) 15 mg L-1 nano-TiO2 + WS (T5); (vi) 20 mg  L-1 

nano-TiO2 + WS (T6); (vii) 25 mg  L-1 nano-TiO2 + WS (T7)]. WS: water stress; values are mean of three replicates 
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CONCLUSION: 

On the basis of assessment of results it is observed 

that plants under stress showed excessive generation 

of ROS. These ROS caused damage to the cell 

membrane as reflected by elevated level of TBARS. 

Membrane damage caused by WS resulted in the 

leakage of electrolytes, loss of Chl content, reduced 

activity of NR and suppressed water uptake capacity 

leading to reduced plant height and fresh weight of 

the plants. Along with the increase in ROS levels, 

stressed plants also show an increase in the activities 

of antioxidant enzymes and CA, and accumulation of 

Pro and GB content. However, application of 

different concentrations of nano-TiO2 (except 25 mg        

L-1) further elevated the activities of antioxidant 

enzymes and CA which reduced the generation of 

ROS. Reduction in ROS was witnessed by a decrease 

in TBARS and electrolyte leakage. Water-stressed 

plants treated with nano-TiO2 also showed elevated 

levels of Pro and GB content which maintained 

osmotic pressure and caused more water uptake as 

shown by increased LRWC and improved growth 

parameters. Therefore, it can be concluded that an 

increase in the concentration of from 5-20 mg L-1 

gave promising results and nano-TiO2 at the rate of 

20 mg L-1 proved best. However, further increase to 

25 mg L-1 nano-TiO2 was phytotoxic that adversely 

affected the stressed plants. 
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