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Abstract Reducing uncertainties about carbon cycling is important in the Arctic where rapid
environmental changes contribute to enhanced mobilization of carbon. Here we quantify soil organic
carbon (SOC) contents of permafrost soils along the Yukon Coastal Plain and determine the annual fluxes
from coastal erosion. Different terrain units were assessed based on surficial geology, morphology, and
ground ice conditions. To account for the volume of wedge ice and massive ice in a unit, SOC contents were
reduced by 19% and sediment contents by 16%. The SOC content in a 1m2 column of soil varied according to
the height of the bluff, ranging from 30 to 662 kg, with a mean value of 183 kg. Forty-four per cent of the
SOC was within the top 1 m of soil and values varied based on surficial materials, ranging from 30 to
53 kg C/m3, with a mean of 41 kg. Eighty per cent of the shoreline was erosive with a mean annual rate of
change of �0.7 m/yr. This resulted in a SOC flux per meter of shoreline of 132 kg C/m/yr, and a total flux for
the entire 282 km of the Yukon coast of 35.5 × 106 kg C/yr (0.036 Tg C/yr). The mean flux of sediment per
meter of shoreline was 5.3 × 103 kg/m/yr, with a total flux of 1,832 × 106 kg/yr (1.832 Tg/yr). Sedimentation
rates indicate that approximately 13% of the eroded carbon was sequestered in nearshore sediments, where
the overwhelming majority of organic carbon was of terrestrial origin.

Plain Language Summary The oceans help slow the buildup of carbon dioxide (CO2) because they
absorb much of this greenhouse gas. However, if carbon from other sources is added to the oceans, it can
affect their ability to absorb atmospheric CO2. Our study examines the organic carbon added to the Canadian
Beaufort Sea from eroding permafrost along the Yukon coast, a region quite vulnerable to erosion.
Understanding carbon cycling in this area is important because environmental changes in the Arctic such
as longer open water seasons, rising sea levels, and warmer air, water and soil temperatures are likely to
increase coastal erosion and, thus, carbon fluxes to the sea. We measured the carbon in different types of
permafrost soils and applied corrections to account for the volume taken up by various types of ground ice.
By determining how quickly the shoreline is eroding, we assessed how much organic carbon is being
transferred to the ocean each year. Our results show that 36 × 106 kg of carbon is added annually from this
section of the coast. If we extrapolate these results to other coastal areas along the Canadian Beaufort Sea,
the flux of organic carbon is nearly 3 times what was previously thought.

1. Introduction

It is estimated that 1,035 ± 150 Pg (1015 g) of soil organic carbon (SOC) are stored in permafrost (Hugelius
et al., 2014), which is approximately 20% more carbon than is currently circulating in the atmosphere
(Houghton, 2007). Because permafrost is such an important global carbon sink, quantifying the carbon fluxes
that result from its disturbance is crucial for understanding carbon cycling from local to global scales and for
refining projections of future climatic changes (Fritz et al., 2017). Thirty four per cent of the Earth’s coasts
consist of permafrost (Lantuit et al., 2012), and these coasts have amean erosion rate of 0.5 m/yr (Lantuit et al.,
2012), with local retreat rates as high as 30 m/yr (Wobus et al., 2011). Consequently, coastal erosion is an
important process for mobilizing organic carbon in permafrost regions, releasing an estimated 14.0 Tg
(1012 g) of particulate organic carbon to the nearshore zone each year (Wegner et al., 2015). This carbon flux
is comparable to that contributed annually by all Arctic rivers, or to the net methane (CH4) emissions from
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terrestrial permafrost (Koven et al., 2011). Terrestrially derived organic carbon plays a crucial role in Arctic bio-
geochemical cycling once released into the nearshore zone, where it can either be remineralized in the water
column, buried on the shelf, or transported to the deep ocean (Fritz et al., 2017). Uncertainties remain about
the carbon fluxes to and from the system, however, and reducing those uncertainties is especially critical in
the Arctic, where rapid environmental changes due to Arctic amplification (Serreze & Barry, 2011) are likely to
increase the cycling of carbon (McGuire et al., 2009; Schuur et al., 2008).

Studies of the overall cycling of organic carbon in the Arctic Ocean have progressed toward elucidating the
processes involved and highlighting the knowledge gaps (Stein & Macdonald, 2004; Vetrov & Romankevich,
2004). On a volume basis, the Arctic Ocean receives higher levels of terrestrially derived organic matter than
any other ocean (Dittmar & Kattner, 2003), with inputs from both riverine and coastal sources (Rachold et al.,
2000, 2004). A major goal of the Arctic Coastal Dynamics project was to develop circum-Arctic estimates of
the coastal contribution of sediment and carbon (Rachold et al., 2005). The coastal inputs of organic carbon
from some regions are well constrained (Jorgenson & Brown, 2005; Ping et al., 2011; Rachold et al., 2004;
Streletskaya et al., 2009), but uncertainty still exists for other areas. For the Canadian Beaufort Sea, inputs
are largely dominated by discharge from the Mackenzie River (Macdonald et al., 1998). However, although
several studies have provided estimates of material fluxes to the Beaufort Sea from coastal sources
(Harper, 1990; Harper & Penland, 1982; Hill et al., 1991; Macdonald et al., 1998; McDonald & Lewis, 1973;
Yunker et al., 1990, 1991, 1993), organic carbon inputs for this region are still not very well defined. Here
we seek to address this gap by carrying out a systematic analysis to determine the sediment and carbon con-
tents of soils along the Yukon Coastal Plain and fluxes to the Beaufort Sea.

The long-term mean rate of shoreline change along the Yukon coast is �0.7 m/yr, with some parts of the
coast having mean retreat rates as high as 9 m/yr (Irrgang et al., 2017). Along the north coast of Alaska,
long-term rates of shoreline change are �1.4 m/yr (Gibbs & Richmond, 2015). This region therefore has the
potential to release high amounts of organic matter. In North America, total organic carbon (TOC) contents
of permafrost soils have been shown to vary considerably depending on soil type and land cover
(Bockheim et al., 1999, 2004, 1998, 2003; Bockheim & Hinkel, 2007; Michaelson et al., 1996; Obu, Lantuit,
Myers-Smith, et al., 2017; Ping et al., 2008; Tarnocai, 1998; Tarnocai et al., 2003, 2007, 2009), with mean values
between 30 and 60 kg C/m3. Most measurements of TOC in permafrost have been confined to the top 1 m of
soil, although some recent studies have examined deeper deposits (Bockheim & Hinkel, 2007; Strauss et al.,
2013; Tarnocai et al., 2009; Zimov et al., 2006). In Arctic soils, in general, most soil organic matter is stored
in the seasonally unfrozen active layer near the ground surface, so organic matter tends to decrease with
depth. However, a considerable amount of organic matter can be transferred into the upper part of
permafrost through cryoturbation (Bockheim & Tarnocai, 1998). Along the Yukon Coastal Plain, measure-
ments of TOC in soils have been conducted at only a few sites (Fritz et al., 2012; Kokelj et al., 2002; Obu,
Lantuit, Myers-Smith, et al., 2017; Smith et al., 1989; Tarnocai & Lacelle, 1996; Yunker et al., 1990), yielding
values between 2.9 and 99.2 kg C/m3.

A preliminary estimate of the flux of organic carbon, based on earlier studies of coastal erosion, provided a
value of 0.055 Tg/yr (with a maximum of 0.3 Tg/yr) for the entire Canadian Beaufort Sea coast (Macdonald
et al., 1998). However, although that study implicitly accounted for pore ice through the use of soil bulk
densities in its calculations, it did not account for other ground ice types, despite the fact that ground ice
represents a significant portion of earth materials along the Yukon coast (Couture & Pollard, 2017).The fate
of mobilized carbon is not well constrained and potential off-shelf transport is especially important along
the Yukon coast because, with a width of 40 km and even 10 km in some places, it is very narrow in compar-
ison to other shelves of the Arctic Ocean. Although databases exist of organic carbon in offshore sediments of
the Alaska Beaufort Sea (Naidu et al., 2000) and of the Mackenzie Shelf (Macdonald et al., 2004), they include
only a few samples from the Yukon coastal area.

Environmental changes in the Arctic such as longer open water seasons (Jones et al., 2009; Markus et al., 2009;
Stroeve et al., 2014), intensified storms (Manson & Solomon, 2007), warmer air, water, and soil temperatures
(AMAP, 2017; Overland et al., 2015; Timmermans & Proshutinsky, 2016) and rising sea level (Manson &
Solomon, 2007) are very likely to further increase coastal erosion (Günther et al., 2015; Zhang et al., 2004)
and thus carbon mobilization (McGuire et al., 2009; Schuur et al., 2008, 2015). This trend is already becoming
evident, with erosion rates along many parts of the Beaufort Sea coast more than doubling in recent decades
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(Irrgang et al., 2017; Jones et al., 2009, Ping et al., 2011). In order to contribute to an enhanced understanding
of the implications of these changes for carbon cycling in the Arctic, our objectives are (1) to quantify the
annual fluxes of sediments and organic carbon from eroding permafrost along the Yukon coast, ensuring
that ground ice volumes at different depths are taken into consideration and (2) to estimate the amount
of terrestrially derived organic matter being sequestered in shelf sediments in this region of the Beaufort Sea.

2. Study Area

The study area is part of the Yukon Coastal Plain, a pediment surface 282 km long and 10–30 km wide that
slopes gently from a series of inland mountain ranges to the Canadian Beaufort Sea (Figure 1). It was partially
glaciated during the Wisconsinan Glaciation, with the Laurentide Ice Sheet extending just to the west of
Herschel Island (Fritz et al., 2012; Rampton, 1982). This formerly glaciated area is characterized by a mixture
of morainic deposits and coarse-grained glaciofluvial material, but low spits and fine-grained lacustrine and
fluvial sediments occur as well (Bouchard, 1974; Rampton, 1982). Cliff heights are diverse, ranging from 2–3m
on the mainland across from Herschel Island to 60 m in the eastern part of the study area. In the region to the
west of Herschel Island, which remained unglaciated, sediments are of lacustrine or fluvial origin and are
mostly fine-grained (Rampton, 1982). Coastal cliff heights are more uniform in this western region, rising
gently from about 3 m high near the glaciation limit to approximately 6 m near the Yukon-Alaska border
(Kohnert et al., 2014; Obu, Lantuit, Fritz, Grosse, et al., 2016). An approximately 35 km long barrier spit and
barrier island system comprised of sand and gravel beach deposits fronts the deltas of the Malcolm and
Firth Rivers.

Permafrost is found everywhere throughout the Yukon Coastal Plain except under large lakes and rivers
(Rampton, 1982). The mean annual air temperature at Komakuk Beach is �11°C; July is the warmest month

Figure 1. Map of the study area along the Yukon Coastal Plain, Canada. Samples of soil organic carbon (SOC) were collected at 22 onshore sites (γ) and 14 offshore (≪)
sites. Bathymetry information is based on Canadian Hydrographic Survey navigational charts improved by local surveys performed in the 1980s (Thompson, 1994).
Basemap: 30 m Yukon DEM, interpolated from the digital 1:50,000 Canadian Topographic Database (Yukon Department of Environment, 2016).
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with a mean temperature of 7.8°C (1971–2000) (Environment Canada, 2016). Over the last 100 years (from the
period 1899–1905 to 1995–2006), mean air temperatures along the Yukon coast have increased by 2.5°C and
permafrost temperatures have increased by 2.6°C (Burn & Zhang, 2009). This part of Canada is one of the
most ice-rich areas of the Arctic and the permafrost contains high amounts of ground ice in the form of pore
ice and thin lenses, ice wedges, and bodies of massive ice, the latter occurring primarily in the formerly
glaciated area. Overall, ground ice accounts for 46% by volume of earth materials in the study area
(Couture & Pollard, 2017), but it can be as high as 74% in some coastal segments. The sediments along the
Yukon Coastal Plain are also rich in organic material, and peat layers from 0.5 to 3.5 m thick blanket many
of the deposits (Rampton, 1982). Much of this organic matter accumulated in thermokarst basins that were
formed by melting of ground ice; the accumulation is further promoted by poor drainage and the low regio-
nal slope gradients, particularly in the western part of the Yukon Coastal Plain (Fritz et al., 2012; Rampton,
1982). A considerable amount of organic material along the Yukon Coastal Plain is also found at depth in
preglaciated floodplain and deltaic sediments, and where surface organic matter appears to have been
buried by glacial deformation (Rampton, 1982). Current active layers along the Yukon coast range in thick-
ness from approximately 0.3 to 1.5 m (Burn, 1997; Fritz et al., 2012; Kokelj et al., 2002). However, at maximum
active layer development during the early Holocene about 8,000 14C years before present, active layer thick-
nesses were up to 2.5 times present-day ones (Burn, 1997; Fritz et al., 2012; Kokelj et al., 2002), so organic
material that originated in the paleo-active layer is found in that depth range.

Because of the high ground ice contents, thermoerosional processes play an important role in shaping the
landscape along the Yukon Coastal Plain. These processes include the development of retrogressive thaw
slumps (Lantuit & Pollard, 2005, 2008; Ramage et al., 2017; Wolfe et al., 2001) and cliff collapse due to wave
notching (Hoque & Pollard, 2009, 2015). Sea ice in the region breaks up in late June and re-forms in early
October (Galley et al., 2016), and coastal erosion and the resulting mobilization of sediment and carbon is
concentrated in the 3.5 months of open water. The most common wind directions are from the southeast
and the northwest, though most effective storms come from the northwest, peaking in October (Atkinson,
2005; Hill et al., 1991; Hudak & Young, 2002). Sea level rise along the Yukon coast is on average
3.5 ± 1.1 mm/yr (Manson & Solomon, 2007). Astronomical tides are semidiurnal and in the microtidal range
(0.3–0.5 m) (Héquette et al., 1995).

3. Methods

The Yukon coast was segmented into 44 different terrain units based on landforms, surficial material, perma-
frost conditions, and coastal processes, since each of these factors influences the amount and flux of SOC. For
each of the terrain units, the flux of SOC was calculated from the measured TOC contents and the long-term
rates of shoreline change for each terrain unit (Irrgang et al., 2017). Analyses of seabed sediments allowed a
quantification of the terrestrially derived SOC being buried in the nearshore.

3.1. Sample Collection and Laboratory Analyses

Onshore soil sampling was carried out at 22 locations along the coast in September 2003 and August 2004,
2005, 2006, and 2009 (Figure 1). Locations were selected to represent terrain units from different parts of the
coast. Sampling west of Herschel Island was restricted by ice conditions in 2005, and coarse-grained units
were not well represented due to difficulties associated with coring in gravelly and pebbly material.
Samples were collected from the side of soil pits in the unfrozen active layer. After digging down to the
underlying permafrost and cleaning away any thawed material, samples were obtained using a modified
CRREL corer (7.5 cm inner diameter). In a limited number of cases (7% of samples), natural exposures were
sampled by scraping thawed soil off the face of the exposure and using a hammer or an ax to cut out samples
(approximately 1,000 cm3). During sampling, active layer thicknesses ranged from 0.25 to 0.90 m. Cores
began at the base of the active layer and penetrated to a maximum of 2.04 m below the ground surface.
Natural exposures were sampled to a depth of 5.8 m from the surface. At two sites, samples were taken from
the base of bluffs and were assumed to be representative of the entire lower portion of the bluff. The frozen
cores were subsampled every 5 cm or where there was a distinct change in material composition. Samples
were weighed in the field, then freeze-dried and reweighed in the laboratory to determine ice content and
bulk densities (based on frozen core volume or measurement of the sample block).
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Offshore samples were obtained at 14 locations in July 2006 (Figure 1). A Ponar grab sampler was used to
obtain samples from bottom sediments along profiles perpendicular to the shore. Sample size varied due
to differences in substrate and water depths, but averaged about 1,000 cm3. Samples were taken at distances
of approximately 30 m, 50 m, 100 m, 250 m, and 500 m from shore to assess how the composition of the
organic carbon in the sediments changed.

Dried samples were sieved to produce a <2 mm fraction, with larger granules later reintegrated into grain
size statistics. Grain size distribution was determined by laser particle sizing (Coulter LS 200) of organic-
free subsamples (treated with 30% H2O2). Total carbon, TOC, and total nitrogen were measured using
an Elementar Vario EL III elemental analyzer following sample pulverization and treatment with 10% HCl
to remove carbonates. Samples were measured twice and the mean value was determined. Stable carbon
isotopes were measured on carbonate-free samples using a Finnigan MAT Delta-S mass spectrometer
equipped with a FLASH elemental analyzer and a CONFLO III gas mixing system. The δ13Corg of the sample
was reported in per mill relative to Vienna Pee Dee Belemnite (VPDB). The standard deviation (1σ) was
generally better than δ13C = ±0.15‰.

3.2. Determination of SOC and Sediment Contents

For each terrain unit, the onshore SOC measurements were used to calculate the mass of SOC (MC) for a 1 m
2

soil column equal in depth to the mean bluff height. Heights were obtained from 2013 LiDAR data (1.0 m
ground resolution and vertical accuracy of 0.15 ± 0.1 m) (Kohnert et al., 2014; Obu, Lantuit, Fritz, Grosse, et al.,
2016; Obu, Lantuit, Grosse, et al., 2017) and, using the zonal statistics tool in ESRI ArcMap, a mean value for
each terrain unit was established for an area 200 m inland of a shoreline that was digitized from 2011 satellite
images (Digital Globe, 2014, 2016). For terrain units composed of gravel features such as barrier islands and
spits, the mean terrain height was set to 1 m, except for one (Stokes Point), which was assigned a height of
1.9 m based on survey data from Forbes (1997).

Where more than one sampling site occurred in a terrain unit, TOC values of the same depth were averaged
before calculating MC. For terrain units that did not contain a sampling site, values were extrapolated from
areas with similar surficial geology and permafrost conditions. A column’s MC was given by

Mc ¼
Xn
j¼1

ρb � h � %OC (1)

where MC is the mass of SOC in a soil column (kg/m2), ρb is the dry bulk density based on the original frozen
volume (kg/m3), h is the thickness of a soil layer (m), and %OC is the percentage of TOC by weight in a unit
layer. The layers were summed to arrive at a value for the entire soil column. A similar procedure was followed
to obtain the mass of the mineral portion of the sediment:

Ms ¼
Xn
j¼1

ρb�hð Þ-Mc (2)

where MS is the mass of mineral sediment (kg/m2).

ForMC, the lowermost soil layer, which generally comprises the largest percentage of the bluff, was assigned
the lowest measured value for organic carbon. In cases of high bluffs where this value did not appear repre-
sentative of the lowermost layer, a default value of 0.792 (% wt) TOC was assigned. This was one of the lowest
values measured in the course of this study and came from a sample at the base of the highest cliff in the
study area. Where no surface layer sample was available, a 10 cm-thick organic layer was assumed, with a
TOC content of 25%. This is a conservative estimate based on horizon data reported by Michaelson et al.
(1996) and Bockheim et al. (1999, 2003). Sand and gravel beach deposits were assigned a TOC value of
1.8% based on measurements by Smith et al. (1989) and Lawrence et al., (1984). For grab samples that had
no volumemeasurements (9% of samples), bulk density was estimated from gravimetric ice contents accord-
ing to the following equation:

ρb ¼
mass of sediment

volume of ice þ volume of sediment
¼ 100

θi
ρi

� �
þ 100

ρp

� � (3)

where θi is the gravimetric ice content of the sample (% wt) and the mass of the sediment is therefore
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assumed to be 100 g, ρi is the bulk density of ice (assumed to be 0.917 g/
cm3), and ρp is the particle density of the sediment (assumed to be 2.6 g/
cm3). There was a strong correlation (r2 = 0.92) when values estimated
using this method were compared to measured values (Figure 2).

Where gravimetric ice contents were not available (35% of samples),
another method was used based on several studies that showed a
significant relationship (R2 = 0.823) between organic carbon concentra-
tions and bulk densities (Bockheim et al., 1998, 2003). In those cases, bulk
density was estimated according to the following empirically derived
equation (Bockheim et al., 1998):

ρb ¼ 1:374 10�0:026x
� �

(4)

where x is the TOC (% wt).

All SOC values were corrected to account for the volume occupied by wedge ice and massive ground ice in
each layer within the column. Percentages of these ice types for each terrain unit are given by Couture (2010)
and Couture and Pollard (2015, 2017) and details on the method used to estimate the different ground ice
types are provided in Couture and Pollard (2017). These researchers found that pore ice and thin lenses of
segregated ice comprise 35% of the volume of bluffs along the Yukon Coastal Plain, but corrections were
not applied for these ice types, since they were already accounted for by the use of dry bulk density in the
mass calculations.

3.3. Fluxes of SOC and Sediments

The following equation was used to calculate the annual SOC and sediment fluxes from shoreline retreat for
an entire terrain unit:

F ¼ A
M

1; 000

� �
(5)

where F is the annual flux of SOC or sediment from the terrain unit (103 kg/yr), A is the mean annual area
eroded per terrain unit (m2), and M is the total mass of material per soil column as defined above (equa-
tions (1) and (2)). Eroded area of the terrain units was used rather than shoreline length, since the use of
length can result in scale-related errors of more than 30%, and using area provides results that are more
robust (Lantuit et al., 2009).

For the determination of flux of SOC and sediment per meter of coast, mean annual rates of shoreline change
for 35 of the terrain units were calculated for the period 1953–2011 (Irrgang et al., 2017). For the six terrain
units on Herschel Island, mean annual rates of shoreline change were calculated following the same method,
but for the period 1975–2011. Irrgang et al. (2017) were not able to determine rates of shoreline change for
three of the terrain units (Running River, Kay Point Spit, and Malcolm River fan with barrier islands), so rates of
change from Harper et al., (1985) were used. The mean rates of shoreline change were then multiplied byMC

andMS in a 1 m
2 column to obtain annual fluxes per meter of coast for SOC and sediment, respectively. In two

of the terrain units (Shingle Point E and Stokes Point SE), mean annual rates of shoreline change were posi-
tive, indicating net accumulation rather than erosion, but there was nevertheless some loss of sediment over
the time period examined. For those two terrain units, a mean flux per meter of coast was therefore obtained
by dividing the total annual loss from the terrain unit by the shoreline length of the unit (16.4 km and
4.1 km, respectively).

3.4. Fate of the Eroded SOC

In order to establish how much of SOC from the Yukon Coastal Plain is being sequestered in nearshore sedi-
ments, two bulk identifiers were examined in the seabed sediments: stable carbon isotopes (δ13Corg) and
organic carbon/total nitrogen (TOC/N) ratios. The amount of terrigenous organic carbon (TerrOC) in the
bottom samples was determined from a mixing model that used the following equation, which assumes
linear mixing between the terrigenous and marine sources of organic matter:

Figure 2. Correlation between measured bulk densities and bulk densities
estimated from gravimetric ice contents.
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TerrOC ¼ 100
δ13Csample � δ13Cmarine

δ13Cterrigenous � δ13Cmarine

 !
(6)

For the terrigenous end-member in equation (6), δ13Corg was measured directly in the onshore samples. The
marine end-member can be quite variable in the Arctic due to phytoplankton and contributions from sea ice
algae (Stein & Macdonald, 2004, and references therein). We used a value of�20.75‰, as this is the mean of
the one proposed by Naidu et al. (2000) (�24‰) and that used by Belicka and Harvey (2009) (�17.5‰). The
use of the TOC/N ratio helps to reduce uncertainty associated with the variability of the marine end-member.

4. Results

Of the 44 terrain units in the study area, TOC samples were collected directly from 17 terrain units. Results
were extrapolated to a further 16 terrain units with similar characteristics, and in some cases, supplemented
with stratigraphic information from previously published sources. For the marine units (i.e., beaches and
spits) that we were unable to sample, TOC values reported in the literature were used.

4.1. Ground Ice

As noted earlier, pore ice and thin lenses of ground ice were accounted for in SOC calculations by the use of
dry bulk densities, but other types of ground ice needed to be considered. The amount of wedge ice
decreased with depth and ranged from a high of 53% of a soil layer’s volume to less than 1%. Massive ice,
although not present everywhere, accounted for between 52% and 97% of the volume in soil layers where
it did occur. Applying corrections for the volume taken up by wedge ice and massive ice reduced overall
SOC values by a mean of 19%, and sediment values by 16%. However, in terrain units with a high proportion
of ground ice, reductions were as high as 43% for SOC and 46% for sediment. This underscores the impor-
tance of properly identifying and quantifying massive ice bodies in permafrost to accurately quantify carbon
stocks and fluxes. Table 1 shows the specific reductions for each of the terrain units that contained wedge ice
or massive ice.

4.2. Organic Carbon Contents

At the site level, TOC contents by percent weight generally decreased with depth. The mean for individual
samples was 8.9% by weight, with a minimum of 0.5% and a maximum of 49.4%. When averaged over the
entire soil column, the mean of all terrain units was 4.5 ± 3.6%, with a range of 1.2–15.6%. The lowest values
were seen in high bluffs with a significant mineral content (i.e., Herschel Island N, Herschel Island W) and the
highest values were seen in low bluffs with a thick organic cover (i.e., Komakuk Beach). Once bulk densities
(accounting for segregated ice) and corrections for wedge ice and massive ice were applied, the SOC and
sediment contents and fluxes for all units were calculated. These are shown in Table 2. Across all units, the
mean SOC content in a 1 m2 soil column was 183 kg. Values ranged from 30 to 662 kg C/m2 and generally
increased with bluff height (Figure 3), as the volume under consideration increased. Within the top 1 m,
the mean value was 41 ± 14 kg C/m3. Mean values varied based on surficial materials and were highest in
fluvial deposits (53 ± 15 kg C/m3), followed by lacustrine (47 ± 13 kg C/m3), glaciofluvial (44 ± 17 kg C/m3),
morainal (40 ± 13 kg C/m3), and finally marine (30 ± 3 kg C/m3). Analysis of variance (ANOVA) showed signif-
icant differences based on material type, but further testing (Tukey-Kramer HSD) revealed that only the
marine unit showed a significant difference from the fluvial and the lacustrine groups (Figure 4). On average,
the top meter contained 43.8 ± 33.0% of the organic carbon in the entire soil column.

4.3. Material Fluxes

The mean annual rate of shoreline change for the 282 km long Yukon Coastal Plain was �0.7 m/yr. Forty of
the terrain units (comprising 80% of the shoreline) were undergoing erosion, two were accreting (6%), and
two were stable (13%). Although fluxes from individual terrain units are provided in Table 2, it is the flux
per meter of shoreline that is important for comparison between different parts of the coast, and between
the Yukon coast and other regions in the circum-Arctic. The mean flux of SOC was 132 kg C/m/yr, with a max-
imum of 549 kg C/m/yr (Table 2, Figure 5). This resulted in a total flux of organic carbon from the Yukon coast
of 35.5 × 106 kg/yr (0.036 Tg/yr). Themean flux of sediment per meter of shoreline was 5.3 × 103 kg/m/yr, with
a maximum value of 38.6 × 103 kg/m/yr, resulting in a total flux of sediment of 1,832 × 106 kg/yr (1.832 Tg/yr).
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4.4. Organic Carbon in Nearshore Sediments

Analysis of 50 onshore samples taken from different terrain units gave a mean δ13Corg value of
�27.12 ± 0.77‰. This was the value used as the terrigenous end-member in the mixing model to determine
the percentage of terrigenous organic carbon in the nearshore sediments. Samples of nearshore sediments
were taken up to 500 m from shore and at water depths ranging from 0.9 to 14.5 m. Twenty-two of the near-
shore samples were analyzed for δ13Corg ‰. Table 3 shows the results from isotopic analyses and from the
mixing model. Three of the 22 samples should be viewed with caution because they showed very little
decomposition visually and appeared to consist almost entirely of terrestrial organic matter, a fact corrobo-
rated by their low δ13C values and simultaneously high C/N ratios (Figure 6); these were omitted from further
calculations. Values of δ13C for the nearshore samples ranged from �27.00 to �26.10‰ and C/N ratios ran-
ged from 11.3 to 25.9. Based on results from the isotopic mixing model, the organic carbon in the nearshore
sediments was overwhelmingly terrestrial, with a mean terrigenous organic carbon content of 91.3% and a
marine content of 8.7%.

Table 1
Reduction in Values of Soil Organic Carbon and Sediment Due To the Presence of Wedge Ice and Bodies of Massive Ground Ice

Soil organic carbon (SOC) Mineral sediment

Terrain
unit

Surficial
geologya

Before
correction (kg/m2)

After
correction (kg/m2)

Reduction
(%)

Before
correction (kg/m2)

After
correction (kg/m2)

Reduction
(%)

Running River F 578 560 3 24,559 24,218 1
Shingle Point E Mm 249 212 15 16,342 15,169 7
Shingle Point W Mm 443 252 43 25,008 21,158 15
Sabine Point E L 514 321 38 6,996 5,566 20
Sabine Point Mm 807 662 18 21,819 12,724 42
Sabine Point W L 596 566 5 8,544 8,247 3
King Point SE L 169 111 35 12,680 6,823 46
King Point L 308 236 24 2,644 2,023 23
King Point NW Mm 424 366 14 41,411 34,787 16
Kay Point SE Mr 467 402 14 28,673 26,109 9
Kay Point G 275 216 21 8,890 7,905 11
Phillips Bay L 141 125 11 2,837 2,699 5
Phillips Bay NW Mm 316 245 22 17,848 13,748 23
Stokes Point SE L 195 161 17 6,539 6,352 3
Stokes Point W Mm 301 240 20 15,343 12,165 21
Roland Bay E L 221 210 5 10,267 9,825 4
Roland Bay W Mm 203 150 26 9,123 6,541 28
Roland Bay NW L 152 124 18 1,749 1,486 15
Whale Cove E Mm 130 96 26 7,579 5,486 28
Whale Cove W G 53 45 15 725 626 14
Workboat Passage E G 68 50 26 1,142 861 25
Workboat Passage W Mm 191 147 23 2,831 2,188 23
Herschel Island S Mr 157 138 12 13,940 12,392 11
Herschel Island E Mr 486 312 36 25,594 17,422 32
Herschel Island N Mr 401 336 16 36,894 32,206 13
Herschel Island W Mr 553 444 20 33,830 26,595 21
Malcolm River fan F 71 67 6 2,058 1,829 11
Komakuk Beach L 187 176 6 3,397 3,279 3
Komakuk W1 L 197 140 29 3,940 3,332 15
Komakuk W2 L 233 207 11 6,048 5,601 7
Clarence Lagoon E F 78 73 5 2,421 2,189 10
Clarence Lagoon W L 240 138 43 6,034 5,297 12
Mean 294 235 19 12,741 10,526 16
Minimum 53 45 3 725 626 1
Maximum 807 662 43 41,411 34,787 46

Note. Corrections are needed because volumes of wedge ice and massive ice were determined for the overall terrain unit, so were not accounted for within indi-
vidual samples. The volume of each ice type was calculated for every sampled layer of soil and a correction applied to the measured values of SOC and sediment
(see supporting information, Table S1). The results shown here are the summed values for all layers within a 1 m2 soil column.
aAbbreviations for surficial geology: F = fluvial; Mm = rolling moraine; L = lacustrine; Mr = ice-thrust moraine; G = glaciofluvial.
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5. Discussion
5.1. Ground Ice

As was seen from the reduction of SOC and sediment values in Table 1, failing to account
for ground ice can result in significant overestimates of the total amount of material con-
tained within a terrain unit and of its annual flux. Although wedge ice has been shown to
account for 4% of frozen materials along the Yukon Coastal Plain (Couture & Pollard, 2017),
it comprised 16% of the upper 7 m of soil. It is therefore not just the overall volume of
ground ice that is important, but the stratigraphic relationship between wedge ice and
organic carbon, in particular, since they both vary with depth (Couture & Pollard, 2017;
Ulrich et al., 2014). In addition, several studies have noted the relationship between ground
ice volumes and surficial deposits, with ground ice generally higher in fine-grained materi-
als with higher SOC contents (e.g., Couture & Pollard, 2017; Kanevskiy et al., 2013;
Rampton, 1982). Some studies, while acknowledging the importance of ground ice, do
not include it in their calculations of material fluxes (i.e., Harper & Penland, 1982; Hill
et al., 1991). Others considered ground ice volumes in varying degrees of detail. Our values
for wedge ice are approximately twice those of Jorgenson and Brown (2005) who used a
slightly cruder ice wedge geometry in their calculations of SOC contents for the Alaska
Beaufort Sea coast. Brown et al. (2003) used a mean value of 50% for all ground ice types
in the same region. In their analysis of TOC fluxes along the Alaskan Beaufort coast, Ping
et al. (2011) used ice contents reported by Kanevskiy et al. (2013), who found a total aver-
age volumetric ice content of 77% (for wedge, segregated, and pore ice), with wedge ice
ranging from 3 to 50% (mean 11%) within the top 3–4 m of various terrain types. Rachold
et al. (2000) used different values for different coastal types along the Laptev Sea; some
were simple means, while other were based on the various types of ground ice.
Dallimore et al., (1996) provided an in-depth evaluation of all types of ice in their calcula-
tions of sediments fluxes from northern Richards Island in the Mackenzie Delta. In some
cases, the importance of a detailed investigation depends on the geomorphology of the
coast. For instance, Brown et al.’s (2003) use of a mean ground ice value of 50% did not
have a significant impact on potential stratigraphic differences because the mean elevation
of bluffs they considered was only 2.5 m, so changes in ice content or in SOC content with
depth were not as important. Considering the varied elevations along the Yukon coast and
the wide range of ground ice volumes with depth, our detailed stratigraphic approach
is warranted.

5.2. Organic Carbon Contents

Given the sparseness of data on SOC for the Yukon Coastal Plain, this study contributes to a
more thorough estimate of C stores in a region where carbon cycling is likely to increase
with accelerating coastal erosion (Irrgang et al., 2017; Obu, Lantuit, Fritz, Pollard, et al.,
2016; Radosavljevic et al., 2016). In addition to nearly tripling the number of pedons for
which data are available, the results provide important information about deeper stores of
organic carbon. The overall mean SOC value reported here (183 kg C/m2) is approximately
3 to 6 times higher than many previous estimates of TOC primarily because this study exam-
ines the entire soil column, whereas previous ones focused on the upper portions. Our
values are closer to those reported by Jorgenson et al. (2003) in coastal banks up to 3.3 m
high in northeastern Alaska (54 to 136 kg C/m2) or by Hugelius et al. (2014) who looked
at depths up to 3 m and found organic carbon contents of 150 kg C/m2 in the Arctic coastal
lowlands. Dou et al. (2010), however, noted the spatial variability of SOC contents along the
Alaskan Beaufort coast, reporting a range of 2.6 to 187 kg C/m2 (mean 41.7 kg C/m2), with
lower values in the east near the Canadian border. When comparing the top 1 m of soil only,
our mean value of 41 kg C/m3 is consistent with values found by Jorgenson and Brown
(2005) for the entire Alaskan coast (30 to 79 kg C/m3). Bockheim et al. (1999) reported values
of (50 kg C/m3) for the area around Barrow in northwestern Alaska coast. As they noted, this
is less than other inland Arctic sites (62 kg C/m3 reported in Michaelson et al., 1996, andTa
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65 kg C/m3 in Bockheim et al., 1998), which might be due to higher
ground ice contents in the coastal regions. Our results emphasize
how important it is to include deeper carbon in calculations since
only 44% of the SOC in our study was stored in the upper 1 m, with
56% of it at greater depths. Bockheim and Hinkel (2007) found 64%
of SOC within the upper 1 m and 36% in the 1–2 m depth range.
Tarnocai et al. (2009) calculated 48% for the upper 1 m, and 52%
between 1 and 3 m; when they included even deeper deposits,
the ratio became 30% SOC above 1 m to 70% below. A number of
different processes have contributed to the presence of organic
carbon at depth in the sediments of the Yukon Coastal Plain includ-
ing cryoturbation, alluvial deposition, ice thrusting, accumulation in
lacustrine basins, and possibly burial by eolian deposition
(Rampton, 1982). Coastal erosion involves the mobilization of all

the carbon in the soil column relative to the sea level, so it is essential to consider deep SOC in flux calcu-
lations. In more inland regions, processes that affect carbon cycling (such as the thaw of the upper part of
permafrost), are more likely to involve near-surface SOC only, so the consideration of carbon at greater
depths may not be as critical. Several of the assumptions made in this study are conservative, particularly
with regards to the 25% organic carbon content in the surface horizon and in extrapolating the values of
0.792% to the base of soil columns. In addition, the amount of carbon in some ice-thrust morainal units
was likely underestimated since a minimum SOC value was used for most of the volume of the bluff,
but glaciotectonic and thaw slump activity likely resulted in an interlayering of carbon-rich and carbon-
poor layers.

5.3. Material Fluxes

The results presented here indicate fluxes of SOC (0.036 Tg/yr) and sediment (1.832 Tg/yr) from the
282 km of the Yukon Coastal Plain shoreline. The sediment flux is 17% more than the value given by ear-

lier studies by Harper and Penland (1982) for the Yukon (and later used
by Hill et al., 1991). Those authors noted that their sediment flux was a
first approximation only and was likely a maximum value since they
were not accounting for ground ice volumes. The discrepancy with
our results is partly due to the fact that their study considered less of
the shoreline to be erosive (150 km versus the approximately 225 km
considered here) and partly due to probable differences in bluff height
estimation. The only other study of SOC flux for the region was based
on the entire shoreline of the Canadian Beaufort Sea (Macdonald
et al., 1998) and provided a range of potential fluxes. Using data from
Yunker et al. (1991), Macdonald et al. estimated annual flux to be 0.06
Tg/yr. Their value for the Yukon coast would be 0.015 Tg/yr, which is
less than half of the flux found in this study. Again, they considered a
shorter length of shoreline and only looked at eroding peat, not other
sediment contained in the coastal bluffs. Their maximum estimate for
SOC flux was 0.3 Tg/yr, based on data from Hill et al. (1991) and a pre-
sumed SOC content for all coastal sediments of 5% by weight. The
value for the Yukon portion of the coast would be 0.12 Tg/yr, which
is 3.5 times our result. As seen above, however, eroded volumes did
not account for ground ice and so are likely too high. It is interesting
to note that even though SOC values for our terrain units ranged from
1.2% to 15.6%, the value assumed by Macdonald et al. (1998) is very
similar to our mean of 4.5% for all units. If our results from the Yukon
Coastal Plain are applied to the other areas of peat erosion examined
by Macdonald et al. (1998), the mean flux of SOC to the Canadian
Beaufort Sea would be 0.17 Tg/yr, which is almost 3 times the value
used to date in Arctic Ocean budgets (Rachold et al., 2004). This is

Figure 3. Correlation between bluff height and the mass of soil organic carbon
(MC) in a 1 m2 column.

Figure 4. Soil organic carbon density in the top 1 m for terrain units with dif-
ferent surficial geologies. The line in the middle of boxes represents the
median, with lower and upper parts of the box representing 25% and 75% of
the distribution, while the lower and upper whiskers represent the minimum
and maximum of the distribution. Materials not sharing the same letter
above the box plots are significantly different from each other based on the
Tukey–Kramer HSD comparison of means (p < 0.05).
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approximately 10% of the particulate organic carbon input by the Mackenzie River each year (Hilton
et al., 2015; Macdonald et al., 1998), which has the largest carbon input of any Arctic river (Rachold
et al., 2004).

The flux of SOC per meter of shoreline found in this study (132 kg C/m) is intermediate to the results of
studies for other Arctic Seas. Along the Alaskan Beaufort coast, estimates of the mean annual flux range
from 73 kg C/m (Ping et al., 2011) to 149 kg C/m (Jorgenson & Brown, 2005), while results from
Streletskaya et al. (2009) for the Kara Sea indicate a flux of 154 kg C/m. Rachold et al. (2004) found a
mean of 263 kg C/m for different coastal types along the Laptev Sea and 375 kg C/m for the East
Siberian Sea. Sediment fluxes show similar trends for the different seas. The lower values for the
Alaskan Beaufort and Kara Seas appear to be the result of lower bluffs and lower SOC contents, respec-
tively. The higher fluxes from the Laptev and East Siberian Seas are chiefly the result of higher erosion
rates (Vonk et al., 2012).

Finally, it should be noted that the calculations in this study only involved subaerial erosion, although, over
time, a significant amount of material can be eroded below the waterline (Are, 1988; Reimnitz et al., 1988;
Vonk et al., 2012). This is primarily due to the paucity of data available for the nearshore along the Yukon
Coastal Plain.

5.4. Organic Carbon in Nearshore Sediments

Our results for carbon in nearshore sediments (91.3% terrigenous and 8.7% marine) are similar to those
of Vonk et al. (2012) who found that marine organic carbon constituted 7% of nearshore shelf sedi-
ments in the East Siberian Sea. The influence of the value for the marine end-member in the mixing
model can be seen by examining some of the values invoked in the literature. If we had chosen a

Figure 5. Annual flux of soil organic carbon per meter of coastline. Details on terrain unit characteristics are listed in Table 2.
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heavier value of �17.5‰ proposed by Belicka and Harvey (2009),
the proportion of terrigenous carbon would have been 94%. Using
the lighter value (�24.0‰) for the marine end-member suggested
by Naidu et al. (2000) would have resulted in a mean terrigenous
OC value of 82%. Belicka and Harvey (2009) compared several dif-
ferent methods of estimating terrestrial organic carbon, including
the isotopic mixing model. Although each of the four proxy meth-
ods they examined produced different results, the mixing model,
despite its sensitivity to the marine end-member, produced inter-
mediate results. Because of the variability of the marine end-
member, C/N ratios were used here to help in assessing the
source of organic carbon in nearshore sediments. Figure 6 shows
a plot of these two parameters for the nearshore samples.
Although most samples were heavier than the terrigenous end-
member, indicating a marine influence, the high C/N ratios helped
to confirm the strong contribution of terrigenous carbon to these
samples. Previous studies of organic carbon in the Beaufort Sea
showed a progressive decrease in the terrigenous component as
distance from shore increases (Macdonald et al., 2004; Naidu
et al., 2000). No obvious trend was seen in our data set when com-
paring terrigenous carbon contents with distance from shore, likely
due to the fact that the maximum distance from shore was limited
to 500 m. However, it is interesting to note that the two samples
with the highest marine content (open circles in Figure 6) were
taken north of Herschel Island; although this area had one of the
highest fluxes of C per meter of shoreline, it is farthest from the
mainland, and therefore most likely to be subject to marine
influences. Several studies show an overall shift toward heavier
δ13C values from east to west in the Beaufort Sea due to decreased
influence of the Mackenzie River and to the greater importance of

marine productivity in the more nutrient-rich waters in the west (Dunton et al., 2006; Naidu et al.,
2000). Our data are consistent with that trend and are intermediate between values measured on the
Mackenzie Shelf to the east and the Alaskan shelf to the west (Goñi et al., 2000; Macdonald et al.,
2004; Naidu et al., 2000).

Knowing how much of the OC in the nearshore sediments is of terrestrial
origin provides an indication of how much of the annual flux is being
sequestered in those sediments and how much may be remineralized or
exported off-shelf. Following Macdonald et al. (1998), we estimated OC
burial based on sedimentation rate and the proportion of OC in marine
sediments. Sedimentation rates for the area adjacent to the Mackenzie
Delta are relatively well known, but there is very little information for the
shelf area to the west. Based on data from Harper and Penland (1982),
rates range from 2 mm/yr near the delta to less than 0.1 mm/yr in more
distal areas. If we use the lower value of sedimentation and assume a solid
density of 2.6 g/cm3 and a porosity of 60% for the marine sediments, then
the annual flux of material to the seafloor for the entire shelf off the Yukon
coast (which covers an area of 3,100 km2 according to Macdonald et al.,
1998) would be 0.32 Tg/yr. Of this, 1.5% was OC based on our measure-
ments, 91.7% of which was of terrestrial origin. Therefore, 0.004 Tg or
12.2% of the OC eroded from the coastal sediments is sequestered in
the nearshore sediments. This estimation requires validation based on
extensive 210Pb/137Cs dating of sediment cores from the shelf, comparable
to the approach used by Vonk et al. (2012). The OC not sequestered in the

Table 3
Properties of Nearshore Sediment Samples

Sample

Distance
from
shore
(m)

Water
depth
(m) TOC (%)

C/N
ratio

δ13Corg
(‰ VPDB)

Terrigenous
OC (%)

01–06 500 10.6 0.630 20.3 �26.86 95.9
03–06 100 3.7 0.979 11.9 �26.10 84.0
05–06 30 1.9 1.013 11.3 �26.21 85.7
06–06 500 14.5 0.829 18.0 �26.44 89.4
13–06 110 2.3 1.384 16.2 �26.91 96.7
15–06 500 2.7 1.375 20.1 �26.59 91.7
20–06 500 7.6 1.175 15.3 �27.00 98.1
27–06 250 1.2 1.014a 18.6a �27.07a 99.2a

29–06 50 3.0 0.661a 16.3a �27.19a >100a

30–06 30 2.0 15.317a 45.1a �27.86a >100a

33–06 500 5.0 0.275 12.2 �26.69 93.2
38–06 30 3.8 0.861 13.4 �26.99 98.0
42–06 500 9.6 7.877 25.9 �26.72 93.7
45–06 250 5.2 1.142 14.0 �26.44 89.4
46–06 500 8.0 1.074 11.5 �26.52 90.5
47–06 30 2.3 1.853 13.5 �26.67 93.0
49–06 100 2.3 1.809 13.4 �26.37 88.3
51–06 500 2.5 1.944 13.1 �26.49 90.1
55–06 120 2.9 2.218 14.5 �26.58 91.4
57–06 500 2.7 1.435 15.0 �26.58 91.5
58–06 30 0.9 1.269 14.0 �26.31 87.3
62–06 500 6.7 0.801 12.4 �26.22 85.8
Mean 1.6 15.1 �26.6 91.3
Minimum 0.9 0.3 11.3 �27.0 84.0
Maximum 14.5 7.9 25.9 �26.1 98.1

aSamples omitted from calculation of means, maxima, and minima because of
unusually high terrigenous content.

Figure 6. A plot displaying the relationship between C/N ratios and δ13Corg
for seabed samples from the nearshore zone along the Yukon Coastal Plain.
Open triangles represent three samples that showed very little decomposi-
tion and consist almost entirely of terrestrial organic matter. The dashed
circle shows where a typical terrigenous end-member would be found, while
the arrow indicates increasing marine organic matter content. The open
circles represent samples with the highest marine content, taken north of
Herschel Island.
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nearshore is mineralized or transported off the shelf (de Haas et al., 2002; Hedges et al., 1997). There is
strong support that terrigenous OC is involved in both processes. For instance, a considerable amount of
terrigenous material has been found in sediment traps at the shelf edge (O’Brien et al., 2006) and beyond
(Belicka et al., 2002, 2009; Stein & Macdonald, 2004), and Dunton et al. (2006) demonstrate that terrigenous
OC may constitute up to 70% of the dietary requirements of species in the nearshore along the Alaskan
Beaufort Sea.

6. Conclusions

This study provides the first in-depth estimate of SOC content in sediments along the Yukon coast of the
Canadian Beaufort Sea, specifically accounting for the volumes taken up by ground ice in those calculations.
SOC was shown to constitute a large proportion of coastal bluffs. It accounted for between 0.5 and 49% by
weight of the sediments sampled. This resulted in a mean carbon density of 41 kg C/m3 in the top 1 m of soil.
Mean values were similar among most terrain units (40–53 kg C/m3), with the exception of marine deposits
(30 kg C/m3) having significantly lower values. Across all sites, the top 1 m of soil held 43.8% of total SOC in
the soil column, although values ranged more than tenfold across sites due in large part to the large range in
bluff heights. In coastal flux studies, the entire soil columnmust therefore be considered, since failing to do so
can result in underestimating carbon transfer bymore than half. Terrain units with the lowest overall values of
SOC were high bluffs with a high mineral content, while those with the highest SOC values were low bluffs
with a thick organic cover. Wedge ice andmassive ground ice constituted a significant portion of coastal sedi-
ments, with wedge ice accounting for up to 53% of the volume in some cases in the upper, carbon-rich soil
layers. The variation of ground ice with depth was less important in low bluffs. If ground ice is not taken into
consideration, flux measurements can be overestimated by 19% for SOC and 16% for sediment. The annual
flux of organic carbon from coastal erosion along the 282 km of the Yukon Coastal Plain was 0.036 Tg.
Extrapolating these results to the area east of the Mackenzie Delta would result in a total coastal flux of
organic carbon from the Canadian Beaufort Sea coast of 0.18 Tg/yr. This is almost 3 times more than the
values used to date in organic carbon budget calculations (Macdonald et al., 1998; Rachold et al., 2004).
The sediment flux for the Yukon section of the Beaufort Sea coast was 1.832 Tg/yr, which is 19% higher than
previous estimates due to differences in the length of shoreline considered and probable differences in cliff
height estimates. First estimations indicate that up to 12.7% of the organic carbon contributed to the near-
shore by coastal erosion is sequestered in the shelf sediments. The rest is either metabolized in the nearshore
or exported off the shelf by waves or ice action.
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