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Abstract: Blue single crystals of Cu[µ3-O3P(CH2)2COOH]2H2O (1) and Cu[(RS)-µ3-

O3PCH(C2H5)COOH]3H2O (2) have been prepared in aqueous Cu
2+

-solutions (pH = 2.5–3.5) containing 3-

phosphonopropionic acid (1) and (RS)-2-phosphonobutyric acid (2), respectively. 1: Space group Pbca (no. 61) 

with a = 812.5(2), b = 919.00(9), c = 2102.3(2) pm. Cu
2+

 is five-fold coordinated by three oxygen atoms 

stemming from [O3P(CH2)2COOH]
2–

 anions and two water molecules. The CuO bond lengths range from 

194.0(3) to 231.8(4) pm. The connection between the [O3P(CH2)2COOH]
2–

 anions and the Cu
2+

 cations yields a 

polymeric structure with layers parallel to (001). The layers are linked by hydrogen bonds. 2: Space group Pbca 

(no. 61) with a = 1007.17(14), b = 961.2(3), c = 2180.9(4) pm. The copper cations are surrounded by five 

oxygen atoms in a square pyramidal fashion with CuO bonds between 193.6(4) and 236.9(4) pm. The 

coordination between [O3PCH(C2H5)COOH]
2

 and Cu
2+

 results in infinite puckered layers parallel to (001). The 

layers are not connected by any hydrogen bonds. Each layer contains both R and S isomers of the 

[O3PCH(C2H5)COOH]
2

 dianion. Water molecules not bound to Cu
2+

 are intercalated between the layers. 

UV/Vis spectra suggest three dd transition bands at 743, 892, 1016 nm for 1 and four bands at 741, 838, 957 

and 1151 nm for 2, respectively. Magnetic measurements suggest a weak antiferromagnetic coupling between 

Cu
2+

 due to a super-superexchange interaction. Thermoanalytical investigations in air show that the compounds 

are stable up to 95 °C (1) and 65 °C (2), respectively. 
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Abstract: Blue single crystals of Cu[µ3-O3P(CH2)2COOH]2H2O (1) 

and Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O (2) have been prepared 

in aqueous Cu
2+

-solutions (pH = 2.5–3.5) containing 3-

phosphonopropionic acid (1) and (RS)-2-phosphonobutyric acid (2), 

respectively. 1: Space group Pbca (no. 61) with a = 812.5(2), b = 

919.00(9), c = 2102.3(2) pm. Cu
2+

 is five-fold coordinated by three 

oxygen atoms stemming from [O3P(CH2)2COOH]
2–

 anions and two 

water molecules. The CuO bond lengths range from 194.0(3) to 

231.8(4) pm. The connection between the [O3P(CH2)2COOH]
2–

 

anions and the Cu
2+

 cations yields a polymeric structure with layers 

parallel to (001). The layers are linked by hydrogen bonds. 2: Space 

group Pbca (no. 61) with a = 1007.17(14), b = 961.2(3), c = 

2180.9(4) pm. The copper cations are surrounded by five oxygen 

atoms in a square pyramidal fashion with CuO bonds between 

193.6(4) and 236.9(4) pm. The coordination between 

[O3PCH(C2H5)COOH]
2 and Cu

2+
 results in infinite puckered layers 

parallel to (001). The layers are not connected by any hydrogen 

bonds. Each layer contains both R and S isomers of the 

[O3PCH(C2H5)COOH]
2 dianion. Water molecules not bound to Cu

2+
 

are intercalated between the layers. UV/Vis spectra suggest three 

dd transition bands at 743, 892, 1016 nm for 1 and four bands at 

741, 838, 957 and 1151 nm for 2, respectively. Magnetic 

measurements suggest a weak antiferromagnetic coupling between 

Cu
2+

 due to a super-superexchange interaction. Thermoanalytical 

investigations in air show that the compounds are stable up to 95 °C 

(1) and 65 °C (2), respectively. 

Introduction 

Metal organophosphonate complexes are of great interest due 

to their potential application e.g. as gas sensor[1], catalyst[2,3], 

and ion exchanger[ 4 ]. Zinc 5-phosphonobenzene-1,3-

dicarboxylate acts as catalyst in Friedel-Crafts benzylation 

reactions and a selective CO2 uptake was observed for cobalt 

uranyl phosphonoacetate and indium 4’-phosphonobiphenyl-3,5-

dicarboxlyate.[58] Ion exchange properties were found for e.g. 

titanium-, chromium-, and aluminum 3-phosphono- 

hydrogenpropionate and zirconium diphosphonate-phosphate 

hybrids, whereas cobalt 1-(methylenephosphono)-pyrrolidine-2-

carboxylate can be used as catalyst for water oxidation.[9 -12] The 

coordination between bifunctional phosphonocarboxylates and 

metal cations leads to various structural motives.[ 13  18 ] In 

complex compounds the anion of e.g. phosphonopropionic acid 

appears in its monoanionic, dianionic, and trianionic form 

depending on synthesis conditions. Three-dimensional open 

frameworks are reported for the connection between 3-

phosphonopropionate anions and e.g. divalent Co, Cu, Zn, Pb, 

and Sn cations.[13,1822 ] Coordination to Ti4+, Al3+, Cr3+, Cd2+, 

Mn2+/3+ and Fe2+ leads to layer-like structures.[9,10,17,23,24] Using 

additional N-donor ligands, chain-like coordination polymers are 

available.[2527] 

To our best knowledge, up to date crystal structures of metal 

complexes containing the anions of 2-phosphonobutyric acid 

have not been reported yet. 

Herein, we report on the crystal structures and properties of two 

layer-like copper(II) coordination polymers with the dianion of 3-

phosphonopropionic acid (Cu[µ3-O3P(CH2)2COOH]2H2O) and 2-

phosphonobutyric acid (Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O), 

respectively. Due to their COOH groups, these compounds may 

act as cation exchangers. 

Results and Discussion 

Cu[µ3-O3P(CH2)2COOH]2H2O (1) 

 

In Cu[µ3-O3P(CH2)2COOH]2H2O (1) the Cu2+ cations occupy the 

general position of space group Pbca. The copper cations are 

coordinated by five oxygen atoms in a slightly distorted square 

pyramidal fashion (Figure 1). Three phosphonate oxygen atoms 

[O(3), O(4) O(5)], from three crystallographically equivalent 

[O3P(CH2)2COOH]2 dianions and the water molecule O(w2) 

form the equatorial plane. The CuO distances range from 

194.0(3) to 200.2(3) pm (Table 1). The best least-square-plane 

through Cu, O(3), O(4), O(5), and O(w2) reveals only a slight 

deviation from planarity with an average and maximum deviation 

of 4.2 and 8.6 pm, respectively. The apical position is occupied 

by the water molecule O(w1) with a bond length of 231.8(4) pm. 

The bond angles within the polyhedron differ marginally from the 
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ideal values. According to Hathaway[ 28 ,29 ] and Pasquarello et 

al.[30] CuO distances up to 300 pm (sum of van der Waals radii) 

should be considered to be bonds. Considering such distances, 

a further phosphonate oxygen atom O(5’)#2 in the apical position 

with a fairly large CuO distance of 295.5(3) pm can be 

identified (see Figure 1, thin dashed line). However, the resulting 

polyhedron (cn: 4+1+1) in this case would be a very strongly 

distorted octahedron. The angle between the apical positions 

[O(w1)CuO(5’)#2] is only 144.9(1)° and the angles between 

O(5’)#2 and the equatorial positions range from 56.6(1)° to 

117.8(1)°. Because of the large distance and the enormous 

deviations from the ideal octahedral angles, the interaction 

between the dz
2 orbital from Cu2+ and orbitals from the oxygen 

ligand O(5’)#2 can be neglected. Therefore, the coordination 

environment of Cu2+ is here more reasonably described as a 

square pyramid with an approximately C2v point group symmetry. 

Employing the method of Brese and O’Keeffe[31] the bond order 

with cn 5 is calculated to 2.04.  

 

Figure 1. The square pyramidal coordination (thick black bonds) of Cu
2+

 in 

Cu[µ3-O3P(CH2)2COOH]2H2O (1). The index (‘) indicates the longest CuO 

distance. Symmetry code #2: x-0.5; -y+1.5; -z+1. 

 

Table 1. The coordination of Cu
2+

 in Cu[µ3-O3P(CH2)2COOH]2H2O (1) 

Distances (pm) 

CuO(3) 194.7(3)  CuO(w2) 200.2(3) 

CuO(4) 196.1(3)  CuO(w1) 231.8(4) 

CuO(5)
 

194.0(3)    

 
  CuCu

#4 
459.5(1) 

Bond angles (°) 

O(3)CuO(4) 90.8(2)  O(4)CuO(w2) 178.9(2) 

O(5)CuO(4) 91.08(14)  O(4)CuO(w1) 95.8(2) 

O(3)CuO(w2) 89.4(2)  O(5)CuO(w1)
 

93.4(2) 

O(5)CuO(w2) 88.64(14)  O(3)CuO(w1) 91.72(13) 

O(5)CuO(3) 174.31(14)  O(w2)CuO(w1) 85.3(2) 

Symmetry code: #4: 0.5-x; -0.5+y; z 

 

The phosphonate group in the dianion of the 3-

phosphonopropionic acid [O3P(CH2)2COOH]2 is completely 

deprotonated. The phosphorus atom is surrounded in a distorted 

tetrahedral fashion by three oxygen atoms and one carbon atom 

(Figure 2a). The PO bond lengths are between 151.9(3) and 

153.4(3) pm, whereas the PC bond is 180.3(5) pm (Table 2). 

The bonds within the COOH group show typical values for single 

and double bonded oxygen atoms.[32] The CO bond length to 

the carbonyl oxygen atom is 121.0(7) pm [C(3)O(2)] and to the 

hydroxyl oxygen atom is 131.3(7) pm [C(3)O(1)]. The carboxyl 

group is twisted against the carbon skeleton C(1)C(2)C(3) by 

21.8(5)°. As seen in Figure 2b the [O3P(CH2)2COOH]2 dianion 

shows an antiperiplanar (ap) conformation. Each dianion 

coordinates only with the phosphonate group to the three Cu2+ 

cations in a monodentate manner and adopts a µ3-1:1:1 

coordination mode. The carboxyl group is not involved in any 

CuO bonds in contrast to other copper 3-phosphonopropionate 

coordination polymers.[20,25,33,34] 

 
 

Figure 2. (a) The connection between the dianion of the 3-

phosphonopropionic acid and the Cu
2+

 cations in Cu[µ3-O3P(CH2)2COOH] 
2H2O (1). (b) Newman projection of the [O3P(CH2)2COOH]

2 dianion along 

C(1)C(2). 

 

 



    

 
 
 
 
 

Table 2. Bond lengths and angles of the [O3P(CH2)2COOH]
2 anion in Cu[µ3-

O3P(CH2)2COOH]2H2O (1) 

Distances (pm) 

PO(3) 153.4(3)  C(3)O(1) 131.3(7) 

PO(4) 151.9(3)  C(3)O(2) 121.0(7) 

PO(5)
 

152.5(3)  C(1)C(2) 152.5(7) 

PC(1)
 

180.3(5)  C(2)C(3) 149.4(7) 

 
  O(1)H(5) 86(8) 

Bond angles (°) 

O(4)PO(5) 114.0(2)  O(3)PC(1) 107.1(2) 

O(5)PO(3) 108.8(2)  O(2)C(3)C(2) 125.3(6) 

O(4)PO(3) 112.3(2)  O(1)C(3)C(2) 111.1(5) 

O(5)PC(1) 108.3(2)  O(2)C(3)O(1) 123.6(5) 

O(4)PC(1) 106.1(2)  C(2)C(1)P 112.7(4) 

O(3)PC(1) 107.1(2)  C(3)C(2)C(1) 114.5(5) 

   C(3)O(1)H(5) 102(5) 

CH: 97 pm 

 

The copper centered polyhedra and the [O3PC] tetrahedra are 

alternately connected by common corners through O(3), O(4) 

and O(5) yielding four- and eight-membered polyhedra rings 

(dashed lines in Figure 3) to form infinite centrosymmetric layers, 

which are stacked in …ABAB… sequence along the [001] 

direction (Figure 4). There is no direct connection between 

neighbouring Cu2+ square pyramids. The shortest distance 

between adjacent polyhedra layers is 426 pm (without van-der-

Waals radii taken into account). As seen in Figure 5 the 

propionic acid groups extend into the interlayer space along the 

c-axis direction.  

Due to the COOH group, Cu[µ3-O3P(CH2)2COOH]2H2O (1) can 

be regarded as the protonated form of a cation exchanger with a 

layer-like structure. The theoretical exchange capacity is 4.0 

mval g1 and the calculated surface charge density of the 

deprotonated layers is 0.054104 epm2 (18.7104 pm2 per unit 

charge), which is close to the values found in layered silicates 

like Muscovite and Zinnwaldite.[35] 

 

Figure 3. View on a selected layer in the (001) plane formed through the 

connection between the Cu
2+

 centered polyhedra and the [O3PC] tetrahedra in 

1. Hydrogen atoms from water molecules and CH2 groups are omitted for 

clarity. The black dashed lines illustrate the four- and eight-membered rings 

formed by the copper and phosphorus centered polyhedra. 

 

Figure 4. Stacking of the polyhedra layers along [001] in 1. The inset shows 

the space-filling model. 

The layers are only linked by strong and medium strength 

hydrogen bonds (Table 3). Here, the hydroxo group O(1)H(5) 

from the carboxyl group acts as proton donator to the water 

molecule O(w1), whereas the carboxyl oxygen atom O(2) is the 

acceptor atom to O(w2) of the neighbouring layer (Figure 5). 



    

 
 
 
 
 

Within the same layer the water molecules O(w1) and O(w2) are 

involved in weak to strong hydrogen bonds to the phosphonate 

oxygen atoms O(3), O(4), and O(5). A weak hydrogen bond is 

formed between the two water molecules.  

Similar, but not identical, layered structures have been reported 

for M(OH) [O3P(CH2)2COOH]H2O (M = Fe3+, Ga3+, Mn3+) and 

Mn[O3P(CH2)2COOH]H2O in which the metal coordination 

polyhedra are directly connected by common corners and in the 

latter compound the phosphonate groups act as chelate 

ligands.[24,36,37]  

Britel et al.[20] reported on a three-dimensional copper 3-

phosphonopropionate in which each anion is coordinated to six 

Cu2+ via both the phosphonate and the carboxylate group. 

 

Figure 5. Complete crystal structure of 1 viewed from [010]. The interlayer 

hydrogen bonds are drawn by thin red lines. 

 

 

 
Table 3. Hydrogen bonds in 1 

 OO Distance (pm) O-HO Angle (°) 

O(1)H(5)O(w1)
[a] 

262.6(6) 148(8) 

O(w2)H(21)O(2)
[a]

 277.2(6) 178(3) 

O(w2)H(22)O(3)  270.5(5) 149(4) 

O(w1)H(11)O(4) 266.0(5) 177(2) 

O(w1)H(12)O(5)
 

287.6(5) 123(3) 

O(w1)H(12)O(w2)  279.5(5) 133(3) 

[a] hydrogen bonds to neighbouring layers 

O(w1)H(11): 89(2) pm, O(w1)H(12): 87(2) pm 

O(w2)H(21): 89(5) pm, O(w2)H(22): 89(5) pm 

 

 

 

Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O (2) 

 

The copper cations occupy the general position of space group 

Pbca and they are coordinated by five oxygen atoms (Figure 6). 

The equatorial plane is spanned by three phosphonate oxygen 

atoms [O(3), O(4), O(5)] from three, but crystallographically 

equivalent, [µ3-O3PCH(C2H5)COOH]2 dianions and one water 

molecule [O(w1)]. The CuO distances are between 193.6(4) 

and 195.3(3) pm (Table 4). The best least-square-plane through 

Cu, O(3), O(4), O(5), and O(w1) shows a considerable deviation 

from planarity (average of 21.3 pm) with a maximum deviation of 

32 pm for O(4) and O(5). The carboxyl oxygen atom O(2) 

occupies the axial position with a bond length of 236.9(4) pm. 

The bond angles within the distorted square pyramidal 

coordination polyhedron differ significantly from the ideal values. 

The copper coordination polyhedron is more distorted than in 

compound 1 and therefore possesses a point group symmetry 

lower than C2v. According to Brese and O’Keeffe [31] the bond 

order for Cu2+ was calculated to 2.10. 

 

 

Figure 6. The coordination sphere of Cu
2+ 

in Cu[(RS)-µ3-

O3PCH(C2H5)COOH]3H2O (2).  

 



    

 
 
 
 
 

Table 4. The coordination of Cu
2+

 in Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O 

(2) 

Distances (pm) 

CuO(w1) 193.6(4)  CuO(5)
 

194.6(3) 

CuO(3) 195.0(3)  CuO(2)
 

236.9(4) 

CuO(4)
 

195.3(3)    

   CuCu
#4 

504.2(2) 

Bond angles (°) 

O(w1)CuO(5) 91.3(2)  O(w1)CuO(3)
 

178.6(2) 

O(5)CuO(3) 88.13(13)  O(5)CuO(2)
 

102.8(2) 

O(w1)CuO(4)
 

93.6(2)  O(4)CuO(2)
 

97.0(2) 

O(3)CuO(4) 87.36(14)  O(w1)CuO(2) 90.7(2) 

O(5)CuO(4)
 

159.6(2)  O(3)CuO(2)
 

88.2(2) 

Symmetry code: #4: -x+2; y+0.5+y; -z+0.5 

 

As seen in Figure 7a, each dianion of the 2-phosphonobutyric 

acid [O3PCH(C2H5)COOH]2 bridges three copper cations. In 

contrast to compound 1, both the [PO3] and [COOH] groups are 

involved in the coordination to Cu2+ and they adopt a µ3-1:1:1 

and a µ1-1 coordination mode, respectively. The hydroxyl 

oxygen atom O(1) from the carboxyl group is not bonded to Cu2+. 

The coordination of O(3) and O(2) to the same Cu2+ connects 

the phosphonate group with the carboxyl group and leads to the 

formation of a chelating six-membered ring 

[O(2)C(1)C(2)PO(3)Cu] as found also in other copper 

phosphonocarboxylates.[15, 38 ] The PO bond lengths in the 

[CPO3] tetrahedron are between 151.6(3) and 153.1(4) pm and 

the PC bond is 180.8(6) pm (Table 5). The CO bond lengths 

within the carboxyl group are 122.1(7) pm and 130.2(8) pm, 

indicating double and single bond character, respectively.[32] 

According to the Klyne-Prelog convention the Newman 

projection (Figure 7b) shows an antiperiplanar (ap) 

conformation.[ 39 ] The [O3PCH(C2H5)COOH]2 dianions appear 

equally in R and S configuration (see Figure 8) correlated by a 

centre of symmetry within one layer excluding optical activity.  

 

 

 
 

Figure 7. (a) The connection between the [O3PCH(C2H5)COOH]
2 dianion and 

the copper cations in 2. (b) Newman projection of the [O3PCH(C2H5)COOH]
2–

 

dianion along C(2)C(3). The figures show the S enantiomer. 

Table 5. Bond length and angles of the [O3PCH(C2H5)COOH]
2–

 anion in 

Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O(2) 

Distances (pm) 

PO(3)
 

152.7(4)  C(1)O(2) 122.1(7) 

PO(4) 151.6(3)  C(1)C(2) 151.4(8) 

PO(5)
 

153.1(4)  C(2)C(3) 153.6(8) 

PC(2)
 

180.8(6)  C(3)C(4) 151.0(10) 

C(1)O(1) 130.2(8)  O(1)H(7) 86(7) 

Bond angles (°) 

O(4)PO(3) 112.9(2)  O(1)C(1)C(2) 115.0(6) 

O(3)PO(5) 109.8(2)  O(2)C(1)C(2) 122.1(5) 

O(4)PO(5) 111.2(2)  C(1)C(2)C(3) 115.4(5) 

O(4)PC(2)
 

106.9(2)  C(1)C(2)C(3) 115.4(5) 

O(3)PC(2) 108.5(2)  C(4)C(3)C(2) 113.3(6) 

O(5)PC(2) 107.2(3)  C(1)C(2)P 109.0(4) 

O(2)C(1)O(1) 122.6(6)  C(3)C(2)P 112.2(4) 

 



    

 
 
 
 
 

 

Figure 8. R and S enantiomers of the [O3PCH(C2H5)COOH]
2 dianions in the 

crystal structure of 2. Hydrogen atoms [except H(1)] and the water molecules 

O(w2) and O(w3) are omitted for clarity. 

In 2, the coordination of the [O3PCH(C2H5)COOH]2 dianions to 

the copper cations leads to puckered infinite layers extending in 

the (001) plane (Figure 9 and S1, Supporting Information) and 

they are stacked in …ABAB… sequence along the [001] 

direction. The layers are build up by the connection between the 

copper cations and the phosphonate oxygen atoms. The 

coordination of the carboxyl oxygen atom O(2) to Cu2+ only 

leads to a stabilization of the structure. The polyhedra around 

the copper atoms and the phosphorus atoms are alternately 

connected by common corners leading to six-membered rings 

(Figure 10, dashed line). Each layer contains both the R and S 

enantiomers of the [O3PCH(C2H5)COOH]2 dianion in alternating 

sequence. In contrast to 1, the layers are confined by the methyl 

group C(4) pointing towards the interlayer space along [001]. 

The water molecules O(w2) and O(w3), not bound to Cu2+, are 

intercalated between the layers. Adjacent layers do not form 

neither O-HO nor C-HO interlayer hydrogen bonds between 

each other. The coordinated water molecule O(w1) forms weak 

and strong intralayer hydrogen bonds to the phosphonate 

oxygen atoms O(5) and O(4) (Table 6). The protonated carboxyl 

oxygen atom O(1) acts as proton donator in a weak hydrogen 

bond to O(w3). The uncoordinated water molecule O(w2) forms 

strong hydrogen bonds to the oxygen atoms O(2) and O(3). 

Between O(w2) and O(w3) there is only a weak interaction.  

Analogous to 1 Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O can be 

regarded as the protonated form of a layered cation exchanger 

with a theoretical exchange capacity of 3.5 mval g1 and a 

surface charge density of 0.04110–4 e·pm–2.  

 

 
 

Figure 9. Crystal structure of Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O (2) 

viewed from [010]. R and S indicate the absolute configuration at the 

stereogenic C(2) atom. The red thin lines show a section of the hydrogen 

bonds. Hydrogen atoms bound to C3 [H(2), H(3)] are omitted for clarity. 

 
 

Figure 10. View on a selected layer in the (001) plane in 2. The uncoordinated 

water molecules O(w2) and O(w3) and all hydrogen atoms from the 

[O3PCH(C2H5)COOH]
2 dianion are omitted for clarity. 



    

 
 
 
 
 

Table 6. Hydrogen bonds in 2 

 OO Distance (pm) O-HO Angle (°) 

O(1)H(7)O(w3)
 

256.2(9) 163(7) 

O(w1)H(11)O(4)
 

269.3(5) 139(3) 

O(w1)H(12)O(5) 273.8(5) 169(1) 

O(w2)H(21)O(3) 278.3(6) 171(2) 

O(w2)H(22)O(2) 289.9(7) 168(2) 

O(w3)H(32)O(w2) 281.7(9) 133(5) 

O(w1)H(11): 89(1) pm, O(w1)H(12): 89(1) pm 

O(w2)H(21): 90(1) pm, O(w2)H(22): 90(1) pm 

O(w3)H(31): 90(1) pm, O(w3)H(32): 90(1) pm 

 

 

 

TGA/DTA studies of Cu[µ3-O3P(CH2)2COOH]2H2O (1) and 

Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O (2) were carried out in air 

from room temperature to 1000 °C at a heating rate of 10 K 

min1. With 1, an endothermic weight loss between 95 and 

175 °C of 14.3 % corresponds to the loss of all water of 

crystallization (calcd. 14.3 %) (Figure 11). An XRD pattern of 1 

after heating to 175 °C (Figure S2, Supporting Information) 

shows that the loss of water is accompanied by a change of the 

crystal structure, because all water molecules were coordinated 

to Cu2+. The dehydrated compound is not stable. A continuous, 

slight weight loss up to 270 °C leads to a total loss of 16.8 %. 

Two exothermic processes with onset temperatures of 276 and 

289 °C cause a strong and fast decomposition step with a 

weight loss of 32.9 % up to 340 °C. Several following weak 

exothermic reactions lead to the complete decomposition up to 

815 °C. The X-ray powder diffraction pattern of the residue 

showed reflections of Cu2P2O7. The total weight loss of 40.3 % 

matches very well with the calculated one of 40.2 %. 

As seen in Figure 12 the decomposition of 2 starts at 65 °C. The 

endothermic reaction leads to a weight loss of 18.1 % up to 

212 °C, which corresponds to the loss of three water molecules 

per formula unit (calcd. 19.0 %). Consequently, the coordinated 

and uncoordinated water molecules are released simultaneously 

causing the crystal structure to collapse as indicated by a 

significant change of the XRD pattern (Figure S3, Supporting 

Information). Up to 272 °C a slight weight loss can be seen. A 

very strong exothermic decomposition reaction with an onset 

temperature of 274 °C causes an abrupt weight loss up to 

282 °C resulting in a total loss of 41.6 %. A last decomposition 

step occurs between 506 and 670 °C. The white residue was 

identified as Cu2P2O7 by X-ray powder diffraction. The total 

weight loss of 46.7 % is very close to the calculated one of 

46.9 %. 

 

 

 

Figure 11. Thermal analysis of Cu[µ3-O3P(CH2)2COOH]2H2O (1). 

 

 

Figure 12. Thermal analysis of Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O (2). 

Figure 13 shows the IR spectra (ATR technique) of Cu[µ2-

OOC(CH2)PO3H]2H2O (1) and Cu[(RS)-µ3-

O3PCH(C2H5)COOH]3H2O (2). For 1, the band at 3429 cm1 

and a broad band between 3400 and 2900 cm1 indicate OH 

stretching vibrations, whereas in 2 a broad band between 3600-

3000 cm1 appears. CH stretching modes occur at 2930 cm1 in 

1 and at 2964, 2940, and 2881 cm1 in 2. A strong band at 1686 

cm1 (1) and 1632 cm1 (2) is due to the CO stretching vibration 

of the uncoordinated carboxylic acid group, which covers the 

HOH bending vibrations of the water molecules. Bands at 

1416 cm1 (1), 1459 and 1384 cm1 (2) represent CH bending 

vibrations. The bands at 1246, 1192, 1146, 1094, 1051 (1) and 

1250, 1186, 1126, 1061 cm1 (2) mainly represent PO 

stretching modes.[4042] The absorption bands at 791 and 756 

cm1 in 1 and 835 and 780 cm1 in 2 are caused by the 

stretching of the PC bond.[43,44] 



    

 
 
 
 
 

 

Figure 13. IR spectra of (a) Cu[µ3-O3P(CH2)2COOH]2H2O (1) and (b) 

Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O (2). 

Magnetic measurements were carried out between 3 and 295 K. 

The temperature dependent development of the susceptibility 

between 25 and 295 K of Cu[µ3-O3P(CH2)2COOH]·2H2O (1) and 

Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O (2) (Figures 14 and 15) 

can be well fitted by an extended Curie-Weiss law as mol = 

C·(T)–1+0.
[45,46] For compound 1, the Curie constant and the 

Weiss temperature were calculated as C = 5.77106 m3 K mol1 

and  = 0.19 K. The temperature independent term is 0 = 

0.0019. The magnetic moment was calculated as µeff = 1.92(1) 

µB per Cu2+. The deviation to the theoretical spin only value of 

1.73 µB per Cu2+ is due to a weak spin-orbital interaction as often 

found in Cu2+ complexes.[4749] As seen in the inset of Figure 14, 

below 25 K the magnetic moment decreases indicating a 

possible weak antiferromagnetic coupling between copper ions. 

The magnetic moment was calculated considering the Weiss 

temperature as µeff/µB = 797.73[mol(T)]0.5.[50] Since the copper 

cations are coordinated in a square pyramidal fashion, the 

magnetic orbital (dx
2y

2) pointing to the equatorial oxygen atoms 

O(3), O(4), O(5), and O(w2).[29] A direct exchange between 

adjacent Cu2+ ions can be excluded because of their large 

distance of 459.5(1) pm. The rather weak interaction can be 

obviously described by an antiferromagnetic CuOOCu 

super-superexchange owing to the absence of CuOCu 

superexchange paths. The super-superexchange via the 

CuO(4)PO(3)Cu paths, in which the oxygen atoms occupy 

the equatorial positions, is obviously responsible for the weak 

antiferromagnetic interaction (Figure 16). The equatorial planes 

of the copper square pyramids are parallel to each other. The 

strength of such spin exchange increases with decreasing OO 

distances (smaller than the sum of the van der Waals radii), 

rising CuOO angles, and a more parallel orientation of the 

magnetic orbitals.[51, 52] The O(4)O(3) distance is 253.5(5) pm 

and the CuO(4)O(3) and CuO(3)O(4) angles account to 

108.9(2)° and 133.4(2)°, respectively. The torsion angle of 

CuO(4)O(3)Cu is 69.9(3)°. Two further super-

superexchange paths CuO(4)PO(5)Cu and 

CuO(3)PO(5)Cu with OO distances of 255.3(4) and 

248.6(4) pm can be neglected, because the equatorial planes of 

the copper centered polyhedra are tilted nearly orthogonal to 

each other [ 88.1(1)°].[52]  

Compound 2 reveals a Curie constant of C = 5.68106 m3 K 

mol1, a Weiss temperature of  = 0.58 K, and 0 = 0. The 

calculated magnetic moment is µeff = 1.90(1) µB per Cu2+. The 

inset in Figure 15 shows that the magnet moment decreases 

significantly below about 23 K. Analogous to 1, the weak 

interaction between neighbouring copper ions at low 

temperatures is probably due a super-superexchange. A 

possible super-superexchange path is CuO(3)PO(5)Cu 

(Figure 17) with a O(3)O(5) distance of 250.3(4) pm, 

CuO(3)O(5) and CuO(5)O(3) angles of 137.7(2)° and 

148.1(2)°, and a torsion angle of CuO(3)O(5)Cu of 158.7(3)°. 

The equatorial planes of the copper coordination polyhedra are 

almost parallel to each other [ 6.7(1)°]. Whereas, the equatorial 

planes of the two other possible exchange paths through 

CuO(4)PO(5)Cu and CuO(3)PO(4)Cu are tilted by 

47.6(1)° and 48.1(1)° to each other and should only make a 

small contribution. 

Such super-superexchange paths are also found in e.g. copper 

phosphates[ 53 , 54 ], sodium copper methylenediphosphonate 

monohydrate[55], copper phosphonocarboxylates[15,26], and other 

copper phosphonates[56,57]. 

 

 

Figure 14. Susceptibility versus temperature of Cu[µ3-O3P(CH2)2COOH]2H2O 

(1). The inset shows the temperature development of the magnetic moment in 

consideration of the Weiss temperature. 



    

 
 
 
 
 

 

Figure 15. Susceptibility versus temperature of Cu[(RS)-µ3-

O3PCH(C2H5)COOH]3H2O (2). The inset shows the temperature development 

of the magnetic moment in consideration of the Weiss temperature. 

 

 

Figure 16. Connections between adjacent Cu
2+

 coordination polyhedra in 

Cu[µ3-O3P(CH2)2COOH]2H2O (1). Carbon, hydrogen and oxygen atoms not 

bond to Cu
2+

 are omitted for clarity. Thin black lines illustrate the equatorial 

planes. 

 

Figure 17. Connections between adjacent Cu
2+

 coordination polyhedra in 

Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O (2). Carbon, hydrogen and oxygen 

atoms not bond to Cu
2+

 are omitted for clarity. Thin black lines illustrate the 

equatorial planes. 

The diffuse reflectance UV/Vis spectra for 1 and 2 are shown in 

Figure 18 and 19. Both compounds show a broad asymmetric 

band between 500 and 1400 nm representing dd transitions. 

As seen in the inset in Figure 18, the dd absorption band of 2 is 

slightly bathochromic shifted compared to 1. The curve of 

compound 1 can be well fitted by three Gaussian curves with 

maxima at 743, 892, and 1016 nm. The Cu2+ centered square 

pyramid has C2v point group symmetry, however the deviation 

from C4v symmetry is negligible. Thus, the splitting of the 2E 

energy level by reducing the symmetry from C4v to C2v
 can be 

neglected.[58,59] The ground state in C4V (hole formalism) is 2B1 

and the energy level sequence is 2B1 (dx
2y

2) < 2A1 (dz
2) < 2B2 

(dxy) < 2E (dxz,dyz) leading to three transition bands.[60 ,61] The 

fitted absorption bands in 1 at 743 nm can be assigned as the 
2B1  2E transition, those at 892 nm as the 2B1  2B2 , and those 

at 1016 nm as the 2B1  2A1 transition. The copper coordination 

polyhedron in 2 is considerably more distorted compared to the 

one in 1. Due to the point group symmetry lower than C2v, the 

spectrum of 2 can be well fitted by four Gaussian curves with 

maxima at 741, 838, 957, and 1151 nm.[28,29,58,62–64] 

 



    

 
 
 
 
 

 

Figure 18. Diffuse reflectance UV/Vis spectrum of powdered Cu[(RS)-µ3-

O3P(CH2)2COOH]2H2O (1). Three Gaussian curves (red dashed lines) were 

used to fit the spectrum and their sum is presented by the thick red curve. The 

inset shows the spectra from 250 to 1400 nm of compound 1 and 2. [F(R) = 

Kubelka-Munk-Function]. 

 

Figure 19. Diffuse reflectance UV/Vis spectrum of powdered Cu[(RS)-µ3-

O3PCH(C2H5)COOH]3H2O (2). Four Gaussian curves (red dashed lines) were 

used to fit the spectrum and their sum is presented by the thick red curve [F(R) 

= Kubelka-Munk-Function]. 

Conclusions 

We reported on the crystal structure and properties of Cu[µ3-

O3P(CH2)2COOH]2H2O (1) and Cu[(RS)-µ3-

O3PCH(C2H5)COOH]3H2O (2). In both compounds the 

connection between the Cu2+ cations and the dianions of 3-

phosphonopropionic acid and (RS)-2-phosphonobutyric acid, 

respectively, leads to infinite layers with features of cation 

exchangers. In 1, the layers are interconnected by hydrogen 

bonds, whereas in 2 no hydrogen bonds exist between 

neighbouring layers. The UV/Vis spectra reveal dd transition 

bands at 763, 878, 1061 nm for 1 and 741, 838, 957, 1151 nm 

for 2, respectively. Magnetic measurements show a 

paramagnetic behaviour with an obviously weak 

antiferromagnetic interaction at low temperatures due to a 

super-superexchange coupling. The compounds are stable in air 

up to 95 °C (1) and 65 °C (2). 

Experimental Section 

Single crystals of Cu[µ3-O3P(CH2)2COOH]2H2O (1) can be synthesized 

in aqueous solution. 0.002 mol 3-phosphonopropionic acid (2-

carboxyethylphosphonic acid), 0.004 mol Cu(SO4)25H2O were dissolved 

in 10 ml deionized water. 1 M NaOH solution was added until a pH value 

of 2.53 was reached. To the clear solution, 90 mg urea was added and 

after several days at room temperature blue crystals appeared.[65] After 

filtering, the remaining filtrate was allowed to evaporate at room 

temperature yielding further blue crystals of 1. 

Crystals of Cu[(RS)-µ3-O3P(C2H5-CH)COOH]3H2O (2) can be obtained 

from aqueous solution by dissolving 0.002 mol (RS)-2-phosphonobutyric 

acid (2-phosphonobutanoic acid) and 0.004 mol Cu(SO4)25H2O in 10 ml 

deionized water. The solution was adjusted to a pH value of about 3.5 

with 1 M NaOH solution. After adding of 90 mg urea blue plate-like 

crystals of 2 occured after several days at room temperature.  

IR (ATR): 1: 3429 (w), 30002900 (s,broad), 2930 (w), 1686 (s), 1561 

(m,broad), 1435 (w,sh), 1416 (m), 1343 (w), 1284 (w), 1246 (s), 1192 (s), 

1146 (m), 1094 (s), 1051 (s), 1000 (s), 953 (w), 915 (w), 791 (m), 756 (m), 

661 (w), 592 (w), 573 (m), 529 (m), 490 (m), 431 (w), 386 (m), 349 (m) 

cm1. 

2: 36003000 (s,broad), 2964 (w), 2940 (w), 2881 (w), 1632 (s,broad), 

1459 (m), 1384 (w), 1329 (m), 1299 (m), 1250 (m), 1186 (m), 1126 (w), 

1061 (s), 1011 (s), 946 (w), 898 (m), 860 (m), 835 (m), 780 (m), 719 (m), 

597 (w), 534 (m), 471 (m), 363 (m) cm1. 

ATR Fourier transformed infrared (IR-ATR) measurements were carried 

out at room temperature with a resolution of 2 cm1 using a Bruker Alpha 

FT-IR spectrometer equipped with diamond ATR unit. Thermoanalytic 

measurements with a heating rate of 10 K min1 were performed in 

flowing air using a Netzsch STA 449F device. Temperature dependent 

magnetizations were measured at µ0H = 0.3 T in the temperature range 

of 3 to 300 K using a Quantum Design PPMS 9. The magnetic data were 

corrected against the diamagnetic moment of the sample holder. The X-

ray powder diffraction patterns were recorded at room temperature on a 

Bruker D8-Advance diffractometer, equipped with a one-dimensional 

silicon strip detector (LynxEyeTM) and operated with Cu-K radiation. The 

diffuse reflectance UV-Vis spectra were obtained using a Perkin Elmer 

UV/Vis spectrometer Lambda 19. BaSO4 was used as a white standard. 

X-ray single crystal structure determination was performed on a Siemens 

P4 four-circle diffractometer (MoK, graphite monochromator) in a theta 

range up to 24.00° and 22.50°, respectively. Face-indexed numerical 

absorption corrections have been applied. The phase problem was 

solved by direct methods. Full matrix least squares refinement employing 

|F|2 made use of the SHELXTL program suite.[66] The C bound hydrogen 

atoms were positioned geometrically. The further hydrogen atom 

positions were located in Difference Fourier maps and refined with 

isotropic displacement parameters. Crystallographic data are compiled in 

Table 7. Further crystallographic data have been deposited with the 

Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, 

Cambridge CB21EZ, UK. Copies of the data can be obtained free of 



    

 
 
 
 
 

charge on quoting the depository number CCDC-1586605 (1) and 

1586599 (2) (Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk, 

http://www.ccdc.cam.ac.uk).  

Table 7. Crystallographic Data 

Compound 1 2 

Empirical formula C3H9PCuO7
 

C4H13PCuO8
 

Crystal system Orthorhombic Orthorhombic 

Space group Pbca (no.61) Pbca (no.61) 

Lattice constants a = 812.5(2) pm 

b = 919.00(9) pm 

c = 2102.3(2) pm 

a = 1007.17(14) pm 

b = 961.2(3) pm 

c = 2180.9(4) pm 

Cell volume 1.5697(4) nm
3 

2.1112(8) nm
3 

Formulas in unit cell 8 8 

Formula weight 251.61 g mol
1 

283.65 g mol
1
 

Density (calc.) 2.129 g cm3
 1.785 g cm3

 

Wavelength 71.073 pm 

Absorption coefficient 2.985 mm1 
2.237 mm1 

Numerical absorption correction min./max. 

transmittance 

0.69573/0.97062 

min./max. 

transmittance 

0.77044/0.95621 

Temperature 293(2) K 

Crystal size (mm) 0.14 x 0.14 x 0.01 0.22 x 0.12 x 0.02 

F (000) 1016 1160 

-range  3.17°  24.00° 2.75°  22.50° 

Limiting indices h: -1/+9; k: -1/+10; l: 

-1/+24 

h: 0/+10; k: 0/+10; l: 

-23/+23 

Reflections collected 1700 2922 

Independent reflections 1231 (Rint = 0.0564) 1378 (Rint = 0.0440) 

Structure solution Direct methods 

Structure refinement  Full-matrix least-squares on |F|
2 

Refined parameters 128 153 

Final max. shift/esd 

Final mean shift/esd 

0.001 

0.000 

-0.001 

0.000 

Goodness-of-fit on |F|
2
 0.600 1.098 

Residuals (all data) R1 = 0.0740 , wR2 = 

0.0569 

R1 = 0.0565 , wR2 = 

0.0726 

Max. features in last Difference 

Fourier synthesis 

374 and -356 

enm3 

478 and -576 

enm3 

 
Supporting Information (see footnote on the first page of this article): 

Crystal structure of compound 2 viewed on (100) (Figure S1). XRD 

powder patterns of compound 1 and 2 and of decomposition products 

after heating at 175 °C and 200 °C, respectively (Figures S2 and S3). 
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Figure S1. Crystal structure of Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O (2) viewed from [100]. The uncoordinated 

water molecules O(w2) and O(w3) and all hydrogen atoms bound to carbon atoms are omitted for clarity. 
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Figure S2. X-ray powder diffraction patterns of Cu[µ3-O3P(CH2)2COOH]2H2O (1). (a) calculated pattern, (b) 

experimental pattern, c) pattern after heating at 175 °C. 

 

Figure S3. X-ray powder diffraction patterns of Cu[(RS)-µ3-O3PCH(C2H5)COOH]3H2O (2). (a) calculated pattern, 

(b) experimental pattern, c) pattern after heating at 200 °C. The pattern of graph (a) was calculated using the 

March-Dollase model with a (001) preferred orientation. 

 


