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ABSTRACT 

 

Residue Number System (RNS), which originates from the Chinese Remainder Theorem, offers a promising 

future in VLSI because of its carry-free operations in addition, subtraction and multiplication. This 

property of RNS is very helpful to reduce the complexity of calculation in many applications. A residue 

number system represents a large integer using a set of smaller integers, called residues. But the area 

overhead, cost and speed not only depend on this word length, but also the selection of moduli, which is a 

very crucial step for residue system. This parameter determines bit efficiency, area, frequency etc. In this 

paper a new moduli set selection technique is proposed to improve bit efficiency which can be used to 

construct a residue system for digital signal processing environment. Subsequently, it is theoretically 

proved and illustrated using examples, that the proposed solution gives better results than the schemes 

reported in the literature. The novelty of the architecture is shown by comparison the different schemes 

reported in the literature. Using the novel moduli set, a guideline for a Reconfigurable Processor is 

presented here that can process some predefined functions. As RNS minimizes the carry propagation, the 

scheme can be implemented in Real Time Signal Processing & other fields where high speed computations 

are required.  

  

1. INTRODUCTION 

 

In recent times, Residue Number System (RNS) are being popular to implement a variety of 

specialized high-performance Digital Signal Processing (DSP) systems for its carry-free nature. 

Weighted number systems such as the binary number system, decimal number system etc has a 

carry chain [1]. It is often limiting the performance of arithmetic operations [2, 3]. In RNS, 

several residue digits represent a number. So, arithmetic operations like additions, subtractions 

and multiplications of higher bit numbers can be decomposed and performed in set of parallel 

sub-operation. As a result carry propagation, which is a genuine problem in weighted number 

systems, will be minimized in residue systems. RNS is extremely efficient for many applications 

                                                             
1 This journal paper is an extended version of the conference paper "A SCHEME FOR IMPROVING BIT 

EFFICIENCY FOR RESIDUE NUMBER SYSTEM” by Chaitali Biswas Dutta, Partha Garai and 

Amitabha Sinha, presented in VLSI-2012. 
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such as digital signal processing [4,5,6] communications engineering, computer security 

(cryptography) [6] etc. 

Generally, number of bits required in residue number system is greater than that of weighted 

number systems because RNS gives the number of residues same as the cardinality of the moduli 

set, increasing the number of bit required to express it in RNS. A number system is said to have 

higher bit efficiency if the bit required to represent a particular dynamic range is lower. There are 

many important parameters that determine the efficiency of RNS and bit efficiency is one of 

them. The bit efficiency depends on the choice of the moduli set [7]. There are several techniques 

[7,8,9] for moduli set generation reported in the literature {2 ,2 1,2 -1}n n n
 + , 

-1{2 , 2 -1,2 -1}n n n  
and 

2{2 1, 2 1,2 -1}n n n+ + . For these schemes no algorithm is given to generate a moduli set; they are 

generated heuristically by finding a suitable n. The contributions of paper are following: 

1. proposed an algorithm to generate any moduli set with finite cardinality in a given dynamic 

range. 

2. bit efficiency of the proposed scheme is better than all other scheme given in the literature. 

3. theoretical analysis and proof of the proposed scheme to show that the proposed solution 

gives better results than the existing scheme [9]. 

4. Applicability of this scheme in a reconfigurable DSP Processor 
 

2. BRIEF OVERVIEW OF RNS 

RNS uses a set of numbers 0 1 2 -1( , , , ..., ),tr  r  r   r  which is mapped with some number X in any other 

number system using a set of integers 0 1 2 -1
, , &

t
m  m  m   m   called moduli. These numbers are 

relatively prime, that is, GCD
( ,  ) 1  i jm m for i j= ≠

. Let X be a decimal number and N be the 

product of all moduli. N is called dynamic range. Then RNS can represent any numbers from 0 to 

(N-1). Now r = (X mod m) where r is the remainder of a number X with respect to modulus m. 

Number X will be represented by n-tuple 0 1 2 -1( , , , ..., ),tr  r  r   r  where ( mod )i ir X   m=  and 
0 -1 i t≤ ≤ [7]. 

Now if X ≡ (r1x, r2x, …, rmx) & Y ≡ (r1y, r2y, …, rmy) then X ⊗ Y ≡ (r1x ⊗ r1y, r2x ⊗ r2y…, 

rmx ⊗ rmy)      ... (1) 

where ⊗  represents any arithmetic operator and can be like addition, subtraction or 

multiplication. So from the equation (1) it is clear that using RNS, integer arithmetic can be 

broken down into some independent parts which can be calculated in parallel fashion without a 

carry between each component. So the operations can be performed much faster even faster than 

the special hardwares like Carry Look Ahead Adder [2], Carry Select Adder [2], Carry Save 

Adder [1,2], and Wallace Tree Multiplier [1,2], Array Multiplier [2] etc. When the size of a 

modulus increases, it gives large reminders having multiple bits. So when an arithmetic operation 

is performed on those reminders, carries are propagated within the small range. These special 

hardwares mentioned above can be used to do the operations that help increasing the processing 

time. 

The arithmetic operations are implemented with residue number system [3,10], depending on the 

choice of the moduli. The Chinese Remainder Theorem (CRT) [11,12,13] may rightly be viewed 

as one of the most important fundamental results in the theory of RNS. The CRT is useful for 

many other operations and above all it is very helpful in case of RNS to binary conversion [8,13]. 

Mainly New Chinese Remainder Theorem is introduced for this conversion [14,15,16,17] . CRT 

is assured that if the moduli of a RNS are chosen appropriately then each number in the dynamic 

range will have a unique representation in the residue system. 
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In the literature, there are a few kinds of moduli sets. A set of any given moduli is called a 

general-moduli set, as it is efficient for RNS systems with a large dynamic range. The three-

moduli sets, 

1
{2 , 2 1, 2 -1}

n n n

MS =  +
, 2

{2 ,2 1,2 -1}MS n n n= +
, 3

-1{2 ,2 -1,2 -1}n n n

M
S  =

and 

4

2{2 1,2 1,2 -1}n n n

M
S = + +

 are four cases of the general-moduli sets and these sets are widely 

used for residue number system with a medium dynamic range [9,18]. 

In this paper we propose an algorithm that generates moduli sets for medium to large dynamic 

ranges. The scheme also attempts to keep the number of bits required to represent the moduli to a 

minimum.  

 

3. SCHEME FOR IMPROVING BIT EFFICIENCY 

 

The bits required to implement all the blocks of RNS number are depends on moduli set. Let N be 

the number of bit then 2N
 is called dynamic range. Now 0 1 2 -1( , , , ..., )tr  r  r   r

denotes the t-moduli 

set, where 0 1 2 -1, , , ..., tr  r  r   r
 all are relatively prime and product of these t numbers should be greater 

or equal to 2 1N − . Total bits required is calculated as  2 0 2 1 2 2 2 -1
log log log ... log

t
r r r r+ + + +               . Bit 

width of the different arithmetic block (like, adder, multiplier) of residue systems depend on the 

number 2 0 2 1 2 2 2 -1
log log log ... log

t
r r r r+ + + +               . Lower   the value of this term, more optimized 

design of RNS in terms of bit width in achieved. Choice can be made over the various moduli set 

(like, three-moduli, four- moduli) and also the number within the set. 

In this section we describe an algorithm to generate any number of moduli set for a given 

precision.  

 

Module find_moduli(N,n,SM) 
 

//Input: N (no. of Bit), n  (no. of moduli set) 

//Output: SM   (Efficient moduli set) 

 

Step 1: 
2 1

n N
x  = −

   

Step 2:   if x is even then 2n x=  

              else 2 1n x= +  

Step 3:  When n = 3  

                  if 
((2 )(2 1)(2 -1) (2 -1))Nn n n+ ≥

then 
{2 ,2 1,2 -1}MS n n n= +

 

                 else  n will be incremented till 
((2 )(2 1)(2 -1) (2 -1))

N
n n n+ ≥

 condition will be 

satisfied.  

Step 4:  if n = 4 then 

                Let

1
{(2 )(2 1)(2 1)}

N
2k = 

n n n
 −

+ −     Find the smallest number 1
k k≥

 , where 1
k

 is 

relatively prime to 2n , 2 1n +  and 2 -1n . 

                    
{2 , 2 1, 2 1, 1}MS n n n k= + −

 
… …       … … … … … … … … 
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… …       … … … … … … … … 

Step p:  if n = p then 

                    

1
{(2 )(2 1)(2 1)}

N
2k = 

n n n
 −

+ −            

                    

( 3)1 p
k k

− =    

               Find the smallest number 
1

1
k k≥

, where 1k
   is relatively prime to 2n , 2 1n +  

and 2 -1n .  

               

              Therefore, 1{2 , 2 1, 2 1, }MS n n n k= + −
 

               Again, 

                   1

1
{(2 )(2 1)(2 1)( )}

N2k = 
n n n k

 −
+ −       

                   

( 4)2 p
k k

− =    

               Find the smallest number 
2

2k k≥
, where 2k

 is relatively prime to 2n , 2 1n + , 2 -1n  

and 1k
. 

              Therefore, 1 2{2 , 2 1,2 1, , }MS n n n k k= + −
 

               … … … … … … … … … … … … … … 

               … … … … … … … … … … … … … … 

                1 4

1
{(2 )(2 1)(2 1)( )...( )}

N

p

2k = 
n n n k k

−

 −
 + −               

( ( 1))3 p pp
k k

− −−  =    

Find the smallest number 
3

3

p

p
k k

−

−
≥

, where 3pk −  is relatively prime to 2n , 2 1n +  

and 2 -1n , 1k
,…..., 4pk − . 

Therefore,   1 2 3 3{2 , 2 1, 2 1, , , ,... }M pS n n n k k k k −= + −
 

 

Theorem 

The bit efficiency of the present scheme is better than the existing scheme of linear complexity. 
 

Proof 

We will first proof the result for three moduli set, and then extend the result for the general case. 

Given a three moduli set 1 2 3
{ , , }h  h  h

and another three moduli set 1 2 3{ , , }h  h  h′ ′ ′
. Bit count of 

1 2 3{ , , }h  h  h ( )1 2 3
. ., log( ) log( ) log( )i e h h h+ +            is better than that of 1 2 3

{ , , }h  h  h′ ′ ′
 

( )1 2 3
. ., log( ) log( ) log( )i e h h h     ′ ′ ′+ +
       iff 1 2 3( )h h h+ + ≥  1 2 3( )h h h′ ′ ′+ +

. 

Now we consider two types of three-moduli set, one for our proposed scheme 

( . ,{2 ,2 1, 2 -1})i e n n n′ ′ ′+
 and another for [9] 

1 1 1( . ,{2 , 2 1, 2 -1})n n ni e +
. 

As 2n
 can always as an even number, i.e., 2n but the reverse does not hold. 

(2 (2 1) (2 -1))n n n′ ′ ′+ + + ≤
1 1 1(2 (2 1) )(2 -1))

n n n
+ + +

; 

They are equal when 2n can be represented as 2
n

, less than otherwise. 
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For the general case, we start with the four moduli set. Now we consider two types of four-moduli 

set, one for our proposed scheme 
( . ,{2 , 2 1, 2 -1, })i e n n n k′ ′ ′+

 and another for [9] 
1 1 1 2( . ,{2 , 2 1, 2 -1, 2 1})

n n n n
i e + ±

.  

We have already shown that 
(2 (2 1) (2 -1))n n n′ ′ ′+ + + ≤

1 1 1(2 (2 1) (2 -1))
n n n

+ + +
.  Now, from the 

construction of the modulti set [9], k is the smallest number relative prime to 

2 , 2 1, 2 -1n n n′ ′ ′+  and 
2 (2 1) (2 -1) 2

N
n n n k′ ′ ′× + × × ≥

. So, 
{2 (2 1) (2 -1) }n n n k′ ′ ′+ + + + ≤

 
1 1 1 2{2 (2 1) (2 -1) (2 1)}n n n n+ + + + + .  

 

This logic follows for any size moduli-set.  

 

Now an example will be given to illustrate the algorithm: 

Let N = 32 

Therefore, dynamic range is 0 to 
322 1−  i.e., 0 to 4294967295 

Now we find the moduli sets iMS
, for 3, 4,5,6i = . 

 

For 3n = , we have 3
{2 ,2 1, 2 1}

M
S n n n= + −

= 
{1626,1627,1625}

 

3 32

32

2 1 2 1 1626

2 1626

(2 )(2 1)(2 1) (2 1),

. ., (1626)(1627)(1625) (2 1)

n N

N

x

and x is even then n x

and n n n

i e

    = − = − =
    
 = =
 
 + − > −
 

> −  

Q

 

For n = 4, we have 4 1
{2 ,2 1,2 1, }

M
S n n n k= + −

 = 1
{256,257,255, }k

 

4 322 1 2 1 256

2 256

n Nx

and x is even then n x

    = − = − =
    
 = = 

Q

 

1k
 is calculated in the following way: 

Here,  

1 257
{(2 )(2 1)(2 1)}

N2k = 
n n n

 − =
+ −    

Now we have to find the smallest number 1k k≥
, where 1k

 is relatively prime to 2n , 2 1n +  

and 2 -1n , i.e., 256, 257, 255 Here, 1 259k =
. 259 is the smallest number where 259 257> and 

259 is also relatively prime to 256, 257, 255 . So, 4
{256,257,255,259}MS =

 

               

For  n = 5, we have 

5 1 2{2 ,2 1,2 1, , }
M

S n n n k k= + −
= 1 2

{86,87,85, , }k k
 

                 

5 322 1 2 1 85

2 1 86

n Nx

and x is odd then n x

    = − = − =
    
 = + = 

Q

  

1k
and  2

k
are calculated in the following way: 
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To find 1k
,  

1 6754
{(2 )(2 1)(2 1)}

N
2k = 

n n n
 − =

+ −    
( 3)1 6754 83

p
k k

−   = = =     

Now we have to find the smallest number
1

1k k≥ , where 1k  is relatively prime to 2n , 2 1n +  

and 2 -1n , i.e., 86,87 and 85 . Here, 1
89k =

. 89  is the smallest number where 89 83> and 89 is 

also relatively prime to 86,87 and 85 . 

To find 2k , 

1

1 76
{(2 )(2 1)(2 1)( )}

N
2k = 

n n n k
 − =

+ −    
( 4)2 76

p
k k

− = =   

Now we have to find the smallest number
2

2k k≥ , where 2k  is relatively prime 

to 2n , 2 1n + , 2 -1n and 1k , i.e., 86,87,85 and 89 . Here, 2 77k = . 77 is the smallest number where 

77 76>  and 77  is also relatively prime to 86,87,85 and 89 . So, 5
{86,87,85,89,77}MS =

 

 

When n = 6, we have 

6 1 2 3
{2 ,2 1,2 1, , , }

M
S n n n k k k= + −

 = 1 2 3{42,43,41, , , }k k k  

                 

6 322 1 2 1 41

2 1 42

n Nx

and x is odd then n x

    = − = − =
    
 = + = 

Q

 
1k , 2k  and  3k  is calculated as the following way: 

To find 1k , 

1 58005
{(2 )(2 1)(2 1)}

N
2k = 

n n n
 − =

+ −    
( 3)1 3 58005 39

p
k k

−   = = =     

Now we have to find the smallest number 
1

1k k≥
, where 1k  is relatively prime to 2n , 2 1n +  and 

2 -1n , i.e., 42, 43 and 41 . 

Here, 1 47k =
. 47 is the smallest number where 47 39> and 47 is also relatively prime to 

42, 43 and 41 . 

To find 2k , 

1

1 1235
{(2 )(2 1)(2 1)( )}

N
2k = 

n n n k
 − =

+ −    
( 4)2 36

p
k k

− = =   

Now we have to find the smallest number 
2

2k k≥
, where 2k  is relatively prime to 2n , 

2 1n + , 2 -1n and 1k , i.e., 42, 43, 41 and 47 . Here, 2 37k =
. 37 is the smallest number where 

37 36>  and 37 is also relatively prime to 42, 43, 41and 47 . 

To find 2k , 

1 2

1 34
{(2 )(2 1)(2 1)( )( )}

N2k = 
n n n k k

 − =
+ −  

( 5)3 34
p

k k
− = =   
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Now we have to find the smallest number
3

3k k≥ , where 3k  is relatively prime to 2n , 2 1n + , 2 -1n , 

1k  and 2k  ,i.e., 42, 43, 41, 47  and 37 . Here, 3 53k = . 53  is the smallest number where 53 34>  

and 53  is also relatively prime to 42, 43, 41, 47  and 37 . 

So, 6
{42,43,41, 47,37,53}

M
S =

. 

 

4. COMPARISON OF BIT EFFICIENCY 

 

In this section we will compute the number of bits required to implement the moduli set generated 

by the algorithm discussed in the last section. We also compare the bit efficiency of the moduli 

set proposed by us with some stander moduli set namely 1
(2 , 2 1, 2 -1)

n n n

MS  = +
, 

2

-1(2 ,2 -1,2 -1)n n n

M
S  =

and 3

2
(2 1,2 1,2 -1)

n n n

MS = + +
. 

Among them 1
(2 ,2 1,2 -1)

n n n

M
S  = +

is the most standard and widely used. We compare bit 

efficiency of 1
(2 , 2 1, 2 -1)n n n

M
S  = +

with that of 1 2 3 3{2 ,2 1, 2 1, , , ,... }
M p

S n n n k k k k −= + −
, which is 

proposed by us, up to six-moduli set. We also present a comparison with other sets for three-

moduli set. Bits required to implement the moduli set 1 2 3
{ , , ,..., }

M p
S n n n n=

are 

2 1 2 2 2 3 2log log log ... log pn n n n + + + +              
 

Table 1.  Comparison of bit efficiency of proposed scheme for moduli set with cardinality 3, 4, 5, 

6. 

 

N  
Proposed Scheme 

Moduli Set No. of Bits 

16 

n=3 (42,43,41) 18 

n=4 (16,17,15,19) 19 

n=5 (10,11,9,13,7) 19 

n=6 (8,9,7,11,5,13) 22 

20 

n=3 (102,103,101) 21 

n=4 (32,33,31,35) 23 

n=5 (16,17,15,19,23) 24 

n=6 (12,13,11,17,7,19) 25 

32 

n=3 (1626,1627,1625) 33 

n=4 (256,257,255,259) 35 

n=5 (86,87,85,89,77) 35 

n=6 (42,43,41,47,37,53) 36 

 

Table 2.  Comparison of bit efficiency of proposed scheme with standard approaches for three 

moduli set 
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Fig 1: Graphical representation of Comparison of bit efficiency of proposed scheme with standard 

approaches for three moduli set 

 

 

 

In Table 1 we present bits required for moduli set with cardinality three, four, five, six generated 

by the proposed approach. In [9], an excellent scheme is proposed where moduli set GM
 is 

generated as 
1 1 1 2{2 ,2 1,2 -1,2 1,...,2 1}tnn n n n

+ ± ±
, where 1 i

n  > n
, and 1n

 as well as 

' ( 2,3,.., )
i

n s  i t=
need to be chosen such that all these moduli are co-prime numbers. This 

scheme is implemented up to 6 moduli sets. It may be noted that [9] is most widely accepted and 

our proposed scheme gives better results in most of the cases, for the remaining cases, it gives the 

same bit efficiency as given by [9]. In Table 2 comparison has been done for three-moduli set 

with different schemes namely 1
(2 ,2 1,2 -1)n n n

MS  = +
, 2

-1(2 ,2 -1,2 -1)n n n

M
S  =

and 

3

2(2 1,2 1,2 -1)n n n

MS = + +
. The results have been illustrated graphically in Figure 1.  

From these tables it is observed that bits required in the proposed scheme are minimum than that 

of other schemes of order O(n). In other words our algorithm generates the most efficient moduli 

set. 

5. GENERAL ARCHITECTURE OF RECONFIGURABLE RNS PROCESSOR 
 

The general architecture of a reconfigurable RNS processor is shown in Figure 3.  Given a moduli 

set hardware complexity depends on the functionalities of the RNS. Because of the space issue, a 

simplified structure is shown using only three arithmetic operators. It contains 

1. 2 Binary to RNS converters 

2. 7 MUXs 

3. Adder 

4. Subtractor 

5. Multiplier 

6. RNS to Binary converter [26][27] 
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Binary numbers are passed to the processor as inputs which first are converted to the RNS 

number. Here the selection of moduli is very much important because the proper selection of 

moduli optimizes the bit efficiency, area of the processor & time to process the particular 

function. 

After the conversion of the binary number to its corresponding residue representation, the 

arithmetic operations can be performed. As any binary number produces a set of RNS numbers 

depending upon the number of moduli used, m copies of arithmetic units (adder, subtractor, 

multiplier etc) are required to perform some arithmetic operation of a number when it is 

converted to RNS, where m is the number of moduli used in that scheme. As the residues can be 

independently operated, parallel arithmetic operations can be performed on the residue set. 

Figure 4 shows the control & data flows between the various paths. The Programmable Controller 

can program the RRNS Processor directly or Programmable Memory is used to store the bit 

stream. Programmable Controller is governed by the General purpose CPU.  

In general, all modular arithmetic operations like Binary to RNS conversion or RNS addition, 

multiplication are implemented in chip by using two different methods [25]. One is the table 

look-ups, implemented by PLA. Second one is the Hybrid Methods, which is the combination of 

the legacy hardware, like full adders, with a table look-up, which can be used to convert the 

output of the legacy hardware to the correct residue format. 

Use of PLA gives a faster hardware than the Hybrid method, but the later takes less area in the 

chip than the former.  PLA can be a good choice of modern reconfigurable RNS processor 

because of their regular dense structure & easy interconnection. 

The area & the speed of the reconfigurable RNS processor depends of the number of moduli in 

the moduli set, the method used for generation as well as the scheduling algorithm used.  
 

6. DESIGN PROCEDURE 
 

In the reconfigurable architecture, there is no fixed path between the device units, but the path can 

be changed depending upon the requirements. MUX are used before the inputs of the device units 

that act as the switch determining a specific path with respect to some particular select condition. 

For an example, suppose there are x number of adders, y number of subtractor & z number of 

multiplier in the processor. Also we are considering that the chip is accepting k number of inputs. 

So in general, for all the arithmetic unit having 2 inputs, the MUX in front of the inputs must be 

having of (x inputs coming from the outputs of adders + y inputs coming from the outputs of 

subtractors + z inputs coming from the outputs of multipliers + k external inputs). So the MUX 

must have log2(x + y + z + k) select lines. In our example (Figure 3), for simplicity, we have 

taken x = y = z = 1, k = 2. So we can use 5 x 1 MUXes having 3 select lines before all the 

arithmetic devices in general. As the output coming from all the units are fed to the inputs of all 

the unit devices in general, it is possible to have any combination of the arithmetic operations 

computed by the processor. 

 

In our work, the aim is to design a RNS processor which can be reconfigured dynamically to 

compute some pre-determined functions. For this, the unit operations need to be analysed & 

sequenced in terms of the inputs & arithmetic operations. As the arithmetic operations are 

depicted in terms of the select condition on the MUX, the inputs as well as the select conditions 

need to be stored using a LUT. The bit sequences are stored in the LUT block wise, each block 

has some particular address. When the address is given for some function, these inputs & select 

conditions are passed to the input MUXes. 
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Table 3.  Comparison of area given by [28] for three, four, five six moduli set 

 

Table 4.  Comparison of area given by standard moduli schemes for three moduli set 
 

 

 

7. IMPLEMENTATION 

 

The proposed scheme is implemented using a Virtex5 board (XC5VLX30). Verilog code is 

generated corresponding to the Reconfigurable RNS Processor which is synthesized & simulated 

using Xilinx.  

Most of the types of equations containing the combination of arithmetic operations like addition, 

subtraction & multiplication can be implemented using the proposed scheme. Some examples are 

given here to illustrate the scheme. 

 

Let the Function1 = (X + Y) × Z 

When the address of Function1 is given to the LUT, the corresponding block is activated. It will 

first supply the 2 binary numbers, X & Y, X to the BtoR Conv1 & Y to the BtoR Conv2. 

Let m = 3, the number of moduli in the moduli set. So BtoR Conv1 & BtoR Conv2 will generate 

(x1, x2, x3) and (y1, y2, y3) respectively. Therefore,  

SM1 = 000 & SM2 = 001 so that (x1, x2, x3) and (y1, y2, y3) can propagate to the inputs of the 

adder.  

So TEMP1 = (x1 + y1, x2 + y2, x3 + y3). In the next step Z must be supplied to the BtoR Conv2 and  

SM5 = 101 & SM6 = 001 so that (x1 + y1, x2 + y2, x3 + y3) and (z1, z2, z3) can propagate to the 

inputs of the multiplier. 

So TEMP2 = ((x1 + y1) × z1, (x2 + y2) × z2, (x3 + y3) × z3). Now set SM7 = 000 & it is enabled so 

that the output of the Multiplier passes to the RtoB Conv to have the final output of Function1 = 

(X + Y) × Z in binary. 
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Let the Function2 = X ^ Y 

X & Y are fed to the BtoR Conv1 & BtoR Conv2 respectively to generate (x1, x2, x3) and (y1, y2, 

y3) respectively 

Suppose POWER is the function unit (not shown in the Figure). POWER actually uses 

MULTIPLIER internally. When the select inputs of the corresponding MUXes are given, (x1, x2, 

x3) are multiplied by itself (y1, y2, y3) times using the same procedure shown before. 

 

In Table 1 we compare area required for moduli set three, four, five, six generated by the  moduli 

set GM
 is generated as 

t1 1 1 2 nn n n n
{2 ,2 +1,2  -1,2 1,...,2 1}± ±  [28], where 1 in  > n

, and 1n
 as well 

as i n 's ( i = 2,3,..,t )
need to be chosen such that all these moduli are co-prime numbers. It may 

be noted that [28] is most widely accepted, hence the comparison three, four, five, six has been 

done. In Table 4 comparison has been done for three-moduli set with different schemes namely  

1

n n n

MS  = (2 , 2  + 1, 2  - 1) 
, 2

n n n-1

MS  = (2 , 2  -1, 2  -1) 
and 3

2n n n

MS = (2  +1,2  + 1,2  -1)
. 

[18][28][29][30]  

The results have been illustrated graphically in Figure 2. From these figure it is observed that the 

area of the Reconfigurable RNS Processor varies as the number of module.  

 

Figure 2: Graphical representation of Comparison of area between standard approaches for three 

moduli set 
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8. CONCLUSION 
 

In this paper we proposed an algorithm to generate any moduli set of finite cardinality for a given 

dynamic range and given the proof of correctness for this proposed algorithm. We have also 

shown that bit efficiency of the proposed scheme is better than all other schemes given in the 

literature. In future we will be working on how these parameters, bit efficiency, h/w complexity 

and time can be optimized for a reconfigurable RNS processor. Another moduli set can be 

proposed which is better than our proposed scheme considering the three parameters mentioned 

above, using which we can get the optimized values of the same. 
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Figure 3: Simplified diagram of the proposed Reconfigurable RNS Processor 

 

 
 

Figure 4: Control & Data flow in the proposed Reconfigurable RNS Processor 
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