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ABSTRACT 

 
Today model checking is the most useful verification method for real time systems, so there is a serious 

need for improving its efficiency with respect to both time and resources. In this paper we present a new 

approach for reducing timed automata. In fact regions of a region automaton are aggregated according to 

a coarse equivalence class partitioning based on traces. We will show that the proposed algorithm 

terminates and preserves original timed automaton. Proposed algorithms are implemented by model 

transformation with Atom3 tool. 
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1. INTRODUCTION 

 
Nowadays, technology is looking for distributed applications to develop and increase its domains 

(network, telecommunication…etc). This kind of applications is known by their complexity. 

Formal modelling based methods are the most used technique to deal with concurrent and 

distributed systems because of their ability to describe system behaviour without ambiguity. 

It is well known that the quality of validation techniques and results depend on the quality of the 

models used for specification. A particular interest is given to these formalisms for their aptitude 

to be implemented in real world.   

 

The model-checking consists to verify certain properties for the desired system. This later is 

modelled by timed automata. This technique has proven its efficiency over several years by 

validating protocols and circuits. In practice, due the consideration of real time quantitative 

aspect; verification and validation algorithms are hard to implement. These algorithms are based 

on region automata; they have been used for solving several problems like automaton emptiness, 

system supervising and system testing [9][11][18] [25][15][13]. 

 

Recall that the execution of a timed automaton is infinite. The idea of region automaton consists 

of partitioning the states space into finite regions, thus the graph which imitates the behavior of 

the initial automaton is constructed. The states of the automaton belonging to the same region are 

equivalent according to a well-defined relation (relation on clocks valuation). 

 

Nevertheless, the complexity of implementing region automata is exponential with respect to both 

clocks number and length timing constraints [1][7][8][20][27]. 
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In this context, we define an aggregation operation on region automaton localities using a Bi- 

relation which can exist between them. This equivalence relation is used for grouping equivalent 

regions. It is obvious that this aggregation reduces the number of graph localities. For this 

purpose we propose an algorithm implementing the aggregation relation starting from an initial 

partitioning of localities. The generated aggregated regions automaton preserves the reachability 

property. Consequently the reachability question on timed automaton states is reduced to the 

reachability question on the aggregated timed automaton. Therefore the language recognized by 

both automata is the same. In [2], the timed automata based model-checking of TCTL logic 

properties has been proven PSPACE complete. Since the aggregation algorithm reduces the 

region, the complexity doesn’t increase. To experiment our approach, the proposed algorithm is 

implemented using model transformation based approaches. 

 

The rest of the paper is organized as follows: after presenting related work in section 2, timed 

automata and region automata are presented in sections 3 and 4 respectively. In sections 5 we 

develop some intermediaries’ results leading to the aggregation algorithm. Section 6 presents the 

algorithm. In section 7 we present the implementation and example to illustrate our approach. 

Finally we conclude the paper in section 8. 

 

2. RELATED WORKS  

 
Several works related to the minimization of timed automata have been proposed for avoiding the 

state space explosion problem. In [17], it has been shown that the formalization is able to identify 

symbolically timed properties from the timed automata. While in other work, the states space of 

the timed automata is reduced by a minimization during the construction of the regions graph, 

using a bissimulation relation on clock regions [2][26]. A minimization of timed automata 

resources, such as the clocks number or the constraints size by eliminating the inactive clocks is 

considered in [11]. It is based on a static analysis technique; however, it is judged to be not 

powerful for addressing the undecidability problem of timed automata. In [28], the reduction of 

the clocks number or constraints size can be made algorithmically. More recent work shows that 

the undecidability problem persists [14].  

 

On the other hand, other works suggest the concept of grid. In fact, the grid covers the underlying 

dense time space of timed automata, mapping points in states space into a single representative of 

each grid region. The chosen grid size of a timed automaton is an integer number. The grid 

automaton G(A;d) is defined as a sub automaton of a timed automaton A that only contains clock 

valuations that are multiples of d (where 0<d<1). G(A;d) represents a discrete version of A with 

discretization step d. The size of grid depends on the clocks number and the size of states set in 

the automaton. However, since the number of regions in real specifications is very large, it should 

be clear that the step size becomes small. Consequently, the algorithm which is theoretically 

exhaustive, is highly impractical [19][23]. The minimization principle of previous approaches is 

based on clock regions handling, to go off initial fine-grained regions, in order to achieve more 

compact regions. In contrast to this, our proposal is based on the actions labeling transitions, 

consequently reasoning on the traces and the reachable states of the Timed Automata. 

 

Even the idea seems simple; it has the advantage to be compatible with previous approaches. 

Indeed, under certain conditions, reduction can be spectacular. Obviously, our approach may be 

used together with previous. 
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3. TIMED AUTOMATA  

 
Timed automata have been introduced in 90’s for modeling real-time systems. It is a finite 

untimed automaton to which is associated a finite set of positive real-valued variables said clocks 

[3][7].  

 

Let H be a finite set of clocks, we assume the time domain be the set R
+
 of positive real numbers. 

We note Φ a finite conjunction of constraints of the form x»k where x∈H, k∈  Q
+ and » ∈  {≤, <, 

=, >, ≥}. 

 

A valuation v over H is a mapping v : H to R
+
. Let h be a subset of clocks, the valuation v[h ← 0] 

resets each clock of h to 0, i.e. maps each clock x in h to 0, and each other clock x  to v(x). Let d 

be a positive real, the valuation v+d maps every clock x to v(x) + d. The constraints are 

interpreted over valuations; we write v|= g if the valuation v satisfies the clock constraint g. It is 

defined in a natural way by v|= x»c whenever v(x)»c and v|=(g1˄g2) whenever v|= g1 and v|= 

g2. 

 

Definition 3.1. Let ∑ be a finite alphabet, a timed automaton over ∑ is a tuple ( )FSTHsSA ,,,, 0=  

where S is a finite set of states, s0 in S is the initial state, H is a finite set of clocks, 

SST
H ××Σ×Φ×∈ 2  is a finite set of edges, SF is the set of final states. 

 

A transition (s,g,a,h,s’) ∈  T represents a change of location from s ∈  S to s’ ∈  S on symbol a ∈  

∑. The clock constraint g ∈  Φ (guard) specifies when the transition is enabled and the set h ⊆ H 

gives the set of clocks to be reset by this transition. 

 

The semantic of timed automata is given as timed transition systems. Let A be a timed automaton 

over ∑, the corresponding timed transition system is ( ) ,, 0 →= qQSA where: 

 

• Q=S×R
+
 is the set of states also called configurations, 

• q0 = (s0, 0) is the initial state, 

• The transition relation is composed of the following moves: Delay moves: 

( ) ( )dvsvs
d

+→ ,,   for every d in R
+
 and Discrete moves: ( ) ( )',', vsvs

a
→  iff there exist some 

transition (s, g, a, h, s’) ∈ T such that [ ]0' and ←== hvvgv . 

 

In practice, several models are based on timed automata. We reference the classical timed 

automata of Alur and Dill and some extensions of this model. 

 

4. REGION AUTOMATA  

 
The region automata are the automata which reproduce the infinite execution of timed automata 

by a finite set of transitions. Also it is well known that in the verification by model-checking, 

testing and supervision the region automata are very used because they allow de-timing the 

specification. We resume in this section the classical definition of region automata [1]. 

 

4.1 Clock Regions 

 
The valuations of a finite set of clocks are a region, such as from two valuations of the same 

region, the same transitions are enabled. 
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Definition4.1. Let A be a timed automaton, the set of standard regions, Ω of A is the set of 

equivalence classes’ relation, noted ≡ . This relation is defined over the clocks valuations as 

follows:   

                    

                                                                                                                                               (1)                  

                                                                               

Mx is the maximum constants appearing in the constraints on clock x and for any real c, │c│ 

denotes the integral part of c, frac(c) denotes the fractional part of c. 

 

For example, we consider a set H of two clocks x and y where Mx= 3 and My= 1. So we have 38 

regions, Figure 1.  
 

 

Figure 1.   Standard regions. 

 

Properties: Two valuations of the same region must satisfy the same constraints. The relation ≡   

satisfies the following property:  

                                                                                                                                             (2) 

 

The equivalence of regions is compatible with the variation of time; it is therefore possible to 

define a successor function on regions. We note succ(r), all successors of the region r by lapsing 

time. All of regions r satisfies the following property: +∈∃∈∃⇔∈ R.)(' crrsuccr υ  such as 

'rc ∈+υ . Finally, we note that any clock region can be represented as:  {x = k: (k = 0,1, ... , Mx) or 

k-1 <x < k: (k = 1, ... , Mx) or k <x: (k = Mx)}.            
           

Example: The successors of r1 [(2 <x <3),(0 <y <x <1)] are: r2 [(x=3), (0<y<1)], r3 [(x>3), 

(0<y<1)], r4 [(x>3), (y=1)], r5 [(x>3), (y>1)]. 

 

4.2 Region Automaton  

 
Definition 4.2. Let A = (S, s0, H, T, SF) be a timed automaton defined by a timed transition system. 

The region automaton RA(A) = (L, l0, TR) over ∑corresponding to A is a finite automaton defined 

as follows: all localities of RA(A) are of the form lij = (si, rj) where si is a state and rj is a clock 

region. The initial locality is l0= (s0, r0). The set of localities is noted L. The set of transitions TR 

is, 
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(3) 

                                                                                                                                 
                                                                                                                                                 (4) 

 

5. AGGREGATION PRINCIPLE  

 
In this section, we define an aggregation operation, which can be considered as a particular 

determinization. The indeterminism considered here is due to the construction of the initial region 

automaton [15], so it is not inherent to the system. 

 

The principle of the aggregation operation consists to find and regroup localities which verify the 

following conditions: 

 

• For any input transition of a locality l1 there exist input transitions to a locality l2, where 

their outgoing are coming from the same source locality and have the same label. This second 

transition is called “forward mirror” of the first. 

• For any output transition of a locality l1 there exist output transitions from a locality l2 

where their outgoing goes to the same target locality and have the same label. This second 

transition is called “backward mirror” of the first. 

• Localities are grouped if their sets “forward mirror” and “backward mirror” matches. 

 

5.1 Notations and Definitions 
 
Let τi be a transition of a timed transition system. α(τi) (resp.  β(τi)) denotes the source locality of 

τi (resp. the target locality of τi); the label of the transition τi is given by λ(τi). 

 

Definition 5.1. The set of the input transition in a locality lij is in(lij) = {τj | β(τi)= lij}. The set of 

the output transition from a locality lij is out(lij) = {τj | α(τi) = lij}. 

 

Definition 5.2. “forward mirror” is a set lij of localities defined as follows: 

 

                                                                                                                                             (5) 

Definition 5.3. “backward mirror” is a set lij of localities defined as follows: 

 

 

                                                                                                                                               (6) 

Definition 5.4. A set of grouped localities with lij, noted RL(lij), is defined as follows:  

 

   

                                                                                                                                                  (7) 

Definition 5.5. IR is a grouping relation on localities; it is defined as follows:                  

         

                                            )RL(y  iff IR  y)(x, / Ly x, x∈∈∈∀ .                                                  (8) 
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The Bi-relation defined above is an equivalence relation, which allows defining the equivalence 

classes of the grouped localities. Indeed, IR is a reflexive relation: any locality x is grouped with 

itself because it has the same “forward mirror” and “backward mirror” as x. If x is grouped with y 

then x has the same “forward mirror” and “backward mirror” as y: It is evident that y has the same 

“forward mirror” and “backward mirror” as x according to definitions above, it is thus 

symmetrical. (x, y) are grouped and (y, z) are grouped, by definitions, (x, z) are grouped then the 

relation is transitive.  □ 

Definition 5.6. The summation of clocks regions is an operation defined on the set of regions as 

follows: 

 

                                                                                                                                              (9)                                                  

on a clock x specifying a clock region is extended by the following form:         {α≤x≤β : (α<β<Mx 

The union operation ∪ is defined like the union on integer intervals. Note that the form of 

constraints)}. The new construction is a region; it follows the same semantic as region initially 

considered. 

 

Definition 5.7. The Aggregated regions automaton ARA(A)=(L
A
, l0

A
, TAR) of the timed automaton 

A is a transition system over the alphabet ∑ defined as follows: The localities of ARA(A) are of 

the form (s,ȓ) where s∈ S and ȓ is a region, the initial locality is of the form (s0,ȓ0) such as ȓ0=r0 

and the set of transitions TAR is: 

 

 TAR =TR-TSP where TSP is the set of redundant transitions resulting after the aggregation 

operation. 

 

 6. AGGREGATION ALGORITHM  
 
The aggregation operation consists to find localities to be grouped and their replacement by a new 

locality. This locality has the same name state; its region is the summation of regions of grouped 

localities; the entering and exiting transitions are substituted with new transitions linking this new 

locality to the graph. 

 

Given a region automaton RA(A)= (L, l0, TR) over ∑, the following algorithm is used for grouping 

localities according to the equivalence relation defined above.  

Here after, the following notations are considered:  

  

• Π is a partition of L.  

• Π0 the initial partition; it is composed by singletons (elements of L). The function frag that 

fragments classes P in subclasses formed by singletons.  

 

                                                                                                                                                (10)                                              

                                                                                                                                                (11) 

• Function Φ checks if a class Q can be grouped with the class P. 

 

 

                                                                                                                                                 (12) 

      

                                                                                                                                  

• The function                                                                                                               (13) 

• The case of terminal locations is implicitly considered                                              (14) 
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6.1 Algorithm 
 
About algorithm, K is a set of grouped localities at each step; at the end Π contains localities of 

the aggregated regions automaton; the termination property of the algorithm is ensured by the 

finite number of regions in the initial graph. To implement this algorithm we only need an 

efficient representation of regions and perform simple operations such as summation over 

regions. 

( )

{ }
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l,l
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Example 1: The example (Figure 2. and Figure 3.a) present a timed automaton A and the 

associated region graph. 

 

 

Figure 2.   Timed automata A. 

 

 

 

 

 

 

 

 

(a)   (b) 

Figure 3 (a) Region graph and (b) Aggregated regions graph associated to A. 
 

Figure 3.b, shows the region graph after applying the regions aggregation algorithm. 

 

S0 S1 

S2 

a,x :=0 

y≥1 

b,y :=0 

x≥1 

c 

x=1 

S0 

x=y=0 

S2 

x≥1,y=0 

 

S2 

x=1,y=1 

 

S1 

x=0,y≥1 

a 

b 

c 

S0 

x=y=0 

S1 

x=0,y=1 

 

S2 
x=1,y=0 

 

S2 
x>1,y=0 

 

S2 
x=1,y=1 

 

S1 

x=0,y>1 

a a 

b b b b 

c 



International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012 

22 

 

6.2 Equivalence and Validation of Systems  
 
In this subsection we show that the behavior of a timed automaton is a homomorphic image of the 

behavior of its aggregated regions automaton. With this result we claim that the validation 

operations, particularly the test, generated from the aggregated regions automaton, is sufficient 

for assessing an implementation of the timed automaton. 

 

A homomorphism between two sets is a mapping of the elements of one set to the other such that 

their respective binary operations are preserved: ( ) ( )∗→ ,,: BAH o . Such that H(x) is an element of 

B and for any pair x1, x2 in A, ( ) ( ) ( )2121 xHxHxxH ∗=o .                                                     (15) 

 

In fact, the proposed algorithm constructs an homomorphism H from ARA(A) to A, mapping the 

states of ARA(A) to the states of A while preserving the transition relations over the same actions. 

To detail this we define a projection over the set of actions on transitions as:   

 

( ) ( ) ')',,(',,,, , ': τγτ ==∏=∏→∏ ∑∑∑ sassagsTT AA                                                                    (16)
 

( ) AAARH A →:  ,has the following properties: 

 

For all ( ) ( ) 00such that , slHSslHLl A
i

A
ij

AA
ij =∈=∈                                                               (17) 

And for all transitions: ( ) ( ) ( ) ( )( ) ( )TlHalHHlalT
A
kt

A
ij

A
kt

A
ijAR ∑∏∈==∈ ,,,,,, λλλ                     (18) 

 
H maps the action of λ to the action of τ in T. The mapping H can be extended in the same way to 

map computational paths. A computational path in an aggregated regions automaton corresponds 

to sequence of transitions starting from the initial locality of the automaton. That is, H can be 

extended to map computations. ( )AExec is a set of all computation of timed automaton A.   

 

( ) ( )AExecAARExecH A →+ )(:                                                                                    (19) 

( ) ( ) ( ) ( ) ( ).................. 210210 JJ HHHHH λλλλλλλλ =+                                                        (20) 

These results are summarized as follows: For every computational path in the aggregated regions 

automaton ARA(A) there is a computational path in the timed automaton A. The behaviour of A is 

a homomorphic image of the behaviour of it’s aggregated regions automaton ARA(A). 

 

Since the localities of the Aggregated regions automaton ARA(A) include clock regions (inherent 

from region automaton and more), which are the equivalence classes of regrouped clock 

valuations, the timed behavior of A is simulated by the Aggregated regions automaton. Hence, we 

claim that the validation methods based on region automata and digitization of their state spaces 

are renewed by aggregation regions automata and optimized in the above sense.  

 

Example 2: By changing clocks constraints in the previous example, the regions automaton is 

now composed by 7 regions (Figure 4.) The aggregated graph has 4 regions (Figure 5.). 
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Figure 4. Timed automaton B and the associated region graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Aggregated region graph ARA(B). 

 

7. IMPLEMENTATION  
 
In this part we present an experimentation of our approach applied to particular kind of timed 

automata model named Durational Actions Timed Automata DATA*. The DATA* model 

[21][6][22] is a sub class of timed automata which takes into account the duration of actions. It’s 

based on an intuitive idea: temporal and structural non-atomicity of actions. The example below 

presents the durational actions automaton model:  

 

 

 

Figure 6. DATA* (a). 

 

We present also, an approach to transform DATA* model into aggregate regions automata using 

graph transformation [16]. 

 
The graph transformation is a process that converts a model to another model. This task requires a 

set of rules that define how the source model has to be analyzed and transformed into other 

elements of the target model. Graph Grammars are used for model transformation [5][10]. They 

are composed of production rules; each having graphs in their left and right hand sides (LHS and 

RHS) (Figure 7). AToM3 [12] is a graph transformation tool among others. In this paper we use 

it. 
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Figure 7. Example of grammar rule in AToM3 (LHS and RHS). 

 

Example3: To illustrate our approach we propose the example of the ticket reservation system 

“TRS”. This example supposes that to buy a ticket, we generally pass by two counters. The first 

counter R is for making a reservation and the second counter C is for paying and taking the ticket. 

This agency has one waiting room, three counters of type R and two of type C. On arrival, the 

client goes to the waiting room, when a counter of type R is free, he can make a reservation. Once 

the operation is complete, he waits until a counter C becomes free for paying and taking the 

ticket. 

 
 Figure 8. presents a DATA* of TRS for two clients with the graph editor dotty. The mapping of 

this DATA* with the graph editor dotty to the equivalent DATA* model in AToM3 syntax 

(Figure 9.) is performed using python program. We have applied our tool on the DATA* model 

and obtained automatically the aggregate region automaton of Figure 10. The result is saved in 

the text file of Figure 11. 

 

 

 

 

 

 

 

Figure 8.   DATA* of TRS with the graph editor dotty. 

 

 

 

 

 

 

 

 

Figure 9.   DATA* of TRS with AToM3. 
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Figure 10.   Aggregate region automaton. 

 

 

 

 

 

 

Figure 11.   A textual aggregate region automaton. 

 

8. CONCLUSION AND OUTLOOK 
 
In this paper we proposed an algorithm for reducing region automaton. For this purpose we 

defined an equivalence relation among the regions. The proposed aggregation relation preserves 

language recognized by the original automaton.  As perspectives it seems interesting to develop a 

theory of model-checking to verify properties specified in the TCTL logic on aggregated regions 

graph. An alternative to the proposed algorithm can be to aggregate localities on the fly, which 

consists for building such graph without constructing the full region graph (i.e. at the moment of 

generation of R.G associated to the automaton). It is possible because the algorithm requires only 

three levels of the initial regions graph. Finally this work can be applied in the test by a way of 

partial determinization of the automaton. This is in the same direction of recent promising work 

[24][4]. 

 

For illustration, we propose a method for generating an aggregated regions automaton from a 

Durational actions timed automata by the graph transformation approach and using the 

environment AToM3 in order to provide a finite abstraction of DATA* structures with a high 

number of states. 

 

Firstly, we have proposed a program written in python language that transforms a DATA* 

structure, presented as a dotty file, to a DATA* structure written in the form of a python file 

respecting the syntax of AToM3. The meta-modeling tool AToM3 is used for this purpose. We 

have illustrated our approach through an example. In future work, we plan to implement our 

approach with other tools as AGG in order to compare performances. We plan also to Study the 

complexity of this transformation and its use in system testing. 
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