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Recurrent spontaneous abortion (RSA) is a common cause of infertility, but

previous attempts at identifying RSA causative genes have been relatively

unsuccessful. Such failure to describe RSA aetiological genes might be explained

by the fact that reproductive phenotypes should be considered as quantitative

traits resulting from the intricate interaction of numerous genetic, epigenetic

and environmental factors. Here, we studied an interspecific recombinant

congenic strain (IRCS) of Mus musculus from the C57BL6/J strain of mice har-

bouring an approximate 5 Mb DNA fragment from chromosome 13 from Mus
spretus mice (66H-MMU13 strain), with a high rate of embryonic resorption

(ER). Transcriptome analyses of endometrial and placental tissues from these

mice showed a deregulation of many genes associated with the coagulation

and inflammatory response pathways. Bioinformatics approaches led us to

select Foxd1 as a candidate gene potentially related to ER and RSA. Sequencing

analysis of Foxd1 in the 66H-MMU13 strain, and in 556 women affected by RSA

and 271 controls revealed non-synonymous sequence variants. In vitro assays

revealed that some led to perturbations in FOXD1 transactivation properties

on promoters of genes having key roles during implantation/placentation,

suggesting a role of this gene in mammalian implantation processes.

1. Introduction
Human infertility represents a public health concern affecting 10–15% of all

couples [1]. Despite advances in diagnosis and treatment, approximately 30% of
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cases are still considered idiopathic [2]. Recurrent spontaneous

abortion (RSA) is clinically defined by at least three pregnancy

losses prior to the 20th week of gestation and is a common cause

of infertility, because it affects 1% of all pregnancies [3–6].

Approximately 50% of those are considered idiopathic, thereby

underlining the disease’s potential genetic and epigenetic

causes. Unfortunately, previous attempts at identifying RSA

causative genes have been relatively unsuccessful. Several can-

didate genes (e.g. AMN, TM, EPCR, VEGF, p53, eNOS, JAK2,

MTHFR, WNT6) have been studied, especially using Sanger

sequencing, but only a few variants and genotypes have been

associated with the phenotype [7–11]. Although some genetic

markers indicative of an elevated risk of being affected by

RSA have been proposed, functional evidence is rare. This has

restricted their efficient use in clinical studies. Genome-wide

scan-based studies have been reported, although they have

not reached the classical accepted statistical threshold for sig-

nificance and have apparently failed to identify specific genes

[12,13]. Such failure to identify RSA aetiological genes might

be explained by the fact that reproduction’s inherent complexity

theoretically implies that mutations in hundreds of candidate

genes may be responsible for the phenotype [10,14]. Further-

more, the genetic study (e.g. via classical genetic linkage

analysis or GWAS) of families affected by RSA is particularly

challenging owing to their rarity. Indeed, causative variants

related to reproductive fitness are under strong negative selec-

tion. Compared with genetic analysis of ovarian infertility,

which allowed discovery of interesting genes [15,16], pertinent

candidates genes were seldom found when the infertility was

linked to placental/endometrial defects, such as RSA [14].

It is worth stressing that mammalian reproductive pheno-

types (and their inherent molecular mechanisms) should be

considered as quantitative traits resulting from the intricate

interaction of numerous genetic, epigenetic and environmental

factors. With that in mind, our group took advantage of a par-

ticular mouse interspecific recombinant congenic strains (IRCS)

model allowing the identification of quantitative trait loci (QTL)

related to complex phenotypes [17–21]. Phenotyping of IRCS

animals enabled us to map several QTL related to embryonic

resorption (ER) and lethality [20,22]. Murine ER might be

caused by molecular disturbances regarding implant and

fetal–placental unit function, and it is highly plausible that

causal genes play similar roles in human diseases, such as

RSA, preeclampsia and/or fetal growth restriction [23–25].

In a previous study, we showed that the 66H-MMU13 IRCS

strain is affected by a high ER rate (14.7% versus 4.6% obser-

ved in C57BL/6 J females, p , 0.01). This strain contains a

unique approximately 5 Mb spretus fragment on chromosome

MMU13 (between rs120693734 and D13Mit47 polymorphic

markers) encompassing 31 genes [22].

This study includes whole transcriptome analysis of endo-

metrial and placental tissues from the IRCS 66H-MMU13

presenting with a high ER rate. Transcriptomics and bio-

informatics approaches led us to select Foxd1 (a forkhead

transcription factor located in the critical fragment) as a candi-

date gene potentially related to ER and RSA. Sequencing

analysis of Foxd1 coding regions in the 66H-MMU13 strain,

Mus spretus animals, 556 women affected by RSA and in a con-

trol population revealed many non-synonymous sequence

variants. In vitro assays revealed that some of them (e.g. Foxd1-

p.Thr152Ala, FOXD1-Ala356Gly, FOXD1-Ile364Met and

FOXD1-429AlaAla) had a functional effect as they led to pertur-

bations in FOXD1 transactivation properties on promoters of the
Placental Growth Factor (PGF) and the complement component

gene (C3) having key roles during implantation/placentation

[26–28]. Finally, with our study, we found that women with

FOXD1 mutations have a statistically high risk (10.3 relative

risk) of suffering RSA.

Taken together, our results showed that FOXD1 is a major

actor in mammalian reproduction as sequence variants gener-

ated ER and RSA in mice and humans, respectively. We

propose that the FOXD1-p.429AlaAla mutation might be used

as an RSA molecular marker while FOXD1 p.Ala88Gly variant

might have a protective effect.
2. Material and methods
2.1. Expression microarrays from uterine and placental

mouse tissues
Eight 66H-MMU13 females were crossed with C57BL6/J males,

following a previously described mating protocol [22]. Female

mice were euthanized by cervical dislocation at E12.5, in accord-

ance with Paris Descartes University, the Cochin Institute and

the Guidelines for Biomedical Research Involving Animals pol-

icies (no. 13-020: ‘Implication of FOXD1 in ER and RSA’

reference no. 00175.01). Placentas were dissected from live

embryos and total RNA extracted using Trizol. Total RNA was

also extracted from uterine tissue located between contiguously

implanted (normal development) embryos. A pool of four pla-

centas and four uteri from each mouse was used. Four

micrograms from each RNA pool were sent to a NimbleGen

expression array platform for DNA end-labelling, hybridization,

scanning and data normalization, thereby providing the final

data file. The data are available from Annotare 2.0 (accession

number: E-MTAB-4643).

2.2. Bioinformatics analysis of microarray data
Placenta and uterus were compared between C57BL6/J mice

and 66H-MMU13 mice, using the GSEA tool (http://soft

ware.broadinstitute.org/gsea/index.jsp), in order to identify

the most relevant gene sets, first against the hallmark dataset

collection, and then against the c2.all.v5.1.symbol.gmt dataset.

The hallmark dataset encompasses only 50 gene sets with

very clear characteristics summarizing large biological func-

tions. The other dataset encompasses 4276 gene sets and

allows a much more detailed analysis of the transcriptome.

2.3. Bioinformatics and biostatistics
Statistical analysis (Student’s t-test, followed by Bonferroni cor-

rection for multiple testing) identified putative transcription

factor binding sites (TFBS) using the Genomatix Gene2Promoter

option. Putative TFBS in the promoters of the 50 most upregu-

lated genes were compared with the 40 most downregulated

ones for such analysis. Student’s t-test was used for assessing

binding site statistical representation by comparing their occur-

rence in two groups of promoters for each putative binding site

identified. The t-test was corrected to take multiple testing into

account. The putative binding sites identified by promoter

were classified according to their degree of discrepancy (in

terms of frequency) between both groups of promoters. Elec-

tronic supplementary material, table S1 outlines this analysis

for Forkhead Binding sites that were the most significantly
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enriched in promoters of down-regulated genes in the micro-

array experiment. SIFT (http://blocks.fhcrc.org/sift/SIFT.

html), POLYPHEN-2 (http://genetics.bwh.harvard.edu/pph2/,

MUTATION TASTER (http://www.mutationtaster.org/) and ALIGN

GVGD (http://agvgd.hci.utah.edu/) software, as well as data

from the 1000 genome database (electronic supplementary

material, table S3), were used for determining the potential

deleterious effect of amino acid changes [29–33].

2.4. Foxd1 sequence analysis in mice
The complete Foxd1 coding sequence, as well as 50 and 30 flank-

ing regions, were amplified in two separate amplicons (named

fragment 1 and 2), using Kapa HiFi polymerase (Clinisciences)

following the manufacturer’s protocol. Electronic supplemen-

tary material, table S2 lists the oligonucleotide sequences. PCR

conditions were identical for both fragments. PCR products

were treated with shrimp alkaline phosphatase and exonuclease

I, following the manufacturer’s recommendations (USB). The

following primers were used for the mouse sequence reaction:

mfoxd1-1F, mfoxd1-1R and mfoxd1-2F, mfoxd1-2R for frag-

ments 1 and 2, respectively. Sequence analysis was completed

at the Cochin Institute’s Genomics Platform, using an ABI

3100 sequencer (Applied Biosystems, Foster City, CA, USA).

2.5. Human FOXD1 sequence analysis
The entire FOXD1 coding region was amplified in two separate

amplicons (HuFrag-1 and HuFrag-2) or as a unique amplicon

using KAPA hifi polymerase (Cliniscience) with the primers

presented in the electronic supplementary material, table S2.

PCR products were treated with shrimp alkaline phosphatase

and exonuclease I, as described by the manufacturer (USB).

Sequence analysis involved using the following oligonucleo-

tides: HuFOXD1-1Fb and HuFOXD1-174F (for HuFrag1),

HuFOXD1-2R2b, HuFOXD1-OM and HuFOXD1-980R (for

HuFrag2) using an ABI 3100 sequencer (Applied Biosystems).

All non-synonymous variants found in the RSA and control

group were confirmed by novel sequence analysis from new

FOXD1 PCR products.

2.6. Plasmid constructs: FOXD1 expression vectors
The mouse Foxd1 coding sequences (mutant: Thr152Ala, WT

musculus or spretus) were introduced into the pcDNA3.1/CT-

GFP topoTA cloning vector (Invitrogen, Carlsbad, CA, USA).

All expression constructs were sequenced to confirm the pres-

ence of the expected variants and to exclude PCR-induced

mutations. The human FOXD1 coding sequences from patients

(carrying the FOXD1-Ala356Gly, FOXD1-Ile364Met and

FOXD1-429AlaAla mutations) as well as from a WT individual

were amplified using the HuFOXD1-a and HuFOXD1-OM

oligonucleotides. Purified PCR products were cloned into the

pcDNA3.1/CT-GFP topoTA cloning vector (Invitrogen).

2.7. Plasmid constructs: promoter reporter vectors
The murine Pgf promoter consisted of 2066 bp, encompassing

the 22300 to 2235 bp region upstream of the ATG initial start

codon. The C3 promoter region consisted of 810 bp (from

2811 to 22 bp upstream of the initial ATG start codon). Each

amplicon was generated using 250 ng DNA and Platinum Pfx

DNA polymerase (Invitrogen). Amplicons were introduced

into the pCR4-topoTA cloning vector (Invitrogen) and directly

sequenced after purification with shrimp alkaline phosphatase
and exonuclease I. All expression constructs were sequenced

to confirm the presence of the expected variants and to discard

PCR-induced artefacts. These fragments were purified and

cloned, using T4 DNA ligase (Invitrogen), into a previously

digested PGL3-basic luciferase vector (Promega).

The human PGF promoter amplicon consisted of 720 bp

(21144 to 2424 bp upstream of the initial ATG start codon) or

1653 bp upstream of the ATG start codon for the long version

of the promoter. The human C3 promoter amplicon consisted

of 729 bp (2792 to 263 bp upstream of the initial ATG start

codon). These fragments were amplified from genomic DNA

from a control individual having non-mutant sequences and

then compared to AC_000146.1 and NC_000019.8 (NCBI).

Amplicons were introduced into the pCR4-topoTA cloning

vector (Invitrogen) and sequenced to exclude PCR-induced

mutations. The PGF and C3 promoter regions were then

extracted. These fragments were purified and cloned, using T4

DNA ligase (Invitrogen), into a previously digested PGL3-basic

luciferase vector (Promega).

2.8. Cell culture and luciferase assays
The calcium phosphate method was used for co-transfecting

either COS-7 or KGN cells with 400 ng of any FOXD1 construct

and 570 ng of any PGL3 plasmid containing the target genes’ pro-

moter regions (COS-7 cells were used due to their high capacityof

being transfected, and used as a classical cell model; KGN are

ovary cells, whose expression profile may be closer to the repro-

ductive expression characteristics of the female genetic tract).

Experimental controls consisting of PGL3-basic and

pcDNA3.1/CT-GFP empty vectors were included for each con-

dition. The cell medium was replaced by a fresh one 28 h after

transfection. The FOXD1 mutants’ transcriptional activity was

assessed 44 h after transfection using the Dual-Luciferase Repor-

ter Assay System (Promega, Madison, WI, USA). Each

experiment was performed at least twice in sixplicates. The firefly

activity observed for each replicate was divided by the activity

recorded for the Renilla luciferase vector. Student’s t-test was

used for estimating statistical significance. Transfection with

empty pcDNA expression vector was used to normalize a poten-

tial effect on each promoter. STATISTIXL add-on software for EXCEL

was used for statistical analysis (ANOVA), followed by post hoc

tests (Student–Newmann–Keuls).

2.9. Patients and controls
The RSA patient group consisted of556 women who had enrolled

in a matched case-control study of unexplained pregnancy loss in

the Nimes Obstetricians and Haematologists (n¼ 2175 patients)

[26]. The control group consisted of 271 women who had at least

one live birth with no history of pregnancy loss. All these subjects

(RSA patients and controls) were Caucasian.

3. Results
3.1. Transcriptomics and gene ontology analyses reveal

downregulation of the coagulation cascade and the
inflammatory response in placenta and uterus
of 66H-MMU13 strain

To investigate the mechanism underlying the ER pheno-

type observed in the 66H-MMU13 strain, we undertook a

comparative analysis of endometrial and placental tissues

http://blocks.fhcrc.org/sift/SIFT.html
http://blocks.fhcrc.org/sift/SIFT.html
http://blocks.fhcrc.org/sift/SIFT.html
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://www.mutationtaster.org/
http://www.mutationtaster.org/
http://agvgd.hci.utah.edu/
http://agvgd.hci.utah.edu/
http://rsob.royalsocietypublishing.org/


6

5

R2 = 0.3655
R = –0.605

p = 0

4

3

2

pl
ac

en
ta

 r
at

io

1

0

–1
–6 –4 –2 420 6

–2

–3

–4
utérus ratio

Figure 1. Induction ratios in the uterus and the placentas of mice between
WT and 66H-MMU13, showing clearly that there is an inverse correlation of
the alterations between the placenta and the uterus.

rsob.royalsocietypublishing.org
Open

Biol.6:160109

4

 on January 27, 2017http://rsob.royalsocietypublishing.org/Downloaded from 
(comparing 66H-MMU13 versus C57/BL6 animals, which

differ only by an approx. 5 Mb DNA fragment located on

chromosome 13 that is of Mus spretus origin in the 66H-

MMU13). This analysis revealed important gene expression

deregulation (electronic supplementary material, table S1).

Analysis of 66H-MMU13 and C57BL6/J uterine tissue

revealed that 6.8% and 4.3% of genes are up- and downregu-

lated, respectively, at the threshold of twofold (compared

with Mus musculus levels) while in placental tissue, 3.6%

and 7.2% of genes were up- and downregulated, respectively.

Finally, 2.3% of genes were simultaneously and systema-

tically upregulated in the uterus and downregulated in the

placenta (‘mirror effect’), as presented in figure 1, showing

a negative correlation estimated at r ¼ 20.605 ( p , 102300),

between the deregulation of genes in the placenta versus

the deregulation in the uterus.

We then used GSEA to identify gene sets significantly

enriched among the genes found deregulated in the placentas

and uteri of 66H-MMU13 versus C57/BL6. First, comparing

the reference hallmark gene set with the placental deregulated

genes, we could identify two gene sets out of 50 that were signifi-

cant with an FWER , 0.05 in the upregulated genes

(WNT_BETA_CATENIN_SIGNALING and _APICAL_SUR-

FACE), and two gene sets in the downregulated genes

(COAGULATION and OXIDATIVE_PHOSPHORYLATION).

The most significant by far was the ‘Coagulation’ hallmark

(FWER p-value ¼ 0.001) as presented in figure 2. Second, the

C2 reference gene symbol set was used as reference (this group

containing 4726 gene sets). Four gene sets were upregulated

with an FWER , 0.05 (MARTENS_TRETINOIN_ RESPONSE_

UP, MIKKELSEN_MCV6_HCP_WITH_H3K27ME3, KEGG_

BASAL_CELL_CARCINOMA and MEISSNER_BRAIN_HCP_

WITH_H3K27ME3), whereas 20 gene sets were downregulated

at the same threshold (table 1). Among those, many groups of

genes involved in liver function were found, especially in link

with coagulation and targets of Hepatocyte Nuclear Factors,

HNF4a, HNF3b or HNF1a. These factors do not share

common sequences but are all of great importance in the liver.

They are also involved in coagulation as well as fibrin clotting

cascades. Other groups of genes included steroid hormone

biosynthesis, lipid transport and lipoprotein metabolism.
We performed a similar GSEA analysis on genes found

deregulated in uteri of 66H-MMU13 versus C57/BL6. Only

one hallmark entitled ‘PANCREAS_BETA_CELLS’ was

found significant in the upregulated genes list (FWER ¼

0.008), suggesting that alterations of uterine gene expression

resemble those found in the pancreas (the genes involved in

the detection of this cluster were Insm1, Chga, Isl1, Pklr, Sst,
G6pc2, Pcsk2, Neurod1 and Nkx6-1, which induced 5.1-, 2.3-,

2.1-, 1.7-, 1.6-, 1.5-, 1.4-, 1.3- and 1.25-fold, respectively). By con-

trast, six hallmarks were significant in downregulated genes,

which are INFLAMMATORY_RESPONSE, INTERFERON_

GAMMA_RESPONSE, TNFA_SIGNALING_VIA_NFKB,

IL2_STAT5_SIGNALING, IL6_JAK_STAT3_SIGNALING and

ALLOGRAFT_REJECTION. The first of them is represented

in figure 3 along with the most downregulated genes. On the

whole, the uterus of the 66H-MMU13 mice was characterized

by a strong downregulation of genes involved in inflammation

and immunity. The analysis of the C2 gene set from GSEA con-

firmed a great contrast between the number of upregulated

gene sets (48 with an FDR , 0.25) and downregulated gene

sets (711 gene sets with a FDR , 0.25). In the downregulated

clusters, a vast quantity of inflammatory/immune pathways

are present (related to viral infection, IFN targets, CTLA4

pathway, Graft-versus host disease, etc.). In the upregulated

groups, beta cell development is present, consistent with the

hallmarks previously identified.

3.2. Promoter analysis of deregulated genes identifies
Foxd1 as the most relevant candidate gene to
explain 66H-MMU13 phenotype

The list of genes present in the Mus spretus fragment has pre-

viously been published [22]. Several genes in this region are

putatively involved in the phenotype observed, such as F2rl1,

F2r. Bioinformatics analysis of putative TFBS using Genomatix

showed that transcription factors (TFs) encompassing forkhead

binding sites (FKHD) in placental tissue were at the top of the

list (statistical discrepancy between promoters of repressed

and induced genes). More specifically, repressed genes con-

tained twice as many FKHD than promoters of induced

genes (2.54 versus 1.27, p ¼ 0.0009; electronic supplementary

material, table S1 and figure S1). The fragment of spretus
chromosome 13 fixed in the 66H-MMU13 strain contains only

one forkhead domain transcription factor: Foxd1. It is therefore

a strong candidate to explain the gene deregulation associated

with the elevated ER in 66H-MMU13 line. Because Foxd1
was not modified in the array, our hypothesis was that the

spretus and musculus versions of Foxd1 had different effects on

gene regulation, rather than one version being differentially

expressed compared with the other.

3.3. Spretus version of Foxd1 presents sequence
variants which have functional consequences
on its target genes

Direct sequencing of the complete Foxd1 coding region

from Mus spretus and 66H-MMU13 animals revealed five

non-synonymous variants relative to the C57B6/J version:

p.Asp73Glu, p.Asn126Glu, p.Thr152Ala, p.Asp76_Leu77In-

sAsp and p.Pro319del. One specific variant, Foxd1-Thr152Ala,

drew our attention because it is located in the protein’s

http://rsob.royalsocietypublishing.org/
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forkhead DNA-binding domain (DBD) and threonine in

position 152 is strictly conserved during evolution except in

spretus (figure 4). The SIFT software predicted a highly deleter-

ious effect of a change of this threonine into an alanine (as

found in spretus; score: 0.00) as this mutation triggers the disap-

pearance of a predicted phosphorylation hot-spot. We next

tested the functional effect of p.Thr152Ala variant on promoters

of known Foxd1 target genes which were among the deregula-

ted genes in microarray analyses of 66H-MMU13 placenta/

uterus: Pgf and C3.

In luciferase assays, the spretus version of Foxd1 (Foxd1-ms)

was able to transactivate Mus musculus Pgf (Pgf-mm) promoter

but to a lesser extent (approx. threefold reduction, p-value ,

0.001) than Foxd1 Mus musculus version (Foxd1-mm). Similarly,

Foxd1-mm transactivation of the spretus Pgf (Pgf-ms) promoter

was reduced compared with its effects on Pgf-mm promoter.

However, Foxd1-mm transactivation of Pgf-ms promoter was

significantly higher than that of spretus Foxd1 version (Foxd1-

ms), suggesting that Foxd1 Mus musculus version leads to a

higher activation of Pgf promoter whether from musculus or

spretus (figure 5). The Foxd1-Thr152Ala mutation alone signifi-

cantly decreased Foxd1 ability to transactivate Pgf promoter.

Conversely, Foxd1-ms overexpression led to higher C3-mm pro-

moter transcription activity than that induced by the Foxd1-mm

version while the Foxd1-T152A mutation alone had no signifi-

cant differences regarding control (figure 5). On the whole,

these data demonstrate that Foxd1 spretus and musculus versions

have different effects on their target genes, in agreement with a

model in which the gene deregulation and associated ER pheno-

type in 66H-MMU13 strain are mainly due to sequence variants

in Foxd1 spretus version, compared with musculus.

3.4. FOXD1 sequencing in humans show polymorphisms
with effects associated with adverse pregnancy
outcomes

As the results we obtained in mice were encouraging, we

move to human patients and sequenced FOXD1 in 556
women affected by RSA and 271 women with normal ferti-

lity, and found a total of 27 sequence variants (table 2).

Nine of them were present in both RSA and control individ-

uals, 18 (10 non-synonymous) variants were identified only

in RSA patients and one was present exclusively in control

individuals. Sequence variants found in RSA women con-

cerned 33 patients (5.9%). All non-synonymous nucleotide

changes exclusive to the RSA group (not present in control

individuals) were identified in heterozygous state. A contin-

gency x2-test revealed highly significant ( p ¼ 0.0006)

statistical comparison of the exclusive variants in the patient

population to those in the control group. Relative risk calcu-

lated using all these ‘private’ mutations was 10.3 (5%

confidence interval: [1.4–77.2]). The statistical significance

was achieved using a single sequence variant (p.429AlaAla)

in which two alanine residues were inserted at protein pos-

ition 429. This mutation was found 12 times exclusively in

the patient group (2.2%, p ¼ 0.015). The p.Ala88Gly variant

was found in 8.5% of the women from the control group

(3.6% in the RSA group).

In luciferase assays, FOXD1-p.Ala356Gly and FOXD1-

p.429AlaAla forms were completely unable to activate the

PGF promoter while the FOXD1-Ile364Met variant retained a

transactivation capacity similar to that of the WT form. Regard-

ing the effect on C3 promoter activity, the FOXD1-Ala356Gly

versions did not yield to any activation of C3 promoter, con-

trary to the WT form, while the Ile364Met form induced an

approximately sixfold transactivation. The FOXD1-429AlaAla

variant also tended to induce the expression level (approx.

threefold) of C3 promoter than the WT form (figure 6).
4. Discussion
Human fertility, like most biological processes in mammals, is

assumed to be the result of subtle interaction of gene variants

located in different genomic regions, having a quantitative

effect and thus called QTL for quantitative trait loci.

The expression of these gene variants, in interaction with

http://rsob.royalsocietypublishing.org/


Table 1. Highly significant placental gene sets identified as enriched between 66H-MMU13 and C57B6/J mice. The gene sets (obtained from GSEA, http://
software.broadinstitute.org/gsea/msigdb/collections.jsp) were systematically tested against the placental transcriptome comparing the two mouse lines under
scrutiny. When a name starts the geneset it refers to the researcher that published the dataset. Size refers to the number of genes present in the geneset.
Positive values for ES and NES (light grey) stands for gene clusters of upregulated genes, while the negative values (dark grey) account for clusters of
downregulated genes. NOM p-value is the nominal (non-corrected p-value). FDR is the false discovery rate and FWER is the family-wise error rate. The RANK at
MAX refers to the position of the last gene inside the up- or downregulated group, among the complete classified list of genes from the microarray experiment.
For instance, this means that statistically there are 2.45-fold more genes than expected in the present study that are correlated to upregulated genes following
tretinoin treatment.

name of the geneset size ES NES
NOM
p-value

FDR
q-value

FWER
p-value

rank
at max

MARTENS_TRETINOIN_RESPONSE_UP 581 0.46 2.45 0.0 0.0 0.0 2550

MIKKELSEN_MCV6_HCP_WITH_H3K27ME3 357 0.42 2.29 0.0 5.5 � 1023 0.01 2228

KEGG_BASAL_CELL_CARCINOMA 53 0.55 2.27 0.0 5.1 � 1023 0.014 3494

MEISSNER_BRAIN_HCP_WITH_H3K27ME3 225 0.43 2.22 0.0 7.5 � 1023 0.026 2220

HSIAO_LIVER_SPECIFIC_GENES 192 20.67 22.55 0.0 0.0 0.0 1362

SU_LIVER 40 20.79 22.44 0.0 0.0 0.0 728

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 48 20.74 22.40 0.0 0.0 0.0 892

OHGUCHI_LIVER_HNF4A_TARGETS_DN 111 20.62 22.29 0.0 0.0 0.0 1899

REACTOME_RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC_CA2_ 66 20.66 22.25 0.0 0.0 0.0 1230

VANDESLUIS_COMMD1_TARGETS_GROUP_3_UP 76 20.65 22.23 0.0 1.1 � 1024 0.001 1023

REACTOME_LIPOPROTEIN_METABOLISM 24 20.77 22.18 0.0 9.9 � 1025 0.001 280

REACTOME_FORMATION_OF_FIBRIN_CLOT_CLOTTING_CASCADE 21 20.79 22.16 0.0 9.0 � 1025 0.001 892

MILI_PSEUDOPODIA_HAPTOTAXIS_UP 369 20.55 22.16 0.0 1.6 � 1024 0.002 4426

SERVITJA_ISLET_HNF1A_TARGETS_DN 95 20.61 22.16 0.0 1.5 � 1024 0.002 643

REACTOME_CHYLOMICRON_MEDIATED_LIPID_TRANSPORT 15 20.84 22.15 0.0 2.1 � 1024 0.003 280

PID_INTEGRIN2_PATHWAY 25 20.75 22.14 0.0 2.6 � 1024 0.004 406

PID_UPA_UPAR_PATHWAY 39 20.69 22.13 0.0 2.5 � 1024 0.004 444

CAIRO_LIVER_DEVELOPMENT_DN 199 20.55 22.11 0.0 5.2 � 1024 0.009 1737

PID_HNF3B_PATHWAY 36 20.69 22.10 0.0 6.6 � 1024 0.012 348

KEGG_STEROID_HORMONE_BIOSYNTHESIS 30 20.70 22.09 0.0 8.4 � 1024 0.016 1454

LEE_LIVER_CANCER_E2F1_DN 53 20.64 22.09 0.0 9.0 � 1024 0.018 2318

BIOCARTA_AMI_PATHWAY 16 20.82 22.08 0.0 8.5 � 1024 0.018 1182

YAMASHITA_LIVER_CANCER_STEM_CELL_DN 66 20.60 22.05 0.0 2.1 � 1023 0.045 1575

BIOCARTA_INTRINSIC_PATHWAY 16 20.81 22.04 0.0 2.0 � 1023 0.045 1182
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environmental factors, results in significant quantitative pheno-

typic differences between individuals (e.g. at the organ or at the

molecule levels). Classical genetic approaches (e.g. genetic link-

age analysis in families, direct sequencing of candidate genes)

have been relatively unsuccessful for discovering genes modu-

lating fertility in the endometrial/placental context, probably

because in this case the failure results in a very complex inter-

action between two genetically different partners (the

placenta with half of the alleles coming from the father, on

the one hand, and the uterus, on the other hand), involving

highly complex and strongly regulated immune tolerance

mechanisms. The genetics of infertility QTL was often studied

in mouse models, leading for instance to identification of

regions of the X chromosome implied in male infertility in

mice [34,35]. However, these approaches have generally not

permitted gene identification [22]. Similarly, in species where

the economic importance of controlling fertility is huge, such

as in cattle, genomic regions containing genes involved in

fertility have been identified as well, but rarely genes [36].
The IRCS model that we used in this study presents some

advantages such as the high genetic and phenotypic variabil-

ity between parental strains (Mus musculus and Mus spretus).

Because the average length of the spretus chromosomal frag-

ments fixed in the Mus musculus genetic background is small,

it allows a relatively precise identification of the QTL

location, albeit the ultimate cloning of relevant genes remains

very challenging [37].

A previous study showed that the 66H-MMU13 IRCS

strain was affected by a high ER rate (14.7% versus 4.6%

observed in C57BL/6 J females, p , 0.01). This strain contains

a unique 5 Mb spretus fragment on chromosome MMU13

(between rs120693734 and D13Mit47 polymorphic markers)

encompassing 31 genes [22]. In this study, the classical

genetic approaches are combined with cDNA microarray

assays in relevant tissues (endometrium and placenta) for

evaluating potential placental and uterine transcriptional

differences between 66H-MMU13 and control animals that

could explain the phenotype. This hypothesis proved reliable

http://software.broadinstitute.org/gsea/msigdb/collections.jsp
http://software.broadinstitute.org/gsea/msigdb/collections.jsp
http://software.broadinstitute.org/gsea/msigdb/collections.jsp
http://rsob.royalsocietypublishing.org/


genes contributing to the enrichment

(a) (b)

gene
symbol gene name

induction
ratio
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chemokine (C-C motif) ligand 17
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interleukin 1, beta
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v-yes-1 Yamaguchi sarcoma viral related oncogene homolog

chemokine (C-C motif) ligand 7
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tumor necrosis factor (ligand) superfamily, member 9

tumor necrosis factor receptor superfamily, member 9

oxidised low density lipoprotein (lectin-like) receptor 1
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Figure 3. The major gene set of downregulated genes in the uterus is composed of genes involved in inflammation. (a) The list of the most strongly downregulated
genes in this pathway, from the GSEA analysis ( presented in part (b) of the figure). NES reflects the Normalized Enrichment Score, indicating a very significant
enrichment of genes involved in this pathway.

M. spretus
66H
66H-MMU13
M. musculus
H. sapiens
X. tropicalis
R. rattus
D. rerio

142 181

Figure 4. Alignments of FOXD1 DBD in different species of vertebrates. Note the difference between the spretus-derived samples and all the other species at
position 152.
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because it has been previously shown that incompatibilities

between separate chromosome regions in the IRCS model

induce strong gene expression alterations, due to interspecific

genomic divergence between coding (e.g. TFs) and regulatory

regions (e.g. promoters). Indeed, in the IRCS mice, two gen-

omes of two different species that diverged around 1 Ma are

collapsed in a few generations, leading to a phenomenon

named ‘transcriptomic shock’ [37,38].

Comparative analysis of endometrial and placental tissues’

transcriptomes between 66H-MMU13 and C57BL/6 J animals

showed deregulation of gene expression throughout the whole

genome. Some genes show systematic opposite deregulation

(‘mirror effect’) between placenta and uterus, suggesting an

alteration of the bidirectional molecular dialogue normally

occurring between these tissues. Such widespread modifi-

cation in expression profiles might be due to alterations of
one or several TFs located on the 66H-MMU13 strain’s spretus
fragment. Following such an assumption, a Mus spretus-TF

might have abnormal transactivation properties on multiple

Mus musculus target promoter sequences. Bioinformatics

analysis of the promoter content in TF-binding sites in the

deregulated genes led us to propose Foxd1 as a strong candi-

date. Direct sequencing of 66H-MMU13 and spretus animals

demonstrated that, during evolution, five sequence variants

were fixed in Foxd1 coding regions of Mus spretus subspecies.

In silico analysis underlined the strong interest of one of them

(Foxd1-Thr152Ala), because it affected the forkhead DBD in a

highly conserved position among mammalian species and

the bioinformatics tools predicted a functional effect (figure 4).

A luciferase reporter assay was then carried out to inves-

tigate target gene transactivation capacity regarding both

Foxd1 spretus alleles and the Thr152Ala variant, using two

http://rsob.royalsocietypublishing.org/
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Figure 5. Transactivation properties of distinct mouse Foxd1 versions on Pgf and C3 promoters. (a) Luciferase activity on the mouse Pgf promoter in two cell models
(COS-7 and KGN). In black are the effects of the Mus musculus and Mus spretus versions of Foxd1 on the Mus musculus promoter. In red are the effects of the same
TFs on the Mus spretus promoter. The expression profiles are similar, despite significant differences in the cell lines. Overall, the activation of the promoter appears
more efficient with the Mus musculus FoxD1. (b) The effects of specific variants of FoxD1, including the T152A mutation on the Pgf and C3 promoters. The Mus
spretus variant appears more efficient on the C3 promoter and less efficient on the Mus musculus version of the Pgf promoter. These results are consistent with an
overexpression of complement cascades (negative for implantation) and underexpression of a major actor of placental angiogenesis, Pgf. p-values *,0.05, **,0.01
and ***,0.001.
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genes’ promoter constructs (placenta growth factor, Pgf and

complement component, C3). These were strongly modified

in the microarrays and are known to play key roles in mam-

malian implantation [26,27,39,40]. The Pgf transcript (Pgf is a

previously validated Foxd1 direct target gene [28]) was 4.3-

fold less abundant in the 66H-MMU13 uterus compared

with the C57BL/6 J control, while C3 was upregulated

5.7-fold in the 66H placenta compared to C57BL/6 J control.

Luciferase reporter assays using the mouse Foxd1 coding

sequence and target promoters (C3 and Pgf) showed that even

though Foxd1-ms was able to stimulate Pgf-mm (interspecific)
expression, activation became strongly and significantly altered

(approx. 3-fold reduction) compared with that for Foxd1-mm on

the Pgf-mm promoter (intraspecific). These results corroborated

their biological pattern as observed in transcriptome assays.

Reciprocally, it was observed that Foxd1-mm transactivation

capacity regarding the Pgf-ms promoter (interspecific) became

reduced compared with its effects on the Pgf-mm promoter

(intraspecific). This could have been due to natural genomic

polymorphism between musculus and spretus genomes,

observed in terms of nucleotide substitution [38]. Interestingly,

our experiments showed that the Foxd1-mm version was

http://rsob.royalsocietypublishing.org/


Table 2. FOXD1 open reading frame sequencing in RSA patients and control individuals. Mutations tested for their functional impact are in bold.

DNA protein patients (n5556) controls (n5271) p-values < 0.05

c.69G.C p.Gly23Gly 7 3

c.237G.A p.Leu79Leu 3 0

c.300C.T p.Ala100Ala 1 0

c.324 C.T p.Gly108Gly 2 0

c.612G.A p.Glu204Glu 1 2

c.903C.A p.Ala301Ala 1 0

c.1007 C.T p.Ala336Val 1 0

c.1248G.C p.Val416Val 1 0

c.1297 GCC.GCG p.Ala432Ala 2 0

c.1308A.G p.Ser436Ser 318 136

c.1055 C.G p.Arg352Pro 1 0

c.1007 C.T p.Ala336Val 1 0

c.164G.C p.Arg55Pro 1 0

c.263G.C p.Ala88Gly 20 23 0.004

c.326_327InsGCG p.Ins109Gly 1 0

c.683C.T p.Pro228Leu 0 2 0.043

c.721G.C p.Ala241Pro 1 0

c.976G.A p.Ala326Thr 21 8

c.1067 C>G p.Ala356Gly 1 0

c.1092 C>G p.Ile364Met 2 0

c.909_1165del256 p.FS.STOP376 1 0

c.1146-1160del p.Gln383_Ala387del 27 13

c.1169_1170InsGGCCGC p.Ins391ProPro 6 7

c.1187C.T p.Pro396Leu 3 1

c.1285_1286InsGCCGCG p.Ins429AlaAla 12 0 0.016

c.1309G.A p.Val437Ile 1 0

c.1324G.T p.Ala442Ser 1 0

rsob.royalsocietypublishing.org
Open

Biol.6:160109

9

 on January 27, 2017http://rsob.royalsocietypublishing.org/Downloaded from 
significantly more efficient in transactivating the Pgf-ms promo-

ter than the Foxd1-ms version itself. Hypothetically, these

features could be consistent with the idea that the Mus spretus
Foxd1 variants would modulate the amount of progeny to an

optimal (and not maximal) number. On this point, it is worth

noting that spretus litter size is naturally smaller than the muscu-
lus one (5.3+1.4, versus approx. 7.6 in C57BL/6 J) [39,41]. We

also tested the effect of the Foxd1-Thr152Ala mutation alone

regarding Pgf-mm expression. As expected, this mutation sig-

nificantly (albeit moderately) decreased Foxd1 transactivation

capacity concerning the Pgf promoter, thereby contributing to

downregulation of the Pgf levels observed in the 66H-MMU13

uterine tissue. Furthermore, it indicates that the other Foxd1
spretus variants also participated in this phenomenon (figure 5).

This led to investigating spretus Foxd1’s functional impact

on Mus musculus complement C3, a gene playing a central

role in ER, as shown by the CBA�DBA cross [42]. Foxd1 spretus
overexpression induced higher C3-mm expression levels than

those induced by the Foxd1-musculus version (figure 5), while

there were no significant differences between the isolated

Foxd1-Thr152Ala mutation and control concerning this promo-

ter. These in vitro experiments were consistent with the existing

transcriptome data in which C3 is 5.7-fold more abundant in the
66H-MMU13 placenta than in the C57BL/6 J tissue. Our exper-

iments suggest that C3 is a direct target of Foxd1, an observation

which has not been reported before.

In sum, Foxd1 seems to regulate the expression of two

crucial genes implicated in pregnancy maintenance. Pgf is

highly expressed in the placenta, where it regulates vascular

endothelial differentiation [43]. Uterine NK cells (uNK), an

endometrial lymphocyte cell subset transiently found during

endometrial decidualization and essential for immune dialogue

with trophoblasts, express Pgf and Vegf [40,44,45]. Pgf2/2 mice

display defects during early differentiation of binucleate uNK

cells [37]. Concerning C3, its activation is required for anti-

phospholipid-induced pregnancy loss that can be reverted by

administering heparin, which blocks complement cascade

activation [26]. The placenta appears to be subjected to a comp-

lement-mediated immune attack at the maternal–fetal interface

during normal pregnancy. An appropriate complement inhi-

bition is required for physiological gestation and, as has been

thoroughly demonstrated in mice, the deficiency of comp-

lement regulatory proteins progressively leads to embryonic

lethality [46,47]. Indeed, excessive local complement C3 pro-

duction may overwhelm complement regulatory mechanisms,

thereby leading to pregnancy loss. These findings suggest

http://rsob.royalsocietypublishing.org/
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A706: p.Ile364Met). The A706 mutant seems to be able to provoke an overexpression of the mouse Pgf promoter (c). Letters reflect significant differences compared
with transfections with the empty expression vector. Asterisks relate to the comparison relative to the WT induction: p-values *,0.05, **,0.01 and ***,0.001,
compared to WT. Error bars represent standard error.
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that strong C3 expression disturbance (activation or inhibition)

is related to embryo abortion.

Concerning FOXD1 screening for mutations in women

affected by RSA mutations, our statistical results showed that

women having FOXD1 mutations were at a high risk (10.3 rela-

tive risk) of suffering RSA. To the best of our knowledge, this

value is the highest reported to date concerning idiopathic

forms of RSA. The functional effects of three FOXD1 mutations

were assessed to establish a direct functional link between

them and RSA aetiology. These mutations were predicted to

be damaging, because they were exclusively found in RSA

women, and most were not previously described in SNP data-

bases, while their affected residues are conserved among

mammalian species. The FOXD1 wild-type (WT) and mutant

versions (FOXD1-Ala356Gly, FOXD1-Ile364Met and FOXD1-
429AlaAla) were tested regarding their PGF and C3 promoter

transactivation properties (figure 6). FOXD1-Ala356Gly and

FOXD1-429AlaAla were completely unable to activate the PGF
promoter, while Ile364Met retained a transactivation capacity.

These results suggested that FOXD1 variants may reduce PGF

levels, thus potentially affecting pregnancy maintenance.

Concerning the C3 promoter, the FOXD1-WT version

induced C3 compared with the empty vector while the

FOXD1-Ala356Gly was unable to do so. FOXD1-Ile364Met ver-

sions induced significantly the C3 promoter, while there was a

trend with the FOXD1-429AlaAla construct (not significant).

Despite the non-signification due to interexperiment variation,

FOXD1 p.429AlaAla can be considered as hypomorphic and

hypermorphic on PGF and C3 promoters, respectively, both

being problematic for a successful pregnancy.

http://rsob.royalsocietypublishing.org/


rsob.royalsocietypublishing.org
Open

Biol.6:160109

11

 on January 27, 2017http://rsob.royalsocietypublishing.org/Downloaded from 
It has been shown that C3 levels in humans are higher in

patients suffering a third consecutive pregnancy loss than in

women having a successful pregnancy after two idiopathic

abortions [48]. Moderate C3 expression levels in mice are

necessary for successful gestation because C3 knock-out (KO)

animals have a much higher resorption rate 15 days post
coitum than their WT counterparts, due to trophoblast dysfunc-

tion and labyrinth development defects [49]. Our in vitro
experiments suggested that FOXD1 mutations decreasing or

increasing C3 expression are deleterious. This indicates that a

subtle tuning of C3 expression levels is necessary for optimal

fotal–placental interface function.

It should be noted that, up to now, severe defects have

been seen in Foxd1 KO animals regarding kidney (only in

homozygous state) and optic chiasm development [50,51].

FOXD1 human mutations or the mouse Foxd1-ms functional

substitution described here displayed milder functional

effects than those observed in Foxd1 homozygous KO mice.

This might be due to the mutation’s intrinsic nature (com-

plete KO versus point mutations) or/and to interspecific

genetic/physiological differences.

This led to hypothesizing that more drastic mutations in

humans may be related to kidney and/or neurological

phenotypes. However, it cannot be ruled out that FOXD1
could be implicated in syndromic forms of RSA which include

these and/or other clinical features. It would be of interest to

check for the presence of eye phenotype in patients suffering

from RSA, which in these cases could be due to FOXD1 variants.

One concern in our work is the fact that the expression

data about FOXD1 in the utero-placental unit is relatively

scarce. The Protein Atlas database suggests, however, a signifi-

cant expression of the protein in the human placenta (http://

www.proteinatlas.org/ENSG00000251493-FOXD1/issue/plac

enta). The absence of reliable Foxd1 antibody in mice prevented

us, despite several attempts, from observing a specific labelling,

even in reference tissues such as the kidney. Furthermore, even

the microarray data for this gene may sometimes be question-

able due to the extreme richness in CG dinucleotides found in

its open reading frame (73.8% versus 41% for the genome,

with 264 CG and five NotI digestion sites (GCGGCCGC) in

an Open Reading Frame of 1371 nucleotides while one is

expected in more than 500 000 nucleotides on average), leading

to possible problems in hybridization. It is interesting to note,

however, that Sha and co-workers [52] published in 2007 a com-

parison of endothelial cells in the endometrium in
endometriosis and control patients, which revealed a 6.1-fold

increase ( p ¼ 0.0015) of FOXD1 mRNA level in the context of

this disease, known to be a major cause of infertility. The

expression levels reported in control endometrial endothelial

cells from this study for FOXD1 corresponded to the expression

of genes mildly expressed [52].

In conclusion, QTL positional cloning has been validated

for the first time by genotyping an outbred species (human).

The approach outlined here may be useful for other pos-

itional cloning projects where a limited set of recombination

events is available for mapping purposes (as in IRCS, or

more generally in mouse strains). Our results have also

shown that FOXD1 is possibly a new molecular actor modu-

lating pregnancy maintenance, with mutations associated

with ER in mice and RSA in humans. Our findings argue

in favour of FOXD1 p.Ala88Gly conferring a protective

effect, because it was frequently encountered in the control

group. Finally, we propose that the FOXD1 p.429AlaAla

mutation can be considered as an RSA molecular marker,

which can be easily tested by PCR/sequencing.
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