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Abstract

Climate change is expected to strongly affect freshwater fish communities. Combined with 

other anthropogenic drivers, the impacts may alter species spatio-temporal distributions, and 

contribute to population declines and local extinctions. To provide timely management and 

conservation of fishes, it is relevant to identify species that will be most impacted by climate 

change and those that will be resilient. Species traits are considered a promising source of 

information on characteristics that influence resilience to various environmental conditions 

and impacts. To this end, we collated life history traits and climatic niches of 443 European 

freshwater fish species and compared those identified as susceptible to climate change to 

those that are considered to be resilient. Significant differences were observed between the 

two groups in their distribution, life-history and climatic niche, with climate-change 

susceptible species being distributed within the Mediterranean region, and being characterized

by greater threat levels, lesser commercial relevance, lower vulnerability to fishing, smaller 

body and range size, and warmer thermal envelopes. Based on our results, we establish a list 

of species of highest priority for further research and monitoring regarding climate change 

susceptibility within Europe. The presented approach represents a promising tool to efficiently

assess large groups of species regarding their susceptibility to climate change and other 

threats, and to identify research and management priorities.

Introduction

As ectothermic organisms, fishes are intimately linked to local climatic conditions 

through physiological mechanisms that delimit tolerance or resilience (Comte & Olden, 

2017a). Zoogeography of fishes is therefore greatly influenced by the average and spread of 

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

2



temperatures experienced in a given watershed (Pörtner & Farrell, 2008; Isaak & Rieman, 

2013). Relative to seas and oceans, freshwater habitats are more drastically impacted by 

changes to climate, especially due to changes to temperature and flow, and climate change is 

projected to strongly affect freshwater fish communities (O'Reilly et al., 2003; Buisson et al., 

2008; Graham & Harrod, 2009; Harrod, 2016; Radinger et al., 2017). Combined with other 

anthropogenic impacts (e.g. land use change and thermal pollution; Radinger et al., 2016; 

Raptis et al., 2017), climate change will restrict or redraw thermal envelopes, contribute to 

population declines and local extinctions, and result in shifts in the distribution of species 

(Ficke et al., 2007; Woodward et al.; 2010; Booth et al., 2011; Filipe et al., 2013). Riverine 

fish species losses due to climate change and reduced water discharge are predicted to reach 

75% in some river basins, such as those of rivers Parnaíba (Brazil), Saloum (Senegal) and 

Cauvery (India; Xenopoulos et al., 2005). Phenological changes in fish behaviour (Otero et 

al., 2014; Dempson et al., 2017; Hovel et al., 2017) have been also detected and emphasize 

the powerful changes imposed by a changing climate. In Europe, there is a broad range of 

climatic conditions experienced across the landscape and a diverse ichthyofauna distributed 

throughout the lakes and rivers (Ficke et al., 2007). Within the IUCN (International Union for 

Conservation of Nature and Natural Resources) Red List, as many as 33% of European 

freshwater fish species are recognized as threatened by climate change (IUCN, 2017).

Efforts to preserve ecosystem integrity must focus on maintaining species richness 

and diversity to ensure that the services provided by freshwater ecosystems are maintained. 

Conservation is often limited by funding and therefore must undergo triage to identify 

priorities and allocate resources efficiently (McDonald-Madden et al., 2011). To provide 

timely management and conservation and allocate resources efficiently, it is important to 

identify those species that will be most impacted by climate change and those that might be 
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rather resilient. Species traits are considered as a promising source of information on 

characteristics that influence resilience to various environmental conditions and impacts 

(Jiguet et al., 2007; Comte & Olden, 2017b). Species traits represent any morphological, 

physiological or phenological feature that is measurable at the individual level of a species 

(Floeter et al., 2018). Trait-based evaluation has been demonstrated to be linked to the risk 

status of species and can be used to investigate mechanisms that contribute to imperilment, 

make predictions about unassessed species, or rank and prioritize species based on their 

relative risk (Olden et al., 2007; Bland & Böhm, 2016; Kopf et al., 2017; Comte & Olden, 

2018).

The aim of the present study was to assess various ecological and life-history 

characteristics of European freshwater fish species, and to identify traits that are characteristic

of those that are susceptible to the effects of climate change. Based on an automated scraping 

of online trait databases with species-specific data on life history, distribution, climatic niches,

threat and economic status, and calculation of climate envelopes using IUCN range maps 

overlaid on climate maps, we compared species identified as susceptible to climate change 

with those that are considered to be resilient. We also established a list of European species of 

highest priority for further research and monitoring regarding climate change susceptibility. 

The method allows to extrapolate results and characterize rare and less studied species, with 

scarce autecological information. Results of the study will advance our understanding of 

projected climate change effects on the European freshwater fish fauna. 

Materials and methods

Dataset

Our analysis comprised comparisons of in total 443 European freshwater fishes 
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between those that were categorized as threatened by climate change (n=148) within the 

IUCN Red List Database (IUCN, 2017) and those without climate change listed as a threat 

(n=295). Categorization of species according to their susceptibility to climate change within 

this database is based on threat assessment and expert judgement by IUCN species experts 

(Freyhof & Brooks, 2011; IUCN, 2017).  A list of native European freshwater fish species 

belonging to 25 families, mainly to Cyprinidae (45%) and Salmonidae (20%), was obtained 

from the IUCN Red List database (IUCN, 2017). It included both exclusively freshwater 

species, as well as those that partly enter brackish and saltwater. Obtained data also comprised

IUCN Red List classification and maps of their distributional range within Europe.

 In addition, for each species we collated trait information related to their life 

history, ecology, fishery and threat status, and spatial and bioclimatic data variables (Table 1). 

Life-history data were obtained from the FishBase database (Froese & Pauly, 2017) by using 

the rfishbase R package (Boettiger et al., 2012, 2017). Traits with low data coverage (i.e. those

that were available for less than 1% of all species) were excluded from the analysis. 

Bioclimatic spatial data were obtained from the MERRAclim database (Vega et al., 2017) and 

included 19 variables related to temperature and humidity (Table 1). Global Human Footprint 

map (map of anthropogenic impacts on the environment) was obtained from WCS and 

CIESIN (2005) and the spatial elevation data were obtained from USGS (2010). Based on the 

distributional range maps of each species (IUCN, 2017), mean values within each species' 

range were estimated for each of the spatial variables using the intersect tool in ArcGIS 

(version 10.5) and the extract function in the R (version 3.4.3; R Core Team, 2017) package 

raster (version 2.6-7; Hijmans, 2017). Range maps were also used to estimate the number of 

watersheds covered by each species based on WRI (2006), as well as the area and coordinates 

of the range centroid for each species. Descriptions of all variables used in the analysis, 
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general descriptive statistics and information on data sources are presented in Supplementary 

material S1. The complete dataset is presented in Supplementary material S2.

Statistical Analysis

We calculated boosted regression trees (BRT) to evaluate the relationship between the 

membership of a species to the group of susceptible vs. non-susceptible species and the 45 

explanatory variables. BRT are a statistical learning method that combines and averages 

(boosting) many simple single regression trees to form collective models of improved 

predictive performance (Elith et al., 2008). BRT can accommodate continuous and categorical

variables, are not affected by missing values or transformation or outliers and are considered 

to effectively select relevant variables, identify variable interactions and avoid overfitting 

(Elith et al., 2008, Radinger et al., 2015).

Specifically, we first fitted an initial global BRT model (R package dismo, gbm.step, 

version 1.1-4; Hijmans et al., 2017) using the complete set of explanatory variables. An 

automatized stepwise backward selection of explanatory variables (gbm.simplify) was applied 

to eliminate non-informative variables based on model-internal cross-validation of changes in 

a models’ predictive deviance (Hijmans et al., 2017). Thereafter, we calculated a final BRT 

model (gbm.step) based on the selected set of explanatory variables. For all BRT modeling 

steps, tree complexity and learning rate was set to 3 and 0.001, respectively, to achieve the 

recommended number of more than 1000 regression trees (Elith et al., 2008). All other model 

settings were set to default or were automatically adjusted by the boosting algorithm. We 

calculated a 10-fold cross validation of the BRT model as already implemented in the 

algorithm. In addition, we extracted the mean AUC (area under the receiver operating 

characteristic curve) as a measure of the model’s predictive quality. The AUC is a threshold-
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independent rank-correlation coefficient with high values typically indicating a strong 

agreement between the model prediction and, in this specific case, the membership of species 

to the susceptible vs. non-susceptible group (Hijmans & Elith, 2017).

The relative importance (%) of each explanatory variable in the final BRT model was 

quantified based on the number of times each variable was used for splitting, weighted by the 

squared improvement at each split and averaged over all trees (Elith et al., 2008). For BRT 

models with Gaussian distribution, the relative variable importance equals the reduction of 

squared error attributable to a given variable (Friedman, 2001; Greenwell et al., 2018). 

Differences between groups were also assessed by bootstrapping, by sampling each group 

independently and estimating the difference based on confidence intervals (functions two.boot

and boot.ci, R package simpleboot, version 1.1-3; Peng 2008). Differences were considered to

be significant if 95% confidence intervals did not overlap with zero.

Subsequently, species were ranked based on the subset of variables selected by the 

BRT analysis (i.e., those with >1% variable importance score), and weighed by the 

importance of each variable, in order to estimate their position along the climate change 

susceptibility continuum. For each species, the value of each variable was standardized based 

on its position between the minimum (tmin) and maximum values (tmax) observed in the dataset, 

with 0-1 possible range, and multiplied by the importance score (Ix) of the given variable: 

x
x

tx I
tt

tt
R 





minmax

min (1)

where Rtx represents the rank value of variable t in species x, and tx is the value of variable t 

for species x. For variables where the lower endpoint (tmin) is associated with the climate 

change susceptibility, equation should be adjusted as follows: 

x
x

tx I
tt

tt
R 




minmax

max
(2)
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Summing of all ranking scores across all variables yielded the total species ranking score, 

which can range from 0 to 100, with higher values indicating stronger climate change 

susceptibility. 

Results

Our analyses indicated substantial differences between climate change susceptible 

and non-susceptible species. The BRT analysis selected the 35 most relevant variables, which 

were subsequently assessed for their relative importance to discriminate between the two 

groups (Figure 1 and Supplementary material S3). The BRT model with the selected set of 

explanatory variables was successfully modeled (Supplementary material S3) with a cross-

validated AUC of 0.87 (standard error = 0.014). Of all explanatory variables, latitude of the 

species range centroid was selected as by far the most relevant variable (31% variable 

importance), followed by the IUCN Red List classification (8%), commercial relevance (6%) 

and vulnerability to fishing (6%). Climate susceptible species were characterized by more 

southwardly positioned distribution range centroids (41.6º vs. 47.8º N as a mean value in 

susceptible and non-susceptible species, respectively), smaller range sizes (175 x 103 km2 vs. 

1686 x 103 km2), and lower elevations within their ranges (717.7 m vs. 892.2 m a.s.l.), with a 

higher proportion of exclusively freshwater species (93% vs. 66%; Figure 2). Susceptible 

species were also characterized by a smaller maximum body length (23.4 cm vs. 41.0 cm), 

higher proportion of threatened species (63% vs. 31%), lower proportion of commercially 

relevant species (25% vs. 74% of highly commercial, commercial and minor commercial 

species), and lower vulnerability to overfishing (32.6 vs. 38.5 vulnerability index; Figure 3), 

as well as by higher temperature-related values (Supplementary material S4). Bootstrapping 

indicated significant differences between the groups in each of the variables. Species that are 
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susceptible to climate change are mainly distributed within the Mediterranean region, whereas

the non-susceptible species distribution mainly covers central and northern European regions, 

as well as the Carpathian region (Figure 4).

Species ranking based on the association of their traits with climate change 

susceptibility characteristics is presented in Table 2 and Supplementary material S5. The five 

top-ranked climate susceptible species were Acheron spring goby (Knipowitschia milleri), 

Corfu valencia (Valencia letourneuxi), Iberochondrostoma almacai, Evia barbel (Barbus 

euboicus) and Malaga chub (Squalius malacitanus). Most of the species with the high climate-

susceptibility ranks are also classified as highly threatened according to the IUCN 

classification (Table 2). Interestingly, the highest ranked species, K. milleri, was not classified 

within the IUCN Red List as threatened by climate change. Other high-ranking species that 

were not recognized as threatened by climate change were S. malacitanus, Almiri toothcarp 

(Aphanius almiriensis), and Trichonis dwarf goby (Economidichthys trichonis). Species with 

the lowest ranking scores, i.e. with low climate change susceptibility, were humpback 

whitefish (Coregonus pidschian), Arctic flounder (Liopsetta glacialis), northern pike (Esox 

lucius), burbot (Lota lota), and European perch (Perca fluviatilis). A complete list of all 

species' rankings is presented in Supplementary material S5.

Discussion

In the present study, significant differences in life-history and climatic niches were 

observed between the European freshwater species susceptible to climate change and those 

that are not, such as species body size, range size, distribution and thermal envelopes. The 

latitude of the species range centroid was by far the most influential trait. Overall, southern 

regions with the warmer, Mediterranean climate comprised a higher proportion of species 
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susceptible to climate change (Figure 4). Out of the 20 highest-ranking climate susceptible 

species, 12 are endemic to Greece, one endemic to Greece and southern Albania, and the other

seven to the Iberian Peninsula. These results support recent findings that the species from 

lower latitudes and tropical, warm-water habitats, are at greater risk from climate change and 

warming (Payne & Smith, 2016; Payne et al., 2016; Comte & Olden, 2017b). Freshwater 

basins in Southern Europe are characterized by recurrent flood and drought events (Bernardo 

et al., 2003). Whereas species in such habitats might be generally adapted to hydrological 

fluctuations, they are likely to be impacted by a further increase in frequency and strength of 

extreme hydrological conditions, induced by climate change and increased anthropogenic 

water demand (Filipe et al., 2013; Radinger et al., 2018). Moreover, among such species, 

adapted towards higher upper thermal tolerances, specialization to thermal extremes is 

accompanied by a reduced physiological flexibility and adaptation capacity to respond to 

changing environmental conditions (Payne & Smith, 2016; Payne et al., 2016; Comte & 

Olden, 2017b). Such heat-tolerant species are also adapted to temperatures near their 

physiological thermal limits, with a narrow safety margin for further temperature increases 

(Sinclair et al., 2016; Comte & Olden, 2017b). However, not all the species in this region are 

adapted to thermal fluctuations and extremes. For example, V. letourneuxi is associated with 

spring-fed habitats with stable thermal conditions, and its susceptibility to climate change is 

more likely to be driven by habitat fragmentation and low population densities (Kalogianni et 

al., 2010). Freshwater basins in Southern Europe are also of particular conservation concern 

due to an elevated pressure by a range of anthropogenic impacts that further exacerbate effects

of climate change, such as pollution, water resource development and consumption, and 

biological invasions (Xenopoulos et al., 2005; Clavero & García-Berthou, 2005; Walther et 

al., 2009; Vörösmarty et al., 2010; Comte & Olden, 2017a). The Mediterranean region is 
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characterized by a wide expansion of alien invasive species, which is expected to be further 

intensified under current climate change scenarios (Clavero et al., 2010; Filipe et al., 2013).

Climate-susceptible species were also characterized by a smaller body and range 

size (Figures 2, 3). These traits, which are also related to a lower dispersal ability (Radinger &

Wolter, 2014), are well recognized as predictors of climate change susceptibility in fish (e.g. 

Ficke et al., 2007; Isaak & Rieman, 2013; Chessman, 2013; Pearson et al., 2014; Radinger et 

al., 2017). A characteristic example of small-bodied and range-restricted species are the three 

endemic species from the Evrotas River in Greece: Evrotas chub (S. keadicus), Evrotas 

minnow (Pelasgus laconicus) and Spartian minnowroach (Tropidophoxinellus spartiaticus). 

These species, ranked among the 20 most susceptible species to climate change in the present 

study (Table 2), are found either exclusively in the Evrotas River basin, or in that and few 

neighboring systems (Barbieri et al., 2015). Smaller-bodied fish are facing elevated overall 

extinction risk in freshwater habitat due to multiple threats, such as habitat loss and 

fragmentation (Olden et al., 2007; Kalinkat et al., 2017; Kopf et al., 2017), which explains 

higher threat level observed in climate-susceptible species in the present study. Observed 

lower commercial relevance and lower vulnerability to fishing of climate-susceptible species 

both stem from a smaller body size and related faster life history of such species. 

It is important to acknowledge certain limitations of the data sources used in this 

study, such as species and trait coverage, reliability of methods applied for threat and 

extinction risk classification, and potential assessors' biases (Clavero & García-Berthou, 2005;

Keith et al., 2014; Trull et al., 2018). Taxonomic bias in conservation science (Clark & May, 

2002) could potentially affect our results through uneven data coverage and quality. However, 

there is a lack of research specific to fish regarding this problem, and thus, this represents an 

area for future research. Furthermore, species that are not classified within IUCN Red List as 
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threatened by climate change can comprise those that are not yet assessed for their major 

threats, or those where experts deem the threat from climate change negligible relative to 

other threats. Nevertheless, the focus of our study on a well-studied group such as European 

species ensured that the basic life history data and IUCN Red List assessments were mostly 

available (Kopf et al., 2017). IUCN Red List is sometimes considered to understate or 

improperly account for climate change as a threat, mostly due to ambiguous definitions and 

criteria (Trull et al., 2018). However, recent studies have indicated that the IUCN 

classification is more efficient in detecting species vulnerable to climate change than 

anticipated (Keith et al., 2014; Pearson et al., 2014). IUCN Red List assessment process was 

designed to overcome possible individual-level, assessor biases, and all threat assignments 

should be made based on objective criteria established by the organization (IUCN 2017). 

Consequently, any potential biases can be expected to be generally consistent across species, 

and therefore should not affect relative comparisons among species. Notwithstanding all the 

caveats, the databases used in the present study still represent the most comprehensive sources

of data and the best available knowledge (Olden et al., 2007; Vega et al., 2017).

Trait-based risk assessments are increasingly used for species profiling (Pacifici et 

al., 2015; Liu et al., 2017; MacLean & Beissinger, 2017). The approach presented in this study

might be considered a valid and promising approach to be used as a screening tool, i.e. to 

quickly assess large groups of species regarding their susceptibility to climate change and 

other threats based on species traits, and to identify research and management priorities. Our 

results indicate that the European environmental policy related to climate change mitigation 

and adaptation (EEA, 2012, 2017) should be mainly focused on the Mediterranean region. 

This is especially important since this region is also predicted to have the highest frequency of

droughts and extreme high temperatures, strongest reduction in precipitation and river 
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discharges, the highest aggregate climate change impact and the lowest adaptation capacity 

(Milly et al., 2005; Dankers & Feyen, 2008; Fischer & Schär, 2010; ESPON Climate, 2011; 

Stagge et al., 2011; Rojas et al., 2012; Filipe et al., 2013; Jacob et al., 2014; Russo et al., 

2014). Our results are further supported by findings by Markovic and colleagues (2014), who 

estimated that the greatest reduction in European freshwater fish diversity due to climate 

change is likely to occur in the southern regions of Europe. Moreover, the Mediterranean 

region was also identified as a European priority area regarding climate change impacts for 

other species groups. A similar distributional pattern of species susceptible to climate change 

was previously also reported for aquatic insects such as Plecoptera, Ephemeroptera and 

Trichoptera (Hering et al., 2009; Conti et al., 2014), mammals (Levinsky et al., 2007), as well 

as for terrestrial species in general (Pacifici et al., 2015).

Species ranking conducted here indicated priority species for further research and 

monitoring regarding climate change (e.g. V. letourneuxi, I. almacai and B. euboicus; Table 2).

Moreover, it also identified species whose IUCN Red List status potentially needs to be 

reconsidered or updated, such as highly ranked but apparently non-susceptible species (e.g. K.

milleri), or highly ranked species without a proper threat category (e.g. K. goerneri, classified 

as Data Deficient species). As such, it has a potential to be used as a “Robin Hood Approach” 

(Punt et al., 2011), where assessments based on information-rich species are used to evaluate 

and categorize those that are information-poor. There is a need for climate change 

vulnerability assessments that would be based on quantitative approaches and consistent set of

criteria, such as trait-based approaches advocated by IUCN (Foden et al., 2013; Trull et al., 

2018). The approach presented here should be a good step in that direction.
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Table 1.  Variables used in the analysis, with their data sources, general descriptive statistics 

and coverage (proportion of species with available data). See Supplementary material S1 for 

more information.

Variable name Data source Median; mean ± SD (range); proportions (%) 

for categorical data

Coverage 

(%)

1 Game fish FishBase Yes: 14, No: 86 100

2 IUCN Red List status FishBase/IUCN EX: 3, CR: 12, EN: 11, VU: 16, NT: 4, LC: 

48, DD: 6

100

3 Climate zone (Köppen 

climate classification)

FishBase Subtropical: 26, temperate 73, polar: 1 100

4 Preferred habitat FishBase Pelagic: 3, pelagic-neritic: 3, benthopelagic: 

64, demersal: 30

100

5 Minimum value of the water 

depth range (m)

FishBase 2; 11.2 ± 17.9 (0 - 100) 18

6 Maximum value of the water 

depth range (m)

FishBase 80; 106.7 ± 138.8 (1 - 700) 14

7 Freshwater preference FishBase Exclusively freshwater: 75, enters saltwater: 

25

100

8 Maximum recorded body 

length (cm)

FishBase 21.7; 35.2 ± 60.5 (2.2 - 800) 98

9 Lateral body shape type FishBase Eel-like: 1, elongated: 38, fusiform/normal: 

59, short and/or deep: 1

77

10 Aspect ratio of the caudal fin FishBase 1.6; 1.6 ± 0.6 (0.4 - 3.4) 34

11 Trophic level FishBase 3.3; 3.4 ± 0.6 (2.1 - 4.5) 13

12 Batch spawner FishBase Yes: 12, no: 88 55

13 Reproductive guild (first 

classification)

FishBase Bearers: 1, guarders: 18, nonguarders: 81 53

14 Reproductive guild (second 

classification)

FishBase Brood hiders: 10, clutch tenders: 5, external 

brooders: 10, internal live bearers: 2, nesters: 

18, open water/substratum egg scatterers: 57

28

15 Maximum recorded longevity 

(years)

FishBase 9; 13.8 ± 17.4 (1 - 118) 30

16 Commercial importance FishBase Of no interest: 41, subsistence fisheries: 4, 40

623

624

625

27



minor commercial: 15, commercial: 35, highly

commercial: 5

17 Average global 

landings/production

FishBase 828.4; 10461.4 ± 23020.9 (0 - 104902.8) 12

18 Resilience to fishing pressure1 FishBase 1: 3, 2: 12, 3: 58, 4: 27 100

19 Vulnerability to fishing1 FishBase 32.9; 36.5 ± 16.6 (10 - 88.7) 100

20 Temperature tolerance (max - 

min reported T, °C)

FishBase 15; 14.4 ± 5.2 (1 - 32) 21

21 Number of inhabited 

freshwater basins

WRI 

(2006)/IUCN(ran

ge)

2; 8.5 ± 14.6 (0 - 82) 96

22 Global Human Footprint WCS & CIESIN 

(2005)/IUCN(ran

ge)

6; 7.8 ± 7.8 (0 - 46) 96

23 Longitude of the centroid of 

species range

IUCN(range) 18.6; 17.2 ± 17.4 (-81.1 - 117.2) 96

24 Latitude of the centroid of 

species range

IUCN(range) 44.6; 45.8 ± 6.3 (34.4 - 70.1) 96

25 Range size (km2) IUCN(range) 32499; 1180481 ± 3799809 (13 - 35987250) 96

26 Mean elevation within the 

species range (m)

USGS 

(2010)/IUCN(ran

ge)

590.4; 833.8 ± 652.5 (3.9 - 2373.6) 96

27 Annual mean temperature 

(°C)

MERRAclim/IU

CN(range)

13.5; 13.4 ± 4.1 (-3.7 - 22.7) 96

28 Mean diurnal temperature 

range (°C)

MERRAclim/IU

CN(range)

19.9; 19.5 ± 2.9 (7.2 - 27.0) 96

29 Temperature isothermality 

(°C)

MERRAclim/IU

CN(range)

44.9; 45.3 ± 3.9 (34.5 - 55.0) 96

30 Temperature seasonality (st. 

dev. x 100) (°C)

MERRAclim/IU

CN(range)

780.6; 800.0 ± 180.6 (312.6 - 1515.3) 96

31 Maximum temperature of the 

warmest month (°C)

MERRAclim/IU

CN(range)

35.7; 35.0 ± 4.6 (20.3 - 43.2) 96

32 Minimum temperature of the MERRAclim/IU -8.6; -8.5 ± 7.6 (-36.4 - 8.8) 96

28



coldest month (°C) CN(range)

33 Temperature annual range 

(°C)

MERRAclim/IU

CN(range)

43.3; 43.5 ± 7.5 (17.1 - 65.9) 96

34 Mean temperature of the most

humid quarter (°C)

MERRAclim/IU

CN(range)

22.9; 22.7 ± 3.5 (10.8 - 30.5) 96

35 Mean temperature of the least 

humid quarter (°C)

MERRAclim/IU

CN(range)

4.2; 3.9 ± 5.8 (-19.8 - 16.5) 96

36 Mean temperature of the 

warmest quarter (°C)

MERRAclim/IU

CN(range)

23.2; 23.1 ± 3.7 (11.0 - 31.0) 96

37 Mean temperature of the 

coldest quarter (°C)

MERRAclim/IU

CN(range)

3.9; 3.6 ± 5.7 (-19.9 - 15.6) 96

38 Annual mean specific 

humidity (g of water / kg of 

air)

MERRAclim/IU

CN(range)

7.2; 7.2 ± 0.9 (3.5 - 10.1) 96

39 Specific humidity of the most 

humid month (g of water / kg 

of air)

MERRAclim/IU

CN(range)

11.2; 11.1 ± 1.0 (6.7 - 14.3) 96

40 Specific humidity of the least 

humid month (g water / kg 

air)

MERRAclim/IU

CN(range)

4.0; 4.0 ± 1.1 (0.8 - 7.1) 96

41 Specific humidity seasonality 

(g water / kg air)

MERRAclim/IU

CN(range)

255.4; 249.7 ± 52.3 (123.0 - 395.5) 96

42 Specific humidity of the most 

humid quarter (g water / kg 

air)

MERRAclim/IU

CN(range)

10.4; 10.4 ± 1.0 (6.2 - 13.6) 96

43 Specific humidity of the least 

humid quarter (g water / kg 

air)

MERRAclim/IU

CN(range)

4.5; 4.4 ± 1.1 (1.0 - 7.5) 96

44 Specific humidity of the 

warmest quarter (g water / kg 

air)

MERRAclim/IU

CN(range)

10.3; 10.3 ± 1.0 (6.2 - 13.3) 96

45 Specific humidity of the MERRAclim/IU 4.5; 4.4 ± 1.2 (1.0 - 7.6) 96
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coldest quarter (g water / kg 

air)

CN(range)

1 intrinsic traits of each species, estimated based on its biology and key life history traits.626
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Table 2. European freshwater fish species with the highest ranking scores, estimated based on 

the association of their traits with the climate change susceptibility characteristics, as 

indicated by the BRT model. Complete ranking list of all species is presented in 

Supplementary material S5.

Rank Species Climate change 

susceptibility according 

to IUCN

IUCN Red 

List category

Ranking score

1 Knipowitschia milleri non-susceptible CR 82.5

2 Valencia letourneuxi susceptible CR 82.1

3 Iberochondrostoma almacai susceptible CR 81.6

4 Barbus euboicus susceptible CR 81.4

5 Squalius malacitanus non-susceptible EN 80.9

6 Aphanius baeticus susceptible EN 80.7

7 Knipowitschia goerneri susceptible DD 80.5

8 Squalius keadicus susceptible EN 80.5

9 Pelasgus laconicus susceptible CR 80.4

10 Tropidophoxinellus spartiaticus susceptible VU 80.3

11 Iberocypris palaciosi susceptible CR 80.1

12 Pelasgus epiroticus susceptible CR 80.0

13 Aphanius almiriensis non-susceptible CR 79.8

14 Anaecypris hispanica susceptible EN 79.5

15 Salaria economidisi susceptible CR 79.5

16 Squalius torgalensis susceptible EN 79.4

17 Cobitis trichonica susceptible EN 78.9

18 Valencia hispanica susceptible CR 78.6

19 Economidichthys trichonis non-susceptible EN 78.6

20 Knipowitschia thessala susceptible EN 78.5
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Figure captions

Figure 1. Variables selected by the boosted regression tree (BRT) model as the most relevant 

descriptors of climate change susceptibility in European freshwater fish species; 20 most 

relevant variables are presented, which together account for 90% of the total relative variable 

influence. 
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Figure 2. Violin-boxplots and barplots of the most relevant spatial variables in European 

freshwater fish species indicated as either susceptible (n = 148) or non-susceptible (n = 295) 

to climate change. Habitat preference: blue - exclusively freshwater species, green - species 

that also enter saltwater.
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Figure 3. Violin-boxplots and barplots of the most relevant life history traits and variables 

related to threat and commercial status in European freshwater fish species indicated as either 

susceptible (n = 148) or non-susceptible (n = 295) to climate change. 
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Figure 4. Richness of freshwater fish species across Europe indicated as either susceptible 

(middle panel) or non-susceptible (left panel) to climate change, and the relative share of 

susceptible species in the local total species richness (right panel).
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