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For many marine fish species, the average size of individuals increases with depth. This phenomenon, first described 

a century ago, is known as ontogenetic deepening (1, 2). Several mechanisms have been proposed to explain it: 

optimal foraging, predation avoidance, and different optimal growth temperature for larger individuals causing them 

to seek deeper and cooler waters to optimise growth and reproduction (3). In their recent publication, Frank et al. 

(4) suggest an alternative explanation. They examined age-structured data from the eastern Scotian Shelf cod (Gadus 

morhua), a stock that has experienced successive periods of intense, and absence of, fishing.  In their study, fishing 

explained 72% of the variation in the observed age-related deepening, with the remaining variability attributed to 

ontogenetic deepening. They concluded that higher abundances of large fish in deeper waters was an artefact of 

greater fishing intensity at shallower depths and questioned whether ontogenetic deepening is a real ecological 

phenomenon. 

 

Frank et al. (4)’s analysis was based on a single stock. If their findings are widely applicable, the depth at which large 

fish are observed should correlate positively with fishing intensity across stocks, assuming that fishing depth remains 

relatively stable. To test this hypothesis, we used length-structured fisheries-independent data from bottom trawl 

surveys for eight Northeast Atlantic stocks which experienced substantial changes in fishing mortality (5–7). Fishing 

mortality trends were similar across age classes*, and the average fishing mortality of each stock (F) was used as a 

proxy for fishing intensity. Despite F decreasing over the past two decades for all but one stock, the depth at which 

medium and large fish were found either remained stable or deepened for most stocks (Fig. 1). The depth of small 

individuals showed mixed trends. Linear mixed-effect models with F, mean survey depth (MSD) and year as 

explanatory variables, and stock as a random effect confirmed that while the depths of large and medium fish were 

positively correlated to MSD, they were negatively correlated to F, meaning that depth increased as F decreased 

(Table 1). The depth of medium fish was also negatively correlated to year, suggesting a long term temporal trend, 

while no significant correlations were observed for small fish, except for MSD.  

 

In summary, we found no evidence that declining fishing intensity resulted in relatively more medium and large fish 

in shallower waters. Our brief analysis does not diminish the fact that different fishing intensities at different depths 

may influence the size structure at depth. But it does suggest that, in Northeast Atlantic stocks at least, ontogenetic 

deepening is unlikely to be driven mainly by fishing. This questions the universality of Frank et al. (4)‘s findings and 

challenges their conclusion that the deepening of marine species may not be an adequate indicator of warming seas 

(8, 9) due to the confounding and possibly overarching impact of fishing. We do acknowledge, however, that Frank 

et al. (4) highlight a crucial point: fishing must be accounted for when assessing the impact of climate change on 

commercially exploited fish stocks. 
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Figure legends 

 

Figure 1. Mean depth distribution of small, medium and large fish in bottom trawl surveys for eight Northeast 

Atlantic stocks (North Sea cod Gadus morhua, west Scotland cod, North Sea plaice Pleuronectes platessa, Northern 

Shelf haddock Melanogrammus aeglefinus, Northern Shelf saithe Pollachius virens, Northern hake Merluccius 

merluccius, west Scotland whiting Merlangius merlangus, North Sea whiting) together with the mean depth of the 

survey covering each stock area and the average fishing mortality experienced by each stock. Survey data were 

obtained from the DATRAS database available from ICES (http://ices.dk/marine-data/data-

portals/Pages/DATRAS.aspx). 

http://ices.dk/marine-data/data-portals/Pages/DATRAS.aspx
http://ices.dk/marine-data/data-portals/Pages/DATRAS.aspx
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Table 1. Details of model selection in mixed effect model analyses. Highlighted in bold are the best mixed effect models explaining the depth distributions 

of large, medium and small fish in eight Northeast Atlantic fish stocks. For each response variable the best model was selected using the χ2 test and 0.05 

significance cut-off and Akaike information criterion (AIC). No. shows the model number for each response variable, Rm
2 indicates variation explained by 

fixed effects (marginal R2), R2 – variation explained by the entire model (fixed and random effects), test – shows the model pair compared using a χ2 test, 

where p shows the corresponding p value and df indicates the degrees of freedom in the model. p values larger than 0.05 suggest that the first model in the 

pair is not significantly better than the second one. For each model the slope of fixed effects is given in the last three columns: F – effect of fishing mortality, 

MSD – effect of mean survey depth, year – effect of year transformed to values form 0 (corresponding to 1985) to 31 (corresponding to 2016).  

___________________________________________________________________________________________________________________________ 

 

No.  Response Model  Rm
2  R2 test p  AIC df F MSD year 

___________________________________________________________________________________________________________________________ 

 1 Depth large  ~ year + F + MSD + (1|stock)  28% 69%  - 2154.2 6 -20.1 0.78 -0.26 

 2 Depth large ~ F + MSD + (1|stock)  21% 68% 1-2 0.190 2153.9 5  -13.7 0.64 - 

 3 Depth large   ~ MSD + (1|stock)  29% 71% 2-3 0.009 2158.7 4  - 0.82 - 

 4 Depth large ~ F + (1|stock)  4% 73% 3-4 0.001 2164.1 4 -21.4 - - 

 

 1 Depth medium  ~ year + F + MSD + (1|stock)  37% 92%  - 1922.7 6 -18.2 1.09 -0.59 

 2  Depth medium ~ F + MSD + (1|stock)  23% 89% 1-2 2e-6 1942.8 5  -13.7 0.64 

 3 Depth medium ~ year + MSD + (1|stock)  38% 91% 2-3 5e-5 1937.1 5  - 1.05 -0.26 

 4 Depth medium ~ year + F + (1|stock)  2% 90% 3-4 4e-13 1973.2 5 -16.1 - -0.09 

 

 1 Depth small  ~ year + F + MSD + (1|stock)  5% 82%  - 2004.3 6 5.85 0.29 0.15 

 2 Depth small ~ F + MSD + (1|stock)  8% 82% 1-2 0.310 2003.3 5  2.36 0.39 - 

 3 Depth small ~ MSD + (1|stock)  6% 82% 2-3 0.350 2001.7 4  - 0.35 - 

 4 Depth small ~ F + (1|stock)  0% 85% 3-4 0.007 2008.6 4 -2.53 - - 

____________________________________________________________________________________________________________________________ 
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