
Volume-04 ISSN: 2455-3085 (Online)

Issue-03 RESEARCH REVIEW International Journal of Multidisciplinary

March-2019 www.rrjournals.com[UGC Listed Journal]

RRIJM 2015, All Rights Reserved 246 | P a g e

Performance Analysis of Light Weight Security Algorithms for Resource Constrained
Devices

Khan Riaz

Assistant Prof., Computer Science and Engineering, Islamic University of Science and Technology, Kashmir (India)

ARTICLE DETAILS ABSTRACT

Article History
Published Online: 13 March2019

With the advent of technologies like Internet of Things (IoT) and Machine to Machine (M2M)

communication, a huge quantity of data is generated every day. Being a distributed system

of constrained devices, this data needs to be communicated securely without wasting the

resources of constrained devices. Therefore there is need of appropriate lightweight security

protocols to avoid the security threat to future internet. In this context, a study of lightweight

security algorithms is presented in this paper. The algorithms are first theoretically analyzed

followed by their implementation on Cryptool and Raspberry Pi in order to check their

efficacy.

Keywords
IoT, Light weight security, Constrained
devices, sensor networks, Raspberry
Pi.

*Corresponding Author
Email:riazk3[at]gmail.com

1. Introduction

Internet of Things (IoT) is a novel worldview that is quickly

making progress in the field of cutting-edge remote media

communication [1]. IoT is a global movement that unites people,

data, processes and things to build network connections that

are more pertinent and useful than ever before. It is a structure

of interconnected computing items, such as RFID tags,

sensors, actuators, and cell phones; digital machines; and

people that offer the facility of transferring data among networks

without need of human-to-computer or human-to-human

interactions.

As IoT is growing rapidly, it faces risks and challenges,

such as how to handle huge amounts of data, processing

power, deal with energy consumption, address security threats,

and how to encrypt/decrypt huge data [1].

IoT helps in creating connections between dissimilar things

present in heterogeneous environment. This kind of openness

and very less human intervention can make IoT exposed to

number of attacks like man in middle attack, Denial of Service

(DoS) attack. Moreover, any device can have access the

network that leads to unauthorized access. These attacks can

damage device physically and network connections too. This

will ultimately compromise the security and privacy of IoT.

To address these challenges when many smart devices

are connected in an IoT environment, there is an increasing

demand for the use of appropriate cryptographic solution

into the embedded applications. However, these smart

devices usually have limited resources with low

computational power, low battery life, smaller size, limited

memory and power supply. Hence, the conventional

cryptographic primitives might not be suited for low-resource

smart devices. Therefore in such applications lightweight

cryptography is introduced that provides solutions suitable for

constrained devices [2].

Furthermore, IoT has also exposed many security attacks

that can damage the network connection due to an

unauthorized access. This leads to the security parameters and

network privacy being compromised. In addition, IoT utilizes

the cloud computing concept, which has many security issues

and challenges [2, 3]. Apart from these issues, the

resource-constrained devices, which have less computational

power, limited battery life, a small amount of memory, and low

bandwidth, need an efficient security solution that will not

crunch the resources of IoT.

Therefore this paper presents a study of the lightweight

algorithms suitable for resource-constrained devices that form

the bulk of the IoT setup. Algorithms including AES, Mickey 2,

Grain, Rabbit and TEA were first simulated using an Open-

Source Software tool viz., Cryptool and later implemented using

Java programs on Raspberry pi.

The remainder of this paper is organized as follows:

Section 2 presents the background and survey of the field,

section 3 details the work carried out, section 4 gives the

experimental results and comparison both using Cryptool and

the Java platform. Finally the paper is concluded in section 5.

2. Background

In [4, 5], Cryptography is defined as an ancient art of

writing secret with the knowledge of science. Cryptography was

first used in writing long dates back to circa 1900 B.C. where it

was used as non-standard hieroglyphs in an inscription by an

Egyptian. Some specialists claim that cryptography came into

existence suddenly after writing was developed, with kind of

applications such as political letters to war-time battle tactics.

With the development of computer communication the new

forms of cryptography was discovered as surprise to many

intended users. When communicating over an insecure and

untrusted medium such as internet, cryptography is necessary

to secure the data under transmission.

There are five primary functions of cryptography today:

i) Privacy/confidentiality: This function ensures that only

intended receiver can read the message and no one

else.

ii) Authentication: It helps in providing one‟s identity.

Volume-04, Issue-03,March-2019 RESEARCH REVIEW International Journal of Multidisciplinary

RRIJM 2015, All Rights Reserved 247 | Page

iii) Integrity: This function guarantees the receiver that the

received data has not been altered when under

transmission over the untrusted medium.

iv) Non-repudiation: This function facilitates that the

receiver cannot deny of reception of data and also

provides a mechanism to verify that the sender has

sent a message.

v) Key exchange: It is the mechanism of sharing the

secret keys between sender and receiver.

In cryptography, the encryption and decryption is based

upon the type of cryptographic scheme being employed and

some form of key. The process may be depicted as under:

C = E (k, P) (1)

P = D (k, C) (2)

Where, P = plaintext, C = cipher-text, E = the encryption

method, D = the decryption method, and k = the key.

2.1. Cryptographic Algorithms

There are different types of cryptographic algorithms that

are being used to secure a system. In this paper, they are

categorized on the basis of keys that are used for encryption

and decryption, type of application and its use. Following are

the types of algorithms that are commonly used (see fig. 1):

i) Secret Key Cryptography (SKC): Another name of

symmetric key encryption that uses a single key for

both encryption and decryption to provide

confidentiality and secrecy to a system.

ii) Public Key Cryptography (PKC): It is also known as

asymmetric cryptography that uses one key for

encryption and another different key for decryption to

provide authentication, non-repudiation, and key

exchange mechanism for symmetric encryption.

iii) Hash Functions: It provides a digital fingerprint by

performing mathematical alterations to irrevocably

"encrypt" the message and hence provides integrity.

In this paper we consider SKC and PKC only and Hash

Functions are ignored due to their limited use in present

applications of smart devices.

Fig. 1 Pictorial Representation of Cryptographic Algorithms

2.1.1. Secret Key Cryptography

As stated above that SKC is also known as symmetric

cryptography which employs a single key for encrypting and

decrypting a message.

In this type of cryptography, it is evident that the secret key

has to be well-known to both the sender and the receiver before

they communicate. The key distribution in SKC is the biggest

difficulty for employing such cryptographic approach.

SKC schemes are usually characterized as either block

ciphers or stream ciphers as shown in fig. 1 and fig. 2

respectively.

Fig. 2. Use of SKC in Block Cipher

A stream cipher is designed to work on a single bit (byte or

computer word) at a time and uses some sort of mechanism

providing feedback that helps in changing the key constantly.

Volume-04, Issue-03,March-2019 RESEARCH REVIEW International Journal of Multidisciplinary

RRIJM 2015, All Rights Reserved 248 | Page

Fig. 3. Stream Cipher (Encryption and Decryption)

In block cipher approach one block of data is encrypted at

a time by using the same single key on each block. In general,

the encryption of same plaintext by using same key each time

would yield the same cipher-text in block cipher whereas it is

not the case in stream cipher where same plaintext would

produce a different cipher-text. Fiestel cipher is the most

common type for block encryption algorithms, named after

cryptographer Horst Feistel. As shown in Fig. 4, a Feistel cipher

is obtained by combining substitution, permutation

(transposition), and key expansion techniques which generate

lot of "confusion and diffusion” in the plaintext. Fiestel design

provides an advantage by having similar encryption and

decryption phases, that just require only a reverse of the key

operation applied, thus affectedly reduces the size of the code

(software) or circuitry (hardware) needed to execute the cipher.

Fig. 4: Feistel cipher

Secret key cryptography algorithms in use today or, at

least, important today even if not in use include:

 Data Encryption Standard (DES): DES was designed

in the 1970s by IBM and accepted by the National

Bureau of Standards (NBS) for commercial and

uncategorized government applications in 1977. It is

considered as one of the most suitable and

appropriate SKC schemes. DES uses a 56 bit key with

feistel structure to operate on a 64-bit block. Due to

the complex collection of rules and alterations in DES,

it presents a design that explicitly yields fast hardware

executions with slow software executions, while as it is

not substantial in present time since the speed of

today‟s computer processors is many times faster than

the ones twenty years ago. It is also believed that DES

was based on an earlier cipher called Lucifer which as

per reports had a 112-bit key. But it was rejected partly

so as to fit the algorithm onto a single chip and also

because of the National Security Agency (NSA). The

NSA further proposed many new twists to DES that

were thought by experts to be introduced in order to

weaken the cipher, but later on in the 1990s an

analysis showed that the NSA proposals in fact

toughen the DES [5].

 Advanced Encryption Standard (AES): It was initiated

by NIST in 1997 in public domain in order to develop a

new and secure cryptosystem for U.S. government.

The AES became successful as the certified

successor to DES in the year 2001 that uses a single

key cryptographic scheme called Rijndael, a kind of

block cipher proposed by Joan Daemen and Vincent

Rijmen. The algorithm has flexibility of using a variable

length block as well as key. The latest description

certified that any combination of keys lengths of 128,

192, or 256 bits and blocks of length 128, 192, or 256

bits can be used. Thus FIPS PUB 197 pronounces a

128-bit block cipher engaging a 128-, 192-, or 256-bit

key.

2.1.2. Public Key Cryptography

Public key cryptography (PKC) has been believed to be

the greatest and substantial growth in cryptography in the last

300-400 years. A Stanford University professor Martin Hellman

and graduate student Whitfield Diffie in the year 1976 defined

modern PKC publicly. Their paper presented that two parties

can have secure communication over a non-secure and

untrusted communication channel without the need of sharing

a secret key.

Volume-04, Issue-03,March-2019 RESEARCH REVIEW International Journal of Multidisciplinary

RRIJM 2015, All Rights Reserved 249 | Page

Fig. 5. Public Key Cryptography

The concept of PKC depends upon one-way functions.

These are mathematical functions that are easily computed but

to find their inverse is comparatively problematic to calculate.

The two keys in PKC are mathematically interrelated while

having knowledge about one key will not let someone to easily

deduce the other key. In this scheme, one key is used to

encrypt the plaintext whereas the other one is used to decrypt

the cipher-text. The important thing is that it is not mandatory to

use a particular key for encryption or decryption as both keys

are used in pair and the approach is also called asymmetric

cryptography as shown in fig. 5.

In PKC, one of the keys is nominated as public key and it

can be publicized extensively. The other key is elected as the

private key and is never exposed to any other party in the

network. It is a traditional scheme to forward messages

between Alice and Bob. Suppose Alice desires to send Bob a

message, Alice will encrypt its message using Bob's public key;

Bob decrypts the cipher-text using his private key. This method

can also be used to prove the authenticity of message and

avoids non-repudiation as well. For example, Alice could

encrypt some plaintext with her private key; when Bob decrypts

using Alice's public key, he knows that Alice sent the message

(authentication) and Alice cannot deny having sent the

message (non-repudiation).

PKC algorithms that are still used for key exchange or for

creating digital signatures include RSA (Rivest Shimmer and

Adleman), Diffie-Hellman, Digital Signature Algorithm (DSA),

ElGamal and Elliptic Curve Cryptography (ECC).

2.2. Lightweight Cryptography

Lightweight cryptography (LWC) aims to target a wide

range of devices that can be implemented on an extensive

band of hardware and software. On the high end of the device

band there are servers and desktop hosts followed by small

tablets and smartphones. Conventional security algorithms

usually perform well in such devices whereas on the lower

spectrum end the devices such as sensors, RFID tags and

embedded systems where LWC algorithms can be useful [6].

For RFID tags that are considered as constrained devices,

not battery-operated, with very limited power supply require

security algorithms that will not only use a very small amount of

electronics, but also meet severe timing and power necessities

[7, 8].

The prime objective of LWC is to target the devices at the

lower spectrum end but it should be able to execute lightweight

security algorithms at the high end of the band as well. For

example, many resource-constrained devices such as sensors

can send information to an aggregator which may or may not be

constrained. But, the aggregator must have a support for

lightweight security algorithms to provide interoperability with

the constrained devices when they use LWC algorithms [5].

In cryptography, one of the state-of-the-art schemes is

LWC that is emerged for execution in constrained environments

including sensors, RFID tags, contactless smart cards, health-

care devices etc. furthermore, LWC also offers sufficient

security and is not always susceptible to feat the security-

efficiency trade-offs.

Additionally, lightweight cryptography also has its share of

research in both Symmetric and Asymmetric Cryptography

2.2.1. Lightweight Symmetric Key Cryptography

Block Ciphers: Many block ciphers with lightweight

characteristics have been proposed since the AES developed.

PRESENT [9] and TEA [10] are well-studied and popular

algorithms among various block ciphers due to their security

and implementation. These ciphers are all set to use in real-

world systems and have been considered in this paper for

study.

PRESENT is a lightweight block cipher, developed by the

Orange Labs (France), Ruhr University Bochum (Germany) and

the Technical University of Denmark in 2007.

The algorithm has distinguished characteristics due to its

compact size and is designed by Andrey Bogdanov, Lars R.

Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,

Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe [9].

It is a sort of variable key length lightweight block cipher

algorithm that takes 64-bit block with 80-bit and 128-bit key

length support. The algorithm uses the SPN structure, whose

operation is mainly divided into two parts, key extension

operation and a total of 31 rounds of iteration operation. Each

Volume-04, Issue-03,March-2019 RESEARCH REVIEW International Journal of Multidisciplinary

RRIJM 2015, All Rights Reserved 250 | Page

iteration function F is composite of three different

transformations: addRoundKey, S-box and PLayer.

KeySchedule is used to produce the round key which is used

for round reiteration process.

The 64-bit plaintext (P) after 31 rounds of iteration

operation and the last round XOR with the round key, is used to

get 64-bit ciphertext C. The different transformations operate on

the intermediate result, called the State.

Tiny Encryption Algorithm (TEA) is remarkable for its

easiness of explanation and implementation, typically consist of

a very few lines of code. It was designed in Cambridge

Computer Laboratory by David Wheeler and Roger Needham.

For the very first time, it was offered at the “Fast Software

Encryption workshop in Leuven in 1994”.

TEA works on two 32-bit unsigned integers that can be

derivative of a 64-bit data block and it supports a 128-bit key. It

employs a Feistel type structure with a recommended 64

rounds, normally implemented in pairs labeled cycles. It has an

extremely simple key schedule, mixing all of the key material in

exactly the same way for each cycle. In order to avoid simple

attacks based on the round symmetry different multiples of

magic constants are used.

Stream Ciphers

MICKEY 2 [11], Grain V1 [12] and Rabbit [13] are the

widely used choices and have been considered for simulation.

Each of these are briefly described below:

Mutual Irregular Clocking KEYstream generator (MICKEY):

is designed for hardware platforms and exhibit stream cipher

characteristics with limited resources. The algorithm is not

patented and is free for any use.

MICKEY 2 cipher maps a key of 80-bit and an initialization

vector (IV) with variable length (0 to 80 bits) to a keystream

which has a maximum of 240 bits length. The key-stream

generator utilizes the two registers R and S (100 bits each) [11].

Grain - A Stream Cipher for Constrained Environments. It

accepts a key of 80-bit and an IV of 64-bit. The stipulations do

not suggested a maximum length of output per (key, IV) pair. A

number of possible weaknesses have been recognized in the

cipher and fixed in Grain 128a which is now the suggested

cipher that can be used for hardware environments to provide

both 128 bit authentication and security.

Grain's internal state with 160-bit contains an 80-bit linear

feedback shift register (LFSR) and a non-linear feedback with

80-bit shift register (NLFSR). Grain updates one bit of both

LFSR and NLFSR state for every cipher-text bit released by a

nonlinear filter function. The 80-bit NLFSR is updated with a

nonlinear 5-to-1 Boolean function and a 1 bit linear input

selected from the LFSR. The nonlinear 5-to-1 function receipts

as input of 5 bits of the NLFSR state. The LFSR with 80 bits is

updated with a 6-to-1 linear function. During keying process the

output of the cipher is additionally fed-back into both the NLFSR

and LFSR update functions as linear inputs. In the original

Grain Version 0.0, four bits of the 80-bit LFSR and one bit of the

80-bit NLFSR are provided to a nonlinear 5-to-1 Boolean

function. The output is combined with 1 bit of the 80-bit NLFSR

linearly and released out as output.

Four bits of the 80-bit LFSR and one bit of the 80-bit

NLFSR and are provided to a 5-to-1 non-linear Boolean

function and the output is combined with 7 bits of the 80-bit

NLFSR linearly and released out as output in the updated Grain

Version 1.0 submission of Grain. To set the cipher, the 80-bit

key is loaded directly into the 80-bits NLFSR and the 64-bit IV is

loaded into the low 64-bits of the LFSR and the remaining 16

high bits of the LFSR are filled with ones. The cipher is

wrapped for 160 rounds where the 160 key-stream bits

produced are fed-back linearly into both the NLFSR and LFSR

update functions. The cipher releases no key-stream output

during the initialization process.

Rabbit was first presented at the “Fast Software

Encryption workshop in 2003” and is a synchronous stream

cipher [13]. In Rabbit until now, no cryptographical weaknesses

have been exposed. The algorithm takes an IV of 64 bit and

128 bit secret key as input and produces an output block of 128

pseudo-random bits for each iteration from a mixture of the

internal state bits. Encryption as well as decryption is done by

XOR‟ing the pseudo-random data with the plaintext/cipher-text.

The size of the internal state is 513 bits divided between eight

32-bit state variables, eight 32-bit counters and one counter

carry bit. The eight coupled non-linear functions are used to

update eight state variables. The counters confirm a lower

bound on the period length for the state variables. Rabbit was

designed to justify a key size of 128 bits for encrypting up to

264 blocks of plaintext and is considered faster than commonly

used ciphers. This suggests that for an attacker who doesn‟t

have knowledge of the key, should not be able to distinguish up

to 264 blocks of cipher output from the output of a truly random

generator, using fewer steps than would be needed for an

thorough key search over 2128 keys.

2.2.2. Lightweight Asymmetric Key Cryptography

While in smart object networks, lightweight public key

primitives are in great demand for key management protocols.

The compulsory resource for public key primitives is too larger

than that of symmetric key primitives. At this time, there are no

promising primitives that meet adequate security and

lightweight characteristics equated with the conservative

primitives such as RSA [14] and Elliptical Curve Cryptography

(ECC) [15]. Certain public key primitives (e.g. ECC) can be

realized with relatively small footprint, but they cannot

implement within a practical time limit.

Elliptic Curve Cryptography (ECC) was revealed by V.

Miller (IBM) and N. Koblitz (University of Washington) in the

year 1985 as an alternate tool for employing public-key

cryptography (see fig. 6).

Volume-04, Issue-03,March-2019 RESEARCH REVIEW International Journal of Multidisciplinary

RRIJM 2015, All Rights Reserved 251 | Page

Fig 6. Elliptical Curve Cryptography

The elliptic curve equation is presented as:

Following terms will be used in the equation are::

E -> An Elliptic Curve

P -> A Point on the curve

n -> The Maximum limit (This needs to be a prime number)

Key Generation

In key generation, we have to generate both public key and

private key which is an important part of ECC. The sender uses

receiver‟s public key to encrypt the message and the receiver

will decrypt the message with its private key.

Now, the next step is to select a number „d‟ within the

range of „n‟.

We can generate the public key by using the following

equation

Q = d * P

d = It defines the random number that we have selected

within the range of (1 to n-1).

P is the point on the curve.

„Q‟ is the public key and „d‟ is the private key.

Encryption:

Let us consider „m‟ as message to be sent. This message

needs to be represented on the curve. This has implementation

details in-depth. The company named certicom does all the

advanced research on ECC.

Suppose „m‟ has the point „M‟ on the ECC curve „E‟. Next

select randomly letter „k‟ from [1 – (n-1)]. There will be

generated two cipher texts and let these be C1 and C2.

C1 = k * P

C2 = M + k * Q

C1 and C2 are the cipher-text to be sent.

Decryption:

We need to deduce back the message „m‟ that was initially

sent to us,

M = C2 – d * C1

M is the original message that we had sent.

Proof

M = C2 – d * C1

M can be represented as „C2 – d * C1‟

C2 – d * C1 = (M + k * Q) – d * (k * P) (C2 = M + k * Q

and C1 = k * P) = M + k * d * P – d * k *P (canceling out k * d

* P)

= M (Original Message sent)

3. Work Carried Out

In this paper, the work was carried out is in three phases

viz. theoretical study, simulation study and implementation.

3.1. Theoretical Study

The Light weight algorithms viz. PRESENT, TEA, MICKEY,

Grain and Rabbit were studied and analyzed against AES.

Some of the main findings are presented here.

PRESENT:

Key sizes 80 or 128 bits

Block sizes 64 bits

Structure SPN

Rounds 31

TEA

Key sizes 128 bits

Block sizes 64 bits

Structure FS

Rounds 32 used in simulation though it is variable

AES

Key sizes 128/192/256 bits

Block sizes 128 bits

Structure SPN

Rounds 10/12/14 depending on key size

Mickey

Key sizes 80 bits

IV 0-80 bits

Stream max of 240

Rounds NA

Grain

Key sizes 80 bits

IV 64 bits

Stream 128 bits

Rounds 16

Rabbit

Key sizes 128 bits

IV 64 bits

Stream 128 bits per iteration Rounds

3.2. Simulation Study

For the simulation of above cite algorithms we used

CrypTool [16] which is an open source project and expected to

implement more than 400 algorithms. These include all-most all

classical ciphers, modern symmetric and asymmetric ciphers

which include ECC, hybrid encryption, RSA, digital signatures,

homomorphic encryption and Diffie–Hellman key exchange.

In this paper, six lightweight algorithms are simulated. The

results are analyzed in next section.

3.3. Implementation

LWC Algorithms were implemented using Java

programming and run on Raspberry Pi for evaluation of latency

and analysis for future hardware implementation for use in

varying applications.

Volume-04, Issue-03,March-2019 RESEARCH REVIEW International Journal of Multidisciplinary

RRIJM 2015, All Rights Reserved 252 | Page

The Raspberry Pi [17] is a series of small single-board

computers developed in the United Kingdom by the Raspberry

Pi Foundation.

“Several generations of Raspberry Pi‟s have been

released. All models present a Broadcom system on a chip

(SoC) along with an integrated ARM friendly central processing

unit (CPU). There is on-chip graphics processing unit (GPU) as

well. Processor speed varies from 700 MHz to 1.4 GHz for the

Pi 3 Model B+; on-board memory ranges from 256 MB to 1 GB

RAM. Secure Digital (SD) cards store the operating system and

program memory in either SDHC or MicroSDHC. The boards

also have one to four USB ports. For output of video, HDMI and

composite video are sustained, with a standard 3.5 mm phono

jack for audio output. The B-models have an Ethernet port and

the Pi 3 and Pi Zero W have on-board Wi-Fi 802.11n and

Bluetooth”.

Our implementation consists of following steps:

i) Integration of Raspberry Pi with Laptop through VNC

Server.

ii) Java installation on Raspberry Pi

iii) Writing code for implementation of cryptographic

algorithms in text editor available

iv) Execution of the algorithms

v) Data collection for comparative analysis

4. Experimental Results and Comparison

The simulation for the selected cryptographic algorithms

was performed using Cryptool. Each algorithm was run 10

times and an average was calculated for each algorithm for the

total time including encryption and decryption.

The behavior of the algorithms is depicted in the table 1

and graph in fig.7. It is observed that the maximum time is

utilized by Grain v1 and minimum time is utilized by MICKEY

v2. The algorithms like AES and TEA showed average

behavior.

Table – 1

Execution Time Comparison using Cryptoolv2.1

Algorithm Execution Time in ms

GRAINv1 1047

AES 1020

TEA 1038

MICKEYv2 1018

PRESENT 1025

RABBIT 1024

Fig. 7. Comparison of Execution time (Encryption and Decryption)

For implementation on Raspberry Pi, four algorithms were

used. These included 3 already tested using Cryptool and ECC

was included due to its wide usage in smart application

nowadays. The programs for the selected cryptographic

algorithms were run on Raspberry Pi. Each algorithm was run

10 times and an average was calculated for each including

encryption and decryption.

The behavior of the algorithms is depicted in the table 2

and graph in fig. 8. It is observed that the maximum time is

utilized by Grain v1 and minimum time is utilized by ECC. The

algorithms like AES and TEA showed average behavior.

Table- 2:

Execution Time Comparison using Raspberry Pi

Algorithms
Encryption

Time(ms)

Decryption

Time(ms)

Total Time

(ms)

GRAIN v1 3688 14771 18459

EEC 17 21 38

TEA 71 45 116

AES 1089 2 1091

Volume-04, Issue-03,March-2019 RESEARCH REVIEW International Journal of Multidisciplinary

RRIJM 2015, All Rights Reserved 253 | Page

Fig. 8. Comparison of Execution time using Raspberry Pi

5. Conclusion

The study in this paper looked at Lightweight

Cryptographic algorithms that are best choices for resource

constrained devices being used in IoT platforms. The results of

simulation and implementation depict that algorithms with

smaller key sizes are better than ones with larger key sizes.

The algorithms are good choices for both software and

hardware implementation in smaller devices. MICKEYv2 is an

ultra-lightweight algorithm with one of the most compact

encryption methods. Due to these characteristics, it is useful in

applications of low power consumption and response time.

Simulation and Implementation results confirmed better

performance by MICKEYv2 and ECC algorithms. Grainv1

algorithm showed maximum execution time and is thereby not

suitable for resource constrained environments and

applications with requirement of better response time.

References

1. Saurabh Singh, et al, “Advanced Lightweight Encryption

algorithms for IoT devices: survey, challenges and solutions”,

in International Journal of Ambient Intelligence and

Humanized Computing, April 2017.

2. Lu Zhou, et al, “Towards practical white-box light-weight block

cipher implementation for IoTs”, in Elsevier Journal of Future

Generation Computer Systems, 2018. (article in press).

3. S Zhou, Z Xie, On Cryptographic Approaches to Internet-Of-

Things Security, ZTE Corporation, 2016.

4. Bruce Scheiner, “Applied Cryptography: Protocols,

Algorithms and Source Code in C”, John Wiley & Sons, 2007.

5. W Stallings, “Network Essentials and Security”, PHI, 5e,

2007.

6. Workshop on Lightweight Cryptography, Oct 2016.

https://www.nist.gov/news events/events/2016/10/lightweight-

cryptography-workshop-2016.

7. Arbia Riahi Sfar, et al, “A roadmap for Security Challenges in

Internet of Things”, Elsevier Journal of Digital

Communications and Networks, April 2017.

8. Sooyeon Shin, et al, “ Experimental Performance Analysis of

Lightweight Block Ciphers and Message Authentication

Codes for Wireless Sensor Networks”, in International Journal

of Distributed Sensor Networks, Vol 13(11), Sep 2017.

9. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A.

Poschmann, M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe,

“PRESENT: An Ultra-Lightweight Block Cipher.” in CHES

2007, no. 4727 in LNCS, pp. 450–466, Springer-Verlag,

2007.

10. Wheeler DJ, Needham RM, “TEA, a tiny encryption

algorithm.”, in Proceedings of International Workshop on Fast

Software Encryption, Springer, Berlin, pp 363-366, 1994.

11. Steve Babbage, Mathew Dodd, “The Stream Cipher MICKEY

2.0, ECRYPT Stream Cipher (2006),

http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3

.pdf

12. M. Hell, T. Johansson, and W. Meier, “Grain - a stream cipher

for constrained environments.” International Journal of

Wireless and Mobile Computing, Special Issue on Security of

Computer Network and Mobile Systems., vol. 2, no. 1, pp.

86–93, 2006. NIST.

13. M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen,

and O. Scavenius. "Rabbit: A new high-performance stream

cipher”, In T. Johansson, editor, Proc. Fast Software

Encryption 2003, volume 2887 of LNCS, pages 307–329.

Springer, 2003.

14. Zhou X, Tang X, “ Research and Implementation of RSA

algorithm for encryption and decryption”, in proceedings of

6th International Forum for Strategic Technology (IFOST):

2011, pp 1118-1121.

15. Sonali U. Nimbhorkar, and Dr L. G. Malik. "A Survey On

Elliptic Curve Cryptography (ECC)," International Journal of

Advanced Studies in Computers, Science and Engineering

Vol. 1, 2012, issue 1 pp. 1-5.

16. Adamovic, Sasa; Sarac, Marko; Veinovic, Mladen;

Milosavljevic, Milan; Jevremovic, Aleksandar , "An Interactive

and Collaborative Approach to Teaching Cryptology",

Educational Technology & Society. 17 (1): 197–205, 2014.

17. "Introducing Raspberry Pi Model B+". Raspberry Pi

Foundation. 2014.

https://www.nist.gov/news

