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Abstract—In this paper, we focus on the application of Com-
pressive Sensing (CS) techniques to Impulse Radio (IR) Ultra-
WideBand (UWB) positioning systems under indoor propagation
environments. Direct Position Estimation (DPE) approaches can
potentially improve the position estimation accuracy of conven-
tional two-step techniques by directly estimating the position co-
ordinates from the observed signal in a single step. Furthermore,
DPE does not require a threshold selection upon which accuracy
of two-step approaches depend on. Although in the presence
of multipath the actual gains are not straight forward, recent
evaluation of DPE positioning in IR-UWB system proved accurate
positioning estimate gains. However it comes at a cost of higher
computational complexity. This paper exploits the sparseness of
the problem to reduce the computational load of the positioning
estimation process and relax the requirements of the Analog to
Digital Converter (ADC) when sampling UWB signals. Based
on the fact that the number of unknown targets is small in
the discrete spatial domain, this paper incorporates the multiple
location hypotheses into an overcomplete basis, which highlights
the sparseness of the spatial domain. This fact motivates the use of
CS-based sampling and sparsity-based reconstruction techniques
to jointly evaluate all possible hypotheses, thus avoiding the tra-
ditional position-by-position scanning where the multiple location
hypotheses are evaluated independently. In so doing, we not only
achieve a significant reduction in computational time but also we
relax the sampling requirements.

Keywords—Compressive Sensing (CS), Direct Position Estima-
tion (DPE), IR-UWB, localization.

I. INTRODUCTION

Impulse Radio Ultra-Wideband (IR-UWB) technology [1],
[2] is the preferred candidate for the IEEE standardization
group 802.15.4a, which specifies the physical layer for low
data rate communications combined with positioning capabil-
ities. The unique and unmatched characteristics of IR-UWB
systems, namely its extremely short time domain transmitted
pulses, have attracted wide interest for positioning passive
nodes in wireless networks. To provide accurate position
information of nodes, a number of reference nodes with
known position (anchors) collect ranging information from
radio signals emanating from the node with unknown position.
Range accuracy depends on the narrowness of the pulse so that
a pulse having a very short duration will result in the highest
time resolution, which implies the highest range accuracy. The
large signal bandwidth of IR-UWB not only offers outstanding
ranging capabilities but also provide a means for resolving

multipath indoor components. The latter is important since
dense multipath environments, which are usually the propaga-
tion conditions in indoor positioning, make the shortest path
delay (containing information about the distance) difficult to
be accurately estimated. In fact, although Global Navigation
Satellite System (GNSS) is the legacy solution for outdoor
positioning, one of its major error sources is the multipath
encountered in certain urban scenarios [3].

The conventional approach to solve the localization prob-
lem consists of a two-step procedure. First, some parameters
of transmitted signal are measured such as Angle of Ar-
rival (AoA), Signal Strength (SS) or Time of Arrival (ToA)
[4], and second the estimated parameters are used to obtain
the coordinates of unknown-location nodes by solving the
geolocalization problem. As demonstrated in [5], two-step
procedures, which are common practice in most positioning
systems, are suboptimal in general with respect to single-step
schemes. The positioning approach omitting the intermediate
step is known in the literature as Direct Position Estimation
(DPE) [6], [7]. DPE has been applied to GNSS [8], narrowband
emitters localization [6], passive geolocation [9], and UWB
[10], [11] among others.

The improved performance of DPE over two-step proce-
dures comes at the cost of higher receiver complexity. In order
to overcome the computational complexity issue, sparsity-
based DPE methods have been recently proposed [12], [13]
which exploit the implicit sparse representation of the problem.
Generally, potential targets cover a small part of the total
discrete spatial domain, which allow the localization problem
to be linearized over a set of possible locations by construction
of an overcomplete dictionary [14] and solved using sparsity-
based recovery techniques [15], [16].

In this paper, we investigate the feasibility of Compres-
sive Sensing (CS) techniques applied to DPE for IR-UWB
considering the localization paradigm where the actual pro-
cessing is performed at the anchor nodes. This work extends
previous authors publications [10], where a frequency domain
receiver architecture was proposed for high resolution DPE
based on the periodogram. The basic strategy in [10] was a
grid-search evaluation of a power position profile defined as
the signal energy distribution with respect to target location.
Based on the fact that the number of unknown targets is
small in the discrete spatial domain, this paper incorporates
the multiple location hypotheses into an overcomplete basis,
which highlights the sparseness of the spatial domain. This



fact motivates the use of CS-based sampling and sparsity-
based reconstruction techniques to jointly evaluate all possible
hypotheses. In essence, the use of an overcomplete basis avoids
the position-by-position scanning where the multiple location
hypotheses are evaluated independently, thus allowing not only
a reduction in computational time but also to relax the strong
requirements of Analog to Digital Converter (ADC) when
sampling UWB signals and maintaining the location estimation
accuracy.

The remainder of the paper is organized as follows. Section
2 describes the IR-UWB signal model. Section 3 reviews the
conventional DPE proposed by the authors in [10] and intro-
duces the novel CS-based DPE, which exploits the implicit
spatial sparsity of the target scene. Results for simulated data
are discussed in Section 4. Section 5 states the conclusions.

II. IR-UWB SYSTEM MODEL

We consider an IR-UWB system where transmission of an
information symbol is typically implemented by the repetition
of Ny pulses of very short duration. The transmitted signal is
modeled as,

o Nj—1
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where Pulse Position Modulation (PPM) is assumed with {b}
being the information symbols taking values {0, 1} with equal
probability. p(t) refers to the single pulse waveform, being
typically a Gaussian monocycle or one of its derivatives of
duration 7,. Tsym = N;T} is the symbol duration, where
Ty = NI, > T, is the repetition pulse period also referred
to as frame period, and Ny is the number of frames per symbol,
T, is the chip period, T} is the PPM interval, N, is the number
of chips per frame and {c;} is the time hopping sequence
which takes integer values in {0,1,..., N, — 1} and a; = £1
denotes a polarization sequence typically used for spectrum
shaping. Without loss of generality we assume in the sequel
a; = 1 VJ

Signal s(t) propagates through an M-path fading channel
whose response to p(t) is 2%2—01 hop(t — Tim), With 79 <
7 < ...<Tp-1, being Ty the ToA that has to be estimated.
The received signal is then the summation of multiple delayed
and attenuated replicas of the received pulse waveform p(t),

which includes the antenna and filters distortion,
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where T} = jT; +kTsym +c;Tc+biTs and w(t) is Additive
White Gaussian Noise (AWGN). We assume that the received
pulse from each m-th path exhibits the same waveform but
experiences a different fading coefficient, h,,, and time delay,
T, -

The signal associated to the j-th transmitted pulse corre-
sponding to the k-th symbol, in the frequency domain yields,

M-1
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where the Line-of-Sight (LOS) contribution is explicitly sep-
arated in the first term from the signal replicas associated to
multipath as in [10]. The frequency component associated to
the shifted pulse is given by,

Sjk(w) = P(w)e 4)

where P(w) denotes the Fourier Transform of the pulse p(t)
and Vj ,(w) is the noise in the frequency domain associated
to the j-th frame interval corresponding to the k-th symbol.
gampling B)atw, =won forn =0,1,..., N—1 where wg =

< and rearranging the frequency domain samples Y x[n] into

the vector Y, € CNV*1 yields
Y,k = hoSjren + Vjk ®

with V;, = S;xE;h + V;; and S;, € CV*V is a di-
agonal matrix whose components are the frequency samples
of Sji(w). The matrix E € CV*M~1 contains the delay-
signature vectors associated to each arriving delayed signal
(multipath),

E = [eTl cee G eT]M—J (6)

with e, = [1 e Jwomm e_j“’O(N_l)Tm]T. The chan-
nel fading coefficients, except for hg, are arranged in the vector
h=[h hM_l]T € RM~=1x1"and the noise samples in
vector V? € CNx1,

III. DIRECT POSITION ESTIMATION IN IR-UWB

This section reviews the DPE approach for IR-UWB pro-
posed by the authors in [10] and introduces the proposed CS-
based DPE technique.

A. Conventional DPE

DPE attempts to solve the positioning problem on a single
step allowing to perform a multidimensional search directly
over the spatial coordinates. Let us define the observation
frequency sample vector as the concatenation of signals re-
ceived from all anchors, Y = (Y(l), YO Y(N“))T, with

YO = ho,eSer, , + \7(4) according to (5) (symbols and pulse
indexes are dropped in order to ease notation). The system
model can then be written in terms of LOS contribution as,

Y = Soe, +V ™

with Sg = diag(ho 1S, ..., hon,S) being a block diagonal
matrix with pulse spectral components weighted by the LOS
channel fading coefficients, e, = (e, (p), -, €5y, (p)’ the
steering vector as a function of the target spatial coordinates
p=[z,y]",and V = (\7(1), . V(NA))T. The steering vectors
€r,(p) are defined as in (6) but in this case the delay is
related to the position vector p by the geometrical relation
fe@) = |lp—p.ll/c, with p, being the two-dimensional
coordinates of the ¢-th anchor. The DPE position estimate is
given by the position vector that maximizes the following cost
function,

p = arg ml;ax efRep )

where R = N%ZnNil YYH € CN-NaxN-Na being N, the
total number of observed data blocks. The optimization in
(8) can be performed by a grid search or other stochastic
optimization methods.



B. CS-based DPE

CS theory states that a sparsely representable signal can
be reconstructed using very few number of measurements
compared to the signal dimension [15], [16]. Based on the
sparsity of the target area, i.e., the number of unknown targets
is small in the discrete spatial domain, let us consider a subset
of the complete observation Y,

(0

Y =aY® )

where ® is a matrix that randomly selects x samples of Y®
(k < N). This matrix ® is known as sampling matrix and is
given by randomly selecting ~ rows of the identity matrix I.

Assuming the periodogram defined in (8) is partitioned into
a finite number of positions to be evaluated, N, x N, in the
X-axis and the Y-axis, the scene can be represented by the
indicator function o(k, 1),k =0,...,N,—1,1=0,...,N,—1.
Let o be the concatenated N, /N, x 1 scene indicator vector
corresponding to the spatial sampling grid. For the positioning
problem at a hand, the scene vector, o, and the observations
are related by,

NyN,—1
R = o(p,)ép, & + Re (10)
=0

where R € CrNaxrNa g the compressed sample covari-

. v coH .o
ance matrix computed as R = Nis ZnNil YY , with Y =

o o (0 o (N
(Y(l), very Y( ), ey Y( A))T denoting the concatenation of com-

pressive signals from all anchors. R, represents imperfections
of the model and o (p,) is the indicator function at location p,.
Vector &, = (Per () lI>efgvA ®))" denotes the compres-
sive steering vector corresponding to the grid location p,.

The model in (10) can be conveniently rewritten into a
sparse notation as follows,

F=Aoc+r. 11

where I is a (kN4)? x 1 vector formed by the concatenation
of the columns of R. From now on, to clarify notation, the
concatenation of columns will be denoted with the operator
vec(+). Therefore, ¥ = vec(R). The columns of A contain the
candidate covariance matrices corresponding to the different
tentative target locations p, that conform the spatial scanning

grid and is defined as,

A =[F(p) F(py) F(Pw, N.—1)] (12)
where r(p;) = Vec(épiéf ). The variable r. encompasses

undesired contributions and imperfections of the model.
Note that the elements different from, zero of vector o =

[o(py) o(py) o(py,n,1))]  correspond to the grid
point where we find periodogram values different from zero.

The sparse vector o can be recovered from the compressive
measurements by solving the following optimization problem,

min |o|,  subject to F= Ao (13)
where |o||, = >, |o(p;)|- Several methods are available in
the literature to solve the optimization problem in (13). In
this paper, we choose Orthogonal Matching Pursuit (OMP)
[17] to solve (13), which is an iterative algorithm known to

provide a fast and easy to implement solution. OMP iteratively
computes the local optimum solutions expecting that these
will lead to the global optimum solution. In iterative-based
reconstruction algorithm, the stopping rule applied to halt the
iterative reconstruction process plays an important role in the
final estimation performance. Finding robust stopping criteria
in CS-based iterative algorithms is a long standing problem
[18]. Here, since we are particularly interested in the maximum
(see (8)), we only need to run a single iteration which, by
definition of the OMP, determines the column of A that is
most correlated with ¥, or which contributes to F most.

IV. SIMULATION RESULTS

The algorithm has been analyzed by means of Monte-Carlo
MATLAB-based simulations with the aim of evaluating the
potential gains of CS-based DPE over conventional DPE ap-
proach in IR-UWB. For numerical evaluation we consider the
channel models developed within the framework of the IEEE
802.15.4a [19]. In particular we evaluated the localization
performance for the CM3 Office LOS and CM7 Industrial LOS
channel models, whose propagation channel is characterized
to exhibit dense multipath components, specially the CM3.
Without loss of generality, we present preliminary results for
a simplified signal model where time-hopping is not explicitly
considered and {by} = 0 Vk. The transmitted pulse is a
Gaussian monocycle pulse with duration 7, = 1 ns. The
observation window coincides with the frame duration T
which is equal to 56 ns. The non-compressive sampling rate is
given by 2GHz, which translates into an observation window

of N = 128 samples. The sampling rates of ‘u{(e) and Y
are related through the compression rate p = . To strictly
focus on the performance behavior due to compression and
remove the effect of insufficient data records, the size of
the compressed observations is forced to be the same for
any compression rate. Thus, for a high compression rate,
the estimator takes samples for a larger period of time. The
simulation parameters are summarized in Table I, where N
denotes the number of observed data frames. The position
algorithm is evaluated in a 2D setting with the target randomly
placed within a square room of 6 x 6 m?, with 4 anchor nodes
placed at the corners of the room. The area of interest is
divided into a 200 x 200 grid and the resolution is 0.03m.

TABLE 1. SIMULATION PARAMETERS

P 1 0.50 0.25 0.13
K 128 64 32 16
N 128 256 1024 | 2048

Fig. 1(a) and Fig. 1(b) depict the results obtained in a
particular realization for a CM3 Office LOS scenario of the
conventional DPE and the CS-based DPE where only 25%
of the Nyquist samples have been considered for solving
the positioning problem, ie., p = 0.25. We considered
an average SNR at each anchor node of 4dB. Clearly, the
conventional DPE cost function (8) exhibits a large number
of local maxima of similar amplitude in close vicinity of the
true target position, as shown in Fig. 1(a), thereby making
the detection of the global maximum more difficult. The
proposed CS-based DPE was applied to the reduced set of
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Fig. 1. Target localization results evaluated in IEEE 802.15.4a CM7 Industrial LOS, SNR=4dB, obtained by (a) conventional DPE with p = 1 and (b) CS-based

DPE with p = 0.25.
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Fig. 2. Empirical CDF of the position error for conventional DPE with p = 1
and CS-based DPE with p = 0.50 evaluated in IEEE 802.15.4a Industrial LOS
(CM7) with SNR=4dB.

measurements and the recovered sparse vector o is depicted
in Fig. 1(b), where one single peak associated with the true
target location (indicated by an arrow in the figure) can be
easily identified. It is evident that conventional DPE approach
generates many artifacts in close vicinity of the global
maximum (indicated by an arrow in the figure) corresponding
to the true target location. The less cluttered representation
obtained with CS-based DPE underscores the importance of
imposing sparsity on the solution via /; minimization.

For the evaluation of the position estimation accuracy,
we consider 100 channel realizations for each scenario. The
position error of conventional DPE and CS-based DPE with
p = 0.5 is depicted in Fig. 2 in terms of Cumulative Density
Function (CDF) for Industrial LOS (CM7) scenarios. Again,
we considered an average SNR at each anchor node of 4dB.
It is worth mentioning, however, that similar results were
obtained for other SNRs (from -5dB to 10dB). From Fig. 2
it can be conclude that, in a large percentage (about 80%),
the proposed CS-based DPE with half of the original samples
provide the same localization capabilities as conventional
DPE, i.e., the position of the global maximum is not affected
by the reduction of data. However, as we will see later, an
excessive reduction in the number of measurements translates
into a degradation of the localization performance. Finding
the value of « that ensures perfect recovery of o is a problem
of longstanding interest in the CS community [15], [16].
Existing results in this regard showed that the minimum
+ depends on the number of non-zero components of the

0 0.2 0.4 0.6 0.8 1
error [m]

Fig. 3. Empirical CDF of the position error for CS-based DPE with SNR=4dB
evaluated in IEEE 802.15.4a Industrial LOS (CM?7) for different compression
rates.

sparse vector o, which in our case is a function dependent
on the multipath components present in the propagation
channel under consideration. In future work, we will study the
relationship between the multipath and the minimum number
of measurements.

To test the effect of reducing acquired samples, Fig. 3
shows the CDF of the proposed detector under CM7 Industrial
LOS channel, SNR=4dB, for different compression rates.
From Fig. 3 we observe that, as expected, the positioning
error degrades as the compression rate decreases.

Generally, Industrial LOS (CM7) is a more friendly en-
vironment compared to Office LOS (CM3), where the much
denser multipath poses additional challenges for the posi-
tioning problem. To illustrate the performance difference of
these two propagation scenarios, Fig. 4 shows the periodogram
obtained with DPE and the CS-based reconstructed target
space with p = 0.5. This single realization is used to motivate
the discussion. An exhaustive analysis would include averaging
over several Monte Carlo trials as done in Fig. 2 for instance. It
is in CM3 where both the conventional DPE and the proposed
CS-based DPE experience larger difficulties to accurately esti-
mate the target position due to the strong and dense multipath
components. This statement is confirmed by the comparison of
Fig. 4(a) and Fig. 4(b), where conventional DPE is evaluated
in CM7 and CM3, respectively. The periodogram obtained
with conventional DPE in CM7 have less clutter residuals
compared to the corresponding CM3 periodogram, leading to
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Fig. 4. Periodogram realization with 4 anchors and SNR=4dB for: (a) Conventional DPE with p = 1 evaluated in CM7 Industrial LOS, (b) Conventional DPE
with p = 1 evaluated in CM3 Office LOS, (c) CS-based DPE with p = 0.5 evaluated in CM7 Industrial LOS and (d) CS-based DPE with p = 0.5 evaluated

in CM3 Office LOS.

an enhanced localization performance. The ambiguity caused
by the CM3 strong multipath components also affects the
localization performance of CS-based DPE, as evident from the
comparison of Fig. 4(c) and Fig. 4(d), where CS-based DPE
is evaluated in CM7 and CM3, respectively. The estimated
position obtained with CS-based DPE is located further away
from the true target position when considering IEEE 802.15.4a
CM3 due to the dense multipath.

V. CONCLUSION

A CS-based Direct Position Estimation (DPE) for IR-
UWB localization based on frequency domain signal has
been introduced and assessed under realistic channel models
developed by the IEEE 802.15.4a standardization group. The
proposed method transforms the target location estimation
problem into a spatial sparse target representation optimization
problem. Specifically, we show with numerical results that
the proposed scheme can provide similar position estimate
accuracy with less samples than a grid-based solution for DPE.
Further work on the multipath effect in the CS-based strategy

will be considered in the future as well as more detailed
comparison with other localization approaches such as two-
step procedures.
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