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Abstract: P versus NP is considered as one of the great open problems of science. This
consists in knowing the answer of the following question: Is P equal to NP? This problem
was first mentioned in a letter written by John Nash to the National Security Agency in 1955.
However, a precise statement of the P versus NP problem was introduced independently
by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this
problem have failed. Another major complexity class is coNP. Whether NP = coNP is
another fundamental question that it is as important as it is unresolved. We prove there is a
problem in coNP that is not in P. In this way, we show that P is not equal to coNP. Since P =
NP implies P = coNP, then we also demonstrate that P is not equal to NP.

Introduction

P versus NP is a major unsolved problem in computer science [3]. It is considered by many to be the
most important open problem in the field [3]. It is one of the seven Millennium Prize Problems selected
by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [3].

In 1936, Turing developed his theoretical computational model [1]. The deterministic and nondeter-
ministic Turing machines have become in two of the most important definitions related to this theoretical
model for computation. A deterministic Turing machine has only one next action for each step defined in
its program or transition function [6]. A nondeterministic Turing machine could contain more than one
action defined for each step of its program, where this one is no longer a function, but a relation [6].

Another huge advance in the last century has been the definition of a complexity class. A language
over an alphabet is any set of strings made up of symbols from that alphabet [2]. A complexity class is a
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set of problems, which are represented as a language, grouped by measures such as the running time,
memory, etc [2].

In the computational complexity theory, the class P contains those languages that can be decided in
polynomial time by a deterministic Turing machine [5]. The class NP consists in those languages that
can be decided in polynomial time by a nondeterministic Turing machine [5].

The biggest open question in theoretical computer science concerns the relationship between these
classes: Is P equal to NP? In 2002, a poll of 100 researchers showed that 61 believed that the answer was
no, 9 believed that the answer was yes, and 22 were unsure; 8 believed the question may be independent
of the currently accepted axioms and so impossible to prove or disprove [4]. All efforts to solve the P
versus NP problem have failed [6].

Another major complexity class is coNP [6]. We prove there is a problem in coNP that is not in P.
Since P = NP implies that every coNP problem is in P, then we can deduce that P 6= NP [6].

1 Theoretical notions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings over Σ [1]. A
Turing machine M has an associated input alphabet Σ [1]. For each string w in Σ∗ there is a computation
associated with M on input w [1]. We say that M accepts w if this computation terminates in the accepting
state, that is, M(w) = “yes” [1]. Note that M fails to accept w either if this computation ends in the
rejecting state, or if the computation fails to terminate [1].

The language accepted by a Turing machine M, denoted L(M), has an associated alphabet Σ and is
defined by

L(M) = {w ∈ Σ
∗ : M(w) = “yes”}.

We denote by tM(w) the number of steps in the computation of M on input w [1]. For n ∈ N we denote by
TM(n) the worst case running time of M; that is

TM(n) = max{tM(w) : w ∈ Σ
n}

where Σn is the set of all strings over Σ of length n [1]. We say that M runs in polynomial time if there
exists k such that for all n, TM(n)≤ nk + k [1]. The notations we use to describe the asymptotic running
time of an algorithm are defined in terms of functions whose domains are the set of natural numbers
[2]. Such notations are convenient for describing the worst case running time function, which is usually
defined only on integer input sizes [2]. For a given function g(n), we denote by O(g(n)) the set of
functions

O(g(n)) = { f (n) : There exist positive constants c and n0

such that 0≤ f (n)≤ c×g(n) for all n≥ n0}

where O-notation provides an asymptotic upper bound [2].
A language L is in class P if L = L(M) for some deterministic Turing machine M which runs in

polynomial time [1]. We state the complexity class NP using the following definition: A verifier for a
language L is a deterministic Turing machine M, where

L = {w : M(w,c) = “yes” for some string c}.
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We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in
polynomial time in the length of w [7]. A verifier uses additional information, represented by the symbol
c, to verify that a string w is a member of L. This information is called certificate. For polynomial time
verifiers, the certificate is polynomially bounded by the length of w, because that is all the verifier can
access in its time bound [7]. NP is also the class of languages that have polynomial time verifiers [7]. If
NP is the class of problems that have succinct certificates, then the complexity class coNP must contain
those problems that have succinct disqualifications [6]. That is, a “no” instance of a problem in coNP
possesses a short proof of its being a “no” instance [6].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic Turing
machine M, on every input w, halts in polynomial time with just f (w) on its tape [7]. Let {0,1}∗
be the infinite set of binary strings, we say that a language L1 ⊆ {0,1}∗ is polynomial time reducible
to a language L2 ⊆ {0,1}∗, written L1 ≤p L2, if there exists a polynomial time computable function
f : {0,1}∗→{0,1}∗ such that for all x ∈ {0,1}∗,

x ∈ L1 iff f (x) ∈ L2

where iff means “if and only if”. An important complexity class is coNP–complete [5]. A language
L⊆ {0,1}∗ is coNP–complete if

1. L ∈ coNP, and

2. L′ ≤p L for every L′ ∈ coNP.

Furthermore, if L is a language such that L′ ≤p L for some L′ ∈ coNP–complete, then L is in
coNP–hard [2]. Moreover, if L ∈ coNP, then L ∈ coNP–complete [2].

For every n,m ∈ N a Boolean circuit C with n inputs and m outputs is a directed acyclic graph [1]. It
contains n nodes with no incoming edges; called the input gates and m nodes with no outgoing edges,
called the output gates [1]. All other nodes are labeled with one of ∨, ∧ or ⇁ (in other words, the logical
operations OR, AND, and NOT) [1]. The ∨ and ∧ nodes have fanin (i.e., number of incoming edges) of 2
and the ⇁ nodes have fanin 1. The size of C is the number of nodes in it [1].

A principal coNP–complete problem is CIRCUIT–UNSAT [5]. The instances of CIRCUIT–UNSAT
are the Boolean circuits with a single output gate [1]. We say that a Boolean circuit C accepts some bit
positive integer y when the evaluation of C on y over the input gates finally returns 1 in the output gate
[1]. The CIRCUIT–UNSAT can be formulated as follows: Given a Boolean circuit C, is not there any bit
positive integer y such that C accepts y?

2 Results

Definition 2.1. In computational complexity theory, DT IME (or T IME) is the computational resource
of computation time for a deterministic Turing machine [6]. The resource DT IME is used to define
complexity classes, sets of all of the decision problems which can be solved using a certain amount of
computation time [6]. If a problem of input size n can be solved in O( f (n)), we have a complexity class
DT IME( f (n)) (or T IME( f (n))) [6].
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Definition 2.2. Given an integer x and a Boolean circuit C, we define SUCCINCT–INFERIOR as the
problem of deciding whether there is not any bit positive integer y which C accepts as input such that
x < y.

Theorem 2.3. CIRCUIT–UNSAT cannot be decided in constant time.

Proof. Suppose that the language CIRCUIT–UNSAT can be decided in constant time. This would imply
that CIRCUIT–UNSAT is a regular language [6]. Certainly, if CIRCUIT–UNSAT can be decided in
constant time, then this can be decided in constant space [6]. If some language L is infinite and regular,
then there are x, y and z in Σ∗ such that y is not an empty string and xyiz ∈ L for all i≥ 0 where yi is the
ith concatenation of the same repeated string y [6]. However, CIRCUIT–UNSAT is infinite and there are
no instances in CIRCUIT–UNSAT for which the previous statement is true. Hence, CIRCUIT–UNSAT is
not a regular language and therefore, this cannot be decided in constant time.

Definition 2.4. A representation of a set S with n positive integers is a Boolean circuit C, such that C
accepts the bit positive integer i if and only if i ∈ S.

Theorem 2.5. SUCCINCT–INFERIOR /∈ DT IME(|S|) where S is the set that represents the Boolean
circuit C and | . . . | is the cardinality set function.

Proof. Since a Boolean circuit C can only accept the bit positive integers as appropriate inputs, then we
could make a polynomial time reduction as follows:

C ∈ CIRCUIT–UNSAT iff (−1,C) ∈ SUCCINCT–INFERIOR

where iff means “if and only if”. However, this reduction can be done in constant time. That means we
cannot decide every instance (−1,C) ∈ SUCCINCT–INFERIOR in constant time, because that would
mean we can decide CIRCUIT–UNSAT in constant time. Certainly, we cannot decide the language
CIRCUIT–UNSAT in constant time according to the Theorem 2.3. Nevertheless, from an instance
(−1,C) ∈ SUCCINCT–INFERIOR, we would have S = /0 and so |S|= 0 where S is the set that represents
the Boolean circuit C. Thus, we can assure if SUCCINCT–INFERIOR ∈ DT IME(|S|), then we could
decide CIRCUIT–UNSAT in constant time. For that reason, for the sake of contradiction we can confirm
SUCCINCT–INFERIOR /∈ DT IME(|S|).

Theorem 2.6. SUCCINCT–INFERIOR /∈ P.

Proof. For certain kind of instances, the input (x,C) is exponentially more succinct than the cardinality
of the set S that represents C [6]. Since we have that SUCCINCT–INFERIOR /∈ DT IME(|S|), then we
could not decide every instance of SUCCINCT–INFERIOR in polynomial time.

Theorem 2.7. SUCCINCT–INFERIOR ∈ coNP.

Proof. If (x,C) /∈ SUCCINCT–INFERIOR, then it would exist a bit positive integer y such that x < y
and C accepts y. Since we can evaluate whether C accepts the bit positive integer y and we have that y
should be polynomially bounded by C, then we can confirm SUCCINCT–INFERIOR ∈ coNP due to the
verification of x < y and the evaluation on the Boolean circuit can be done in polynomial time.
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Theorem 2.8. P 6= NP.

Proof. If any single coNP problem cannot be decided in polynomial time, then P 6= coNP [6]. Certainly,
the result P = NP implies that P = NP = coNP because P is closed under complement and therefore, we
can conclude P 6= NP due to P = NP = coNP is false under the basis of P 6= coNP [6].

Conclusions

This proof explains why after decades of studying the NP problems no one has been able to find
a polynomial time algorithm for any of more than 300 important known NP–complete problems [5].
Indeed, it shows in a formal way that many currently mathematically problems cannot be solved efficiently,
so that the attention of researchers can be focused on partial solutions or solutions to other problems.

Although this demonstration removes the practical computational benefits of a proof that P = NP, it
would represent a very significant advance in computational complexity theory and provide guidance
for future research. In addition, it proves that could be safe most of the existing cryptosystems such as
the public key cryptography [5]. On the other hand, we will not be able to find a formal proof for every
theorem which has a proof of a reasonable length by a feasible algorithm.
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