BrainIAK Tutorials: Condensed Datasets
Creators
- 1. Princeton University
- 2. Yale University
Description
This is a collection of datasets used by BrainIAK tutorials. These datasets are pre-processed and ready to use. They have been condensed, by reducing the number of subjects from the original studies, to keep the file size small. Each tutorial is paired with a dataset as listed below. The file brainiak_datasets.zip contains the data for all the tutorials, and in unzipped form uses 18GB of space. If you wish to download data for specific tutorials, use the list below to find the correct dataset to download and use.
Tutorial 2: VDC (Kim et al., 2017) and 02-data-handling (this is a simulated dataset)
Tutorials 3-5: VDC (Kim et al., 2017)
Tutorial 6: Ninety Six (Kriegeskorte et al., 2008)
Tutorials 7: Face-scene (Turk-Browne et al., 2012). The script for within subject searchlight uses the VDC dataset.
Tutorial 9: Face-scene (Turk-Browne et al., 2012)
Tutorial 8: Latatt (Hutchinson et al., 2016)
Tutorial 10: Pieman2 (Simony et al., 2016)
Tutorial 11: Raider (Haxby et al., 2011) and Pieman2 (Simony et al., 2016)
Tutorial 12: Sherlock_processed (Chen et al., 2017)
Files
02-data-handling-simulated-dataset.zip
Files
(19.7 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:695434febd6a7aae4766c1eb43d6d48f
|
7.6 kB | Preview Download |
|
md5:8b7daeaa81af564ecf66bbc8cd4471d2
|
9.9 GB | Preview Download |
|
md5:ad9aa83fe95f6dad5e3d15b622b4ecdb
|
268.4 MB | Preview Download |
|
md5:6ddf4e6a575fa41bd52d7b9e05c6c799
|
612.9 MB | Preview Download |
|
md5:d32211d5e745674ada5dfc3e85c10109
|
153.6 MB | Preview Download |
|
md5:b77b3b75b6f99631c6c7beeb16042ea1
|
2.8 GB | Preview Download |
|
md5:7ff112140ca0fa74d07da5284814db9b
|
32.7 MB | Preview Download |
|
md5:1a0a8c9f62625c914edfedad9f095a69
|
268.3 MB | Preview Download |
|
md5:f32c5e5271e04ec019c0ae34188c2e00
|
5.7 GB | Preview Download |
Additional details
References
- Kim, G., Norman, K. A., & Turk-Browne, N. B. (2017). Neural Differentiation of Incorrectly Predicted Memories. The Journal of Neuroscience, 37(8), 2022-2031. doi:10.1523/jneurosci.3272-16.2017
- Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., … Bandettini, P. A. (2008). Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey. Neuron, 60(6), 1126–1141. https://doi.org/10.1016/j.neuron.2008.10.043
- Turk-Browne, N. B., Simon, M. G., & Sederberg, P. B. (2012). Scene Representations in Parahippocampal Cortex Depend on Temporal Context. Journal of Neuroscience, 32(21), 7202–7207. https://doi.org/10.1523/JNEUROSCI.0942-12.2012
- Hutchinson, J. B., Pak, S. S., & Turk-Browne, N. B. (2016). Biased Competition during Long-term Memory Formation. Journal of Cognitive Neuroscience, 28(1), 187–197. https://doi.org/10.1162/jocn_a_00889
- Haxby, J. V., Guntupalli, J. S., Connolly, A. C., Halchenko, Y. O., Conroy, B. R., Gobbini, M. I., … Ramadge, P. J. (2011). A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron, 72(2), 404–416. https://doi.org/10.1016/j.neuron.2011.08.026
- Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2017). Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience, 20(1), 115–125. https://doi.org/10.1038/nn.4450
- Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., & Hasson, U. (2016). Dynamic reconfiguration of the default mode network during narrative comprehension. Nature Communications, 7, 12141. https://doi.org/10.1038/ncomms12141