OpenRiskNet

Deliverable Report D2.4

Final API available for internal and
external service providers

* X %
* *
* *
* *

* gk

This project is funded by

the European Union

OpenRiskNet: Open e-Infrastructure to Support Data Sharing, Knowledge
Integration and in silico Analysis and Modelling in Risk Assessment

Project Number 731075

www.openrisknet.org

Project identification

Grant Agreement

731075

Project Name

OpenRiskNet: Open e-Infrastructure to Support Data Sharing,
Knowledge Integration and in silico Analysis and Modelling in
Risk Assessment

Project Acronym

OpenRiskNet

Project Coordinator

Douglas Connect GmbH

Star date 1 December 2016
End date 30 November 2019
Duration 36 Months

Project Partners

P1 Douglas Connect GmbH Switzerland (DC)

P2 Johannes Gutenberg-Universitat Mainz, Germany (JGU)

P3 Fundacio Centre De Regulacio Genomica, Spain (CRG)

P4 Universiteit Maastricht, Netherlands (UM)

P5 The University Of Birmingham, United Kingdom (UoB)

P6 National Technical University Of Athens, Greece (NTUA)

P7 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten
Forschung E.V., Germany (Fraunhofer)

P8 Uppsala Universitet, Sweden (UU)

P9 Medizinische Universitat Innsbruck, Austria (MUI)

P10 Informatics Matters Limited, United Kingdom (IM)

P11 Institut National De L’environnement Et Des Risques,
France (INERIS)

P12 Vrije Universiteit Amsterdam, Netherlands (VU)

OpenRiskNet

m Page 2

http://openrisknet.org/

Deliverable Report
identification

Document ID and title

Deliverable 2.4 Final APl available for internal and external
service providers

Deliverable Type Demonstrator
Dissemination Level Public (PU)
Work Package WP2

Task(s) Task 2.2
Deliverable lead partner DC

Author(s) Daniel Bachler (DC), Joh Dokler (DC), Tim Dudgeon (IM), Egon
Willighagen (UM), Pantelis Karatzas (NTUA), Iseult Lynch (UoB),
Thomas Exner (DC)
Reviewed by Barry Hardy (DC)

Status Final

Version V1.0

Document history

2018-11-20 First draft
2018-11-29 Consolidated draft
2019-01-07 Final version

OpenRiskNet

- Page 3

Table of Contents

SUMMARY 5
INTRODUCTION 6
THE OPENRISKNET API ANNOTATION 7
An overview of the process 7
Semantic annotation 7
Technical (structural) annotation 7
OpenAPI 8
OpenRiskNet annotations for OpenAPI 8
Comparison with existing approaches 9
Indexing and search using the OpenRiskNet Service Registry 10
Examples 12
Transcription of OpenAPI keys without semantic annotation 13
Transcription of OpenAPI keys with semantic annotation 13

Example SPARQL Queries 14
CONCLUSION 16
GLOSSARY 16
REFERENCES 17
OpenRiskNet 5] Page 4

SUMMARY

This document reports the work on the final APl specification for semantic interoperability
that was developed as part of the OpenRiskNet e-infrastructure. It briefly outlines the
challenges encountered and the solution that has been implemented and is now in use in
OpenRiskNet.

This deliverable is related to Task 2.2 (API specification and semantic interoperability) and
in a continuation of the work performed within Deliverable 2.2 (Initial API version provided
to providers of services) [1], that are now in the process of being incorporated into
OpenRiskNet as part of the service catalogue. Deliverable 2.2 gives in-depth information
on the evaluation of the various technologies for describing APIs we considered, whereas
this report focuses on the solution that was finally chosen and put in place, and the
justification of this choice to support other databases / e-infrastructures in their
deliberations on API solutions.

The main requirement of describing operations of an APIl, on both the semantic and
technical (structural) levels, was met by creating a novel fusion of the well established
OpenAPI standard and the tools of linked data using JSON-LD. This combination allowed
us to use and reuse the already existing OpenAPl definitions (and already available
OpenAPI tooling), and combine it, with relatively little effort for a service provider, with
semantic annotations to facilitate interoperability. The OpenRiskNet Service Registry was
developed to scan for such “OpenRiskNet annotated OpenAPl definitions” of active
services running in an OpenShift cluster and indexes the data to provide semantic queries
using the well established SPARQL linked data query language.

OpenRiskNet m Page 5

https://paperpile.com/c/rDJZnh/Eu6W

INTRODUCTION

The OpenRiskNet Consortium develops the OpenRiskNet e-infrastructure for
harmonisation and improved interoperability of data and software tools in the area of
predictive toxicology and risk assessment. It aims to combine interoperable web services
providing data or analysis, processing and modelling tools communicating over
well-defined and harmonised application programming interfaces (APIs), supplemented by
a semantic interoperability layer added to every service to describe the functionality
whilst guaranteeing the technical and semantic interoperability.

In computer programming, an APl is a set of clearly defined methods of communication
between various software components [2]. More precisely, it is a set of subroutine
definitions, protocols, and tools for building application software. A good APl makes it
easier to develop computer programs by providing specifications for all the software
building blocks. An API specification can take many forms, depending on whether it
applies to a web-based tool, an operating system, database, computer hardware or
software library. For examples of APIs, see the C++ Standard Template Library [3], POSIX
[4], or Microsoft Windows API [5]. Previous projects like OpenTox, Open PHACTS, and
eNanoMapper created a set of APIs, which were designed for the specific problems at
hand like creating, validating and applying a QSAR model or bringing together
pharmacological data resources. This were reviewed as a starting point for the
OpenRiskNet developments, with that analysis reported in Deliverable D2.2 [1]. Of course,
most life science databases nowadays provide APIs in addition to download sites too, such
as PubChem, EPA CompTox Dashboard, or the ECHA Nanomaterial Observatory. This is
supported by efforts such as the European ELIXIR where APIs are the cornerstone of
Interoperability.

However, OpenRiskNet goals impose additional requirements as already envisioned and
foreseen in the use cases developed (see below) or under development for testing specific
parts of the infrastructure. The larger case studies (described in more detail in the
Deliverable D1.3 report [6]) for validating the complete infrastructure, especially the much
broader scope covering all areas of predictive toxicology and risk assessment as well as
the semantic annotation of the APIs needed for the interoperability layer, also separates
OpenRiskNet from these earlier projects and makes the development of new concepts
inevitable. Taking all these points into consideration led us to the fusion of two as-yet
largely unrelated technologies: OpenAPI [7] and JSON-LD [8], which was already outlined
as a concept in Deliverable D2.2 report on the initial API version. The full implementation
with illustrating examples are presented here.

OpenRiskNet m Page 6

https://paperpile.com/c/rDJZnh/YjxY
https://paperpile.com/c/rDJZnh/cE06
https://paperpile.com/c/rDJZnh/oBgb
https://paperpile.com/c/rDJZnh/tJQk
https://paperpile.com/c/rDJZnh/Eu6W
https://paperpile.com/c/rDJZnh/Qkw3
https://paperpile.com/c/rDJZnh/dxUy
https://paperpile.com/c/rDJZnh/DFA0

THE OPENRISKNET APl ANNOTATION

An overview of the process

At the beginning of the OpenRiskNet project, the partners started by collecting and
inspecting existing web APls, both of their own tools but also of third party offerings
relevant to the field of risk assessment. We then assessed the available tools for two
different aspects of documentation that we saw were required.

On one hand, we saw the need to describe the semantic meaning of the various inputs
and outputs (i.e. to answer questions like “what semantic concept does this field ‘pcid’
represent?”). The solution adopted by OpenRiskNet is to use established technologies
from the semantic web field, especially Resource Description Framework (RDF) and
existing ontologies that are in wide use to describe concepts in scientific fields like biology
and chemistry or are specifically developed for toxicology.

On the other hand, our assessment included a technical description of the many input,
output and invocation mechanisms of an APl that would be both human and machine
readable. Here the field was much wider and we looked especially at offerings that might
already bridge the technical specification with some form of semantic annotation.

We evaluated a wide array of implementations for both fields, the evaluation of which can
be found in detail in the Deliverable D2.2 report [1]. In the following section the
technologies we selected will be described in more detail, along with the justification for
their selection.

Semantic annotation

For semantic annotation, the solution space is relatively narrow and most solutions for
expressing semantic relationships revolve around the RDF data model. RDF describes
relationships as triples (subject, predicate, object) and uses Uniform Resource
Identifiers/Internationalized Resource ldentifier (IRIs) as identifiers (where IRIs commonly
point to ontology terms). Since the RDF data model offers various serialisation formats,
the main question was which serialisation format to use. To enable a seamless integration
with the JSON based OpenAPI format, JSSON-LD was chosen. In brief, JSON-LD is a way of
representing a flat list of linked triples (the RDF data model) using the logical tree data
structure of a JSON document.

Technical (structural) annotation

On the technical side, the situation was more complicated. A major obstacle the
OpenRiskNet Consortium faced is that Web APIs are very flexible and allow for a wide
variety of specifying input and output data. For example, input parameters can be
transmitted in the HTTP header, as part of the request string in the URI, or as a body

OpenRiskNet 5] Page 7

https://paperpile.com/c/rDJZnh/Eu6W

payload using a large number of serialisation formats. All of these are in active use in the
community and the precise combination of encodings for inputs and outputs is chosen by
the API authors according to various technical constraints and preferences. Describing a
Web APl in enough detail that both a human user and a machine have all the information
required to construct requests to this API is a significant undertaking. This fact also meant
that it would be counterproductive to design an entirely novel way of describing Web APIs
for it would have meant both a huge effort of the OpenRiskNet consortium to create such
a description format but also a significant learning curve and effort for Service Providers
who would want to annotate their services in an OpenRiskNet-compliant way.
Furthermore, there would have been no existing tooling in the form of APl description
syntax highlighting, verification tools etc., meaning that these would also have to be
developed bespoke by the OpenRiskNet partners, again at considerable time and resource
cost.

OpenAPI

After a long process of weighing pros and cons, we decided to use the well-established
OpenAPI specification as our basis. OpenAPI (formerly known as Swagger) is a big effort to
describe Web APIs in a way that is both human and machine readable and that is widely
used already. This has the benefit that many developers will already be familiar with the
majority of our description format (and often even have such OpenAPI definitions for their
services), and that a substantial tooling already exists that aids developers in writing such
definitions, verifying them and even generating implementation code for them in some
cases. Also, OpenAPI specifications implement the best practices in APl development. If
these are adopted correctly, a harmonised communication pattern arises through APIs
and service interoperability becomes an easier task. OpenAPl does not, however, provide
any way of specifying semantic annotations.

To add semantic annotations, we wanted to find a way to annotate OpenAPlI documents
that would a) be able to be written inline, i.e. not create a new, separate document that
has to be kept in sync with the OpenAPI description and b) keep the OpenAPI document in
a form that still adheres to the OpenAPI specifications. The latter point is important so
that existing tooling can still parse our newly fused “OpenRiskNet annotated OpenAPI
documents” even after the semantic annotations had been applied. JSON-LD provides this
capability and was thus selected.

Fortunately, OpenAPl provides a mechanism to add arbitrary annotations at almost all
levels of the description - as long as they are prefixed with “x-”. We thus constructed a
minimal header that aliases the standard JSON-LD terms for “@type” and “@id” to use
“x-orn-@type” and “x-orn-@id” (where the orn indicated OpenRiskNet), and gives a
JSON-LD “@vocab” definition so that all JSON keys that are not specifically mapped to
ontology terms will be mapped to a placeholder URI so that they will not be dropped in
the conversion step into RDF triples. The resulting JSON-LD can be checked for validity
through online platforms such as Json-ld playground .

OpenRiskNet annotations for OpenAPI

To summarize, this means that with the addition of the following header, an existing
OpenAPl description can be turned into a basic “OpenRiskNet annotated OpenAPI
document” and be interpreted as linked data (given in YAML serialisation below):

OpenRiskNet m Page 8

https://json-ld.org/playground/

'x-orn-@context':
'@vocab': 'http://openrisknet.org/schema#'
x-orn: 'http://openrisknet.org/schema#’
x-orn-@id: '@id’

x-orn-@type: '@type'

With this in place, APl authors can then annotate input and output parameters (like keys
in their JSON payload, query parameters etc.) by adding additional mappings to ontology
terms in the ‘x-orn-@context’ section. For example, to map the terms “smiles” to the
CHEMINF ontology term for SMILES (CHEMINF_000018) and the term “inchi” to the
corresponding term for InChl (CHEMINF_00011) [9], the following two lines would be added
to the section above and be included in the OpenAPl document for the API:

smiles: http://semanticscience.org/resource/CHEMINF 000018
inchi: http://semanticscience.org/resource/CHEMINF 00011

With this information added to the OpenAPl document, the service providers can supply an
OpenRiskNet (semantically) annotated OpenAPl document that can then be parsed and
indexed by the OpenRiskNet Service Registry. An example to clarify this will follow in the
next section.

To guide service providers through the process of annotating their OpenAPI descriptions
with semantic annotations and create a valid “OpenRiskNet annotated OpenAPI
document”, public documentation [10]has been published on the OpenRiskNet website.
Additionally, an interactive tool called the OpenRiskNet Query Tester [11] was created to
quickly test such annotated OpenAPI documents.

Comparison with existing approaches

As outlined in the D2.2 deliverable, there are only few existing attempts to bridge the two
worlds of, on one hand, technical HTTP web API descriptions that are both computer and
human readable and, on the other hand, semantic descriptions of operations and their
inputs and outputs. The most visible of such attempt was the HYDRA project [12] that
tried to build a technical description purely as a JSON-LD document. This allows for a
very elegant semantic description of parts of an API, but creating such a description in
enough detail that requests to an API can be constructed automatically is a very laborious
effort and the tooling support is basically non-existent. Furthermore, while a lot of
existing Web APIs are already documented using OpenAPIl, HYDRA is not used by any of the
consortium or associated partners and to our knowledge by hardly any Web APIs at all.
Adopting this concept would therefore impose large development work on service
providers and thus Llimit the number of services, which can be integrated by the
consortium partners and supported by the implementation challenge.

Another more recent attempt is the approach taken by Schwichtenberg et al. [13], where
an ad-hoc ontology is derived automatically from an existing OpenAPl document that is
then aligned with global ontologies by the user. The downside of such an approach is that
in this case the semantic operation is extracted into a different data model and exists as a
separate document. We believe that our approach of integrating the semantic mapping

OpenRiskNet m Page 9

https://paperpile.com/c/rDJZnh/wxAi
https://paperpile.com/c/rDJZnh/BOyx
https://paperpile.com/c/rDJZnh/VLxC
https://paperpile.com/c/rDJZnh/GKml
https://paperpile.com/c/rDJZnh/ZsFm

into the OpenAPI document itself but in a way that still allows ordinary OpenAPI tools to
operate unhindered is a significant advantage.

Indexing and search using the OpenRiskNet

Service Registry

To fully understand what happens with these annotated descriptions in the OpenRiskNet
Service Registry, it is important to be aware of how JSON-LD bridges JSON and Linked
data. As was illustrated above, the basic premise of JSON-LD is that the tree-like
structure of JSON can be expressed as a series of triples where each “level” in the tree is
a source or object node in the triple and the object key is seen as the predicate. This
allows an entire JSON document to be transcribed into a flat list of triples that mimic the
same structure. The OpenRiskNet Service Registry takes the OpenAPl JSON with the
OpenRiskNet annotations and ingests it as a JSON-LD into a triple store. Since an OpenAPI
document has a lot of keys and nodes that are of no semantic interest (they are just
mandated for the full technical description that OpenAPI provides), we accept that most
nodes will be anonymous and most keys will be resolved to placeholder URIs. The
important part however, is that for those terms that were mapped to ontology terms with
the above method, the full ontology URI will be used (if done like above, this will result in
the mapping of a predicate but a mapping with x-orn-@id for nodes is also possible).

Based on triples that are generated for every service, a SPARQL query engine can then be
used to find e.g. all services that take SMILES (identified not by some common spelling
but by the precise ontology term CHEMINF _000018) as an input.

OpenRiskNet m Page 10

http://semanticscience.org/resource/CHEMINF_000018

OpenRiskNe

OpenRiskNet service registry

An overview of the OpenRiskNet compliant services running in this OpenRiskNet Virtual Research Environment.

Active OpenRiskNet services

orn-chemidconvert

This REST Api allows you to submit chemical identifiers in one
format and translate it into another format (e.g. SMILES -> InChi)

/asSvg
Jcas/to/inchi
Jcas/to/inchikey
/cas/to/names
Jcas/to/smiles
finchi/to/cas
finchi/to/inchikey
finchi/to/names
Jinchi/to/smiles
finchikey/to/cas
Jinchikey/to/inchi
Jinchikey/to/names
Jinchikey/to/smiles
J/molWeight
/name/to/cas
I/name/to/inchi
/name/to/inchikey
/name/to/smiles
/smiles/to/cas
/smiles/to/inchi
/smiles/to/inchikey
/smiles/to/names

VIEW OPENAPI —

jguweka

RESTful APl Webservice to WEKA Machine Learning Algorithms.
This webservice provides an [OpenRiskNet]

lazar-rest

REST API webservice for lazar. *lazar* (lazy structureaactivity
relationships) is a modular framework for predictive toxicology.

/api/apijson
/compound/descriptor
/eompound/descriptor/{descriptor}
Jeompound/{InChi}

/dataset

/dataset/{id}
/dataset/{id}/{attribute}
/endpoint
fendpoint/{endpoint}

/feature

{feature/{id}

/model

/model/{id}

/report

[report/{id}

/substance

/substance/{id}

/validation
/validation/{validationtype}
/validation/{validationtype}/{id}

VIEW OPENAPI —

api-internal

Jagpot v4 (Quattro) is the 4th version of a YAQP, a RESTful web
platform which can be used to train machine learning models and

Figure 1. Screenshot of the OpenRiskNet service registry application

OpenRiskNet

RISK ASSESSMENT E-INFRASTRUCTURE

Page 11

Examples

To clarify how these annotations are used, we show a brief excerpt of the triples that are
created from the OpenAPl document that has been annotated in an OpenRiskNet
compliant way. All of these examples stem from the default example of the Lazar API and
can be tested by anyone at the public OpenRiskNet Query Tester [11] that was built to
evaluate the feasibility of the approach described in this document.

OpenRiskNet

Annotated OpenAPI Query Test

This is a tool to test the idea of using OpenAPI| descriptions annotated with Json-LD Context information as the
semantic API layer for OpenRiskNet.

You can try some of the SPARQL queries below with the service that is filled in below and the default json-ld
context or you can customize them and use your own service descriptions.

SPARQL Query

PREFIX orn: <http://openrisknet.org/schema#>
Only one query can be active at a time, the rest have to be commented out

A very simple query the title of the Api:
#SELECT ?title

#WHERE {

#?tool orn:info ?info.

#?info orn:title ?title

#3

Get all tripples that could be resolved using the JsonlLd context
SELECT = {?s ?p ?Zo}

Retrieves content based on "Use Cases for annotated APIs with Query Tool"
a) service that can make a prediction

Annotated OpenAPI definition
The OpenAPI 3/Swagger 2 definition

If you start with your own Openapi/Swagger definition, you will want to add x-orn-@id or x-orn-@type information at different
places to enrich the generated RDF data model

Syntax highlighting mode:

YAML JSON

1 ppenapi: 3.8.8 ~
2 x-orn-@id: 'https://lazar.prod.openrisknet.org’

3 x-orn-@type: 'x-orn:Service'

4~ x-orn-@context:

5 '@vocab': 'http://openrisknet.org/schema#’

6 x-orn: 'http://openrisknet.org/schemait’

) x-orn-@id: '@id’

8 x-orn-@gtype: '@type’

9~ servers:

18 - url: ‘'https://lazar.prod.openrisknet.org/"

Figure 2. The OpenRiskNet Query Tester tool

OpenRiskNet

RASTRUCTURE n Page 12

https://paperpile.com/c/rDJZnh/VLxC

Transcription of OpenAPI keys without semantic annotation

A typical OpenApi JSON document describes the entire surface of a web APl and is thus
often of significant size. Much of the information encoded herein is usually not of
semantic interest (e.g. the document starts with an Info section that contains fields like
the terms of service). By configuring the @vocab instruction in the JSON-LD context above,
we ensure that even JSON keys that are not given a semantic meaning are kept when
transcribing to triples. Thus, a fragment of the info section of the example Lazar API
looking like this:

info:
title: Lazar REST Service
version: 1.4.0

is transcribed to anonymous RDF triples as given in Table 1.

Table 1. Resulting triples transcription of the example info section

Subject Predicate Object

_:b38 http://openrisknet.org/sche [“Lazar REST
mat#title Service”xsd:string

_:b38 http://openrisknet.org/sche [“1.4.0""xsd:string
mai#version

This may not look particularly useful and indeed, if this is all that could be done, the
usefulness would be rather limited even if it does already allow us to query such triples
with the SPARQL query language.

The real power of this approach comes when the APl authors add semantic mappings of
JSON keys to ontology terms like above with SMILES and InChl as is shown in the next
example.

Transcription of OpenAPI keys with semantic annotation

Whereas in the above example none of the JSON keys like “title” or “version” were
mapped to ontology terms, an interesting thing happens when such a mapping is
performed. Here we look at a parameter of the Lazar API with the key of “inchi” defined:

parameters:
inchi:
name: InChI
in: path
description: InChI String
required: true
schema:

type: string

OpenRiskNet m Page 13

This part of the OpenAPI is transcribed with the mapping of InChl given above to the
triples in Table 2.

Table 2. Resulting triples of the InChl mapping

Subject Predicate Object

_:b1 http://semanticscience.org/ | _:b10
resource/CHEMINF_000113

_:b10 http://openrisknet.org/sche | InChI*xsd:string
ma#name

_:b10 http://openrisknet.org/sche | path™xsd:string
ma#in

_:b10 http://openrisknet.org/sche | InChl String"*xsd:#tring
ma#description

_:b10 http://openrisknet.org/sche | true™xsd:boolean
ma#required

_:b10 http://openrisknet.org/sche | _:b11
ma#schema

_:b11 http://openrisknet.org/sche | string*xsd:string
ma#type

Because the predicate in the first triple is now a well-defined ontology term, SPARQL
queries can be constructed that find the semantic construct that is represented by an
INChl across APIs and at arbitrary locations in the OpenAPI description. Because this is
using ontology terms, additional reasoning can be performed. For example, not just API
endpoints that process exactly “InChl” identifiers can be found, but instead the more
general term in the CHEMINF ontology for “structural descriptor” CHEMINF:000085 can be
used to find all APl Endpoints that process any kind of “structural descriptor” defined by
the CHEMINF ontology and OpenRiskNet identifier mapping services can be used to map
between different identifiers to be able to e.g. combine datasets even if the same
identifiers are not available in both.

Example SPARQL Queries

To complete the examples, we show here how the information from Table 2 above can be
used in a SPARQL Query. We currently do not foresee normal users of the OpenRiskNet
system writing such queries themselves. Instead OpenRiskNet components like the Service
Registry would use similar queries to perform semantic queries on behalf of the user.

In this example the triple store is queried for triples that describe a chain using the
orn:info and then the orn:title predicate and only the selected title value is returned.

A very simple query the title of the API:

OpenRiskNet [] Page 14

http://semanticscience.org/resource/CHEMINF_000085

SELECT ?title

WHERE {

?tool orn:info ?info.
?info orn:title ?title

}

A second query example asks for several descriptors of all endpoints returning a certain
mime type of response content.

SELECT ?service ?description ?path ?rest ?input ?output WHERE {
service name

?service a orn:Service.

?service orn:info ?info.

?info orn:description ?description.

handle SD files

?s <http://openrisknet.org/schema#chemical/x-mdl-sdfile> ?format.
show REST method, path

?content orn:content ?s.

2200 orn:200 ?content.

?responses orn:responses 2200.

?responses orn:path ?path.

?responses orn:method ?rest.

show input, output

?format orn:returns ?output.

?format orn:schema ?schema.

?schema orn:property ?input.

}

OpenRiskNet m Page 15

CONCLUSION

The OpenRiskNet consortium successfully created a novel way of providing semantic
annotations for Web APIs. The annotation mechanism has been used to annotate existing
OpenAPl descriptions of consortium partner’s services and the OpenRiskNet Service
Registry is built around this specification to scan for, and allow queries against, these
annotated service descriptions. Documentation to guide service providers in their effort to
annotate existing OpenAPl documents with semantic annotations have been created', as
has the OpenRiskNet Query Tester tool to test such documents interactively before
deploying any services.

It is worth noting, that to the best of our knowledge, such a bridge of a technical API
description format and a semantic annotation of operations using ontology terms provided
by the service providers with very low effort has never been done before. A big part of the
work to arrive at such an elegant solution was the creation of the OpenRiskNet Query Test
Tool, a web-based tool that allows interactive entry of: a) a plain OpenAPI document, b) a
linked data context as given above and c) a SPARQL query to run. This tool allowed us to
test various ways of annotating OpenAPl documents with JSON-LD and to verify that the
semantic questions we would like to ask against a collection of OpenRiskNet services can
be posed and answered using this approach. The approach is being written up for
publication in a cheminformatics Journal also, to enable widespread adoption of this
approach by the community, as a major achievement of OpenRiskNet.

GLOSSARY

The list of terms or abbreviations with the definitions, used in the context of OpenRiskNet
project and the e-infrastructure development is available:

https://github.com/OpenRiskNet/home/wiki/Glossary

OpenRiskNet m Page 16

https://github.com/OpenRiskNet/home/wiki/Glossary
https://openrisknet.org/e-infrastructure/development/
https://github.com/OpenRiskNet/home/wiki

REFERENCES

1. Rautenberg M, Karwath A, Kramer S, Dudgeon T, Spjuth O, Bachler D, et al.
Initial API version provided to providers of services (Deliverable 2.2). 2018;
doi:10.5281/zenodo.1479444

2. Application programming interface - Wikipedia. In: Wikimedia Foundation, Inc.
[Internet]. 30 Jul 2001. Available:
https://en.wikipedia.org/wiki/Application_programming_interface

3. Containers - C++ Reference [Internet]. Available:
http://www.cplusplus.com/reference/stl/

4. The Open Group Base Specifications Issue 7, 2018 edition [Internet]. Available:
http://pubs.opengroup.org/onlinepubs/9699919799/

5. windows-sdk-content. Windows API Index [Internet]. Available:
https://docs.microsoft.com/en-us/windows/desktop/apiindex/windows-api-lis
t

6. Jennings P, Exner T, Farcal L, Oki N, Sarimveis H, Doganis P, et al. Final
definition of case studies (Deliverable 1.3). 2018; doi:10.5281/zenodo.1479127

7. OpenAPI Initiative. In: OpenAPI Initiative [Internet]. Available:
https://www.openapis.org/

8. JSON-LD - JSON for Linking Data [Internet]. Available: https://json-ld.org/

9. Hastings J, Chepelev L, Willighagen E, Adams N, Steinbeck C, Dumontier M.
The Chemical Information Ontology: Provenance and Disambiguation for
Chemical Data on the Biological Semantic Web. PLoS One. Public Library of
Science; 2011;6: e25513.

10. Semantic interoperability * OpenRiskNet [Internet]. Available:
https://openrisknet.org/e-infrastructure/development/semantic-interoperabilit

y/

11. OpenRiskNet OpenAPI Query Test [Internet]. Available:
https://orn-query-test.cloud.douglasconnect.com/

12. Hydra: Hypermedia-Driven Web APIs [Internet]. Available:
https://www.markus-lanthaler.com/hydra/

13. Schwichtenberg S, Gerth C, Engels G. From Open APl to Semantic
Specifications and Code Adapters. 2017 IEEE International Conference on Web
Services (ICWS). IEEE; 2017. pp. 484-491.

OpenRiskNet 5] Page 17

http://paperpile.com/b/rDJZnh/Eu6W
http://paperpile.com/b/rDJZnh/Eu6W
http://paperpile.com/b/rDJZnh/Eu6W
http://dx.doi.org/10.5281/zenodo.1479444
http://paperpile.com/b/rDJZnh/YjxY
http://paperpile.com/b/rDJZnh/YjxY
https://en.wikipedia.org/wiki/Application_programming_interface
http://paperpile.com/b/rDJZnh/cE06
http://www.cplusplus.com/reference/stl/
http://paperpile.com/b/rDJZnh/oBgb
http://pubs.opengroup.org/onlinepubs/9699919799/
http://paperpile.com/b/rDJZnh/tJQk
https://docs.microsoft.com/en-us/windows/desktop/apiindex/windows-api-list
https://docs.microsoft.com/en-us/windows/desktop/apiindex/windows-api-list
http://paperpile.com/b/rDJZnh/Qkw3
http://paperpile.com/b/rDJZnh/Qkw3
http://dx.doi.org/10.5281/zenodo.1479127
http://paperpile.com/b/rDJZnh/dxUy
https://www.openapis.org/
http://paperpile.com/b/rDJZnh/DFA0
https://json-ld.org/
http://paperpile.com/b/rDJZnh/wxAi
http://paperpile.com/b/rDJZnh/wxAi
http://paperpile.com/b/rDJZnh/wxAi
http://paperpile.com/b/rDJZnh/wxAi
http://paperpile.com/b/rDJZnh/BOyx
https://openrisknet.org/e-infrastructure/development/semantic-interoperability/
https://openrisknet.org/e-infrastructure/development/semantic-interoperability/
http://paperpile.com/b/rDJZnh/VLxC
https://orn-query-test.cloud.douglasconnect.com/
http://paperpile.com/b/rDJZnh/GKml
https://www.markus-lanthaler.com/hydra/
http://paperpile.com/b/rDJZnh/ZsFm
http://paperpile.com/b/rDJZnh/ZsFm
http://paperpile.com/b/rDJZnh/ZsFm

