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Abstract— It is a well-known fact that feedback does not
increase the capacity of point-to-point memoryless channels, how-
ever, its effect in secure communications is not fully understood
yet. In this paper, an achievable scheme for the wiretap channel
with generalized feedback is presented. This scheme, which uses
the feedback signal to generate a shared secret key between the
legitimate users, encrypts the message to be sent at the bit level.
New capacity results for a class of channels are provided, as well
as some new insights into the secret key agreement problem.
Moreover, this scheme recovers previously reported rate regions
from the literature, and thus it can be seen as a generalization
that unifies several results in the field.

Index Terms— Information-theoretic security, wiretap channel,
feedback, secret key, secrecy capacity, secret key capacity.

I. INTRODUCTION

IN RECENT years, there has been great interest in the
study of the wiretap channel (WTC) [2] as a model for

secure communications against eavesdroppers by harnessing
the randomness inherently present in the physical medium
(see [3] and references therein). Application to secure wireless
networks is extremely attractive, not only because the open
nature of the medium makes communication devices particu-
larly sensitive to eavesdropping, but also because randomness
is abundantly available in such scenarios. As a matter of fact,
the current theory of physical layer security indicates that the
part of the data that is secured cannot be retrieved by the
eavesdropper, regardless of its computational power.
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Fig. 1. Wiretap channel with generalized feedback.

A crucial observation behind this promising result is that
unless the legitimate’s and the eavesdropper’s channels enjoy
different statistical properties, which is often a nonrealis-
tic assumption, secrecy cannot be guaranteed. Nevertheless,
if both channels share the same statistical properties but some
extra outdated side information is available at the transmitter,
then the encoder can create the asymmetry required to ensure
security (e.g., see [4], [5]). In fact, this observation reveals
one of the major limitations of the wiretap model, whose
performance strongly depends on the amount of outdated
side information that may be available at the transmitter.
Studying the impact on secrecy systems of different types of
instantaneous information is therefore of both practical and
theoretical interest.

In this work, we investigate the problem where a node,
Alice, wishes to secretly communicate a message to another
node, Bob, in presence of a passive eavesdropper, Eve,
as depicted in Fig. 1. Alice can communicate with Bob
using a general memoryless channel but Eve is listening this
communication through another memoryless channel, whose
statistical properties can be different or equal to Bob’s. In addi-
tion, we assume that Alice observes general –may be noisy–
outdated feedback which is correlated to the channel outputs of
Bob and Eve, referred to as “generalized feedback”. It is worth
mentioning that this feedback model is rich enough since it
handles several different types of outdated side information at
the transmitter (e.g., delayed state-feedback or noisy feedback
of the channel outputs) as well as both secure and non-secure
feedback scenarios. Therefore, the generalized feedback model
provides the adequate framework to investigate the impact of
the feedback model.

A. Related Work

There has been substantial work on the wiretap channel with
different feedback models, however, the capacity in the general
case remains unresolved. Feedback, even partial, is known
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to increase the capacity of several multi-terminal networks
with respect to the non-feedback case (e.g., broadcast [6]
and multiple access channels [7]). The transmitter uses the
feedback signal to provide the decoder with noisy functions
of the channel noise or parameters, and the messages. This
communication is accomplished by two fundamentally differ-
ent classes of coding schemes: those based on block Markov
(digital) coding [6], [7], and those based on linear (analog)
encoding [8], known as Schalkwijk-Kailath (S-K) scheme,
which perform well over additive Gaussian models.

In the literature, there exist two complementary approaches
on the use of the feedback signal to secure the communication.
On the first one, Alice and Bob extract common randomness
from their respective channel outputs which they use as a
shared secret key. This key encrypts the message at the bit
level which provides secrecy as long as Eve cannot obtain
the key. On the second approach, Alice relies on a “feedback-
dependent codebook” that correlates the codewords to be sent
with the feedback signal. In this way, Alice seeks to hide
as much as possible the transmitted codewords from Eve’s
observations (e.g., beamforming at the codeword level). Due to
the inherently digital nature of encrypting the message bitwise,
only the block Markov scheme is suited for the first approach,
while both block Markov and S-K schemes are possible for
the second methodology.

Results based on the secret key approach are numerous, as it
seems natural to use the feedback link (secure or not) to agree
upon a key. In [9], the authors analyze the WTC with perfect
output feedback only at the encoder and propose a scheme
based on this methodology. This scheme achieves the capacity
of the degraded, i.e., X −�− Y −�− Z , and reversely degraded,
i.e., X −�− Z −�−Y , WTC with perfect output feedback. The case
of parallel channels, i.e., Y −�−X −�−Z , is studied in [10], where
the secrecy capacity is characterized when one of the channels
is more capable than the other. A similar model to [9], where
the feedback link is in fact a secure rate-limited channel from
Bob to Alice, is presented in [11]. In contrast to the previous
schemes, the key is here created with fresh randomness that
Bob transmits.

The use of state-feedback as a means to generate a key
has also been analyzed, either when it is known only by the
legitimate users [12] or by all the nodes in the network [13].
The authors of [12] propose a lower bound for the general
discrete memoryless WTC with state information at both the
encoder and decoder, which is tight in several scenarios,
e.g., when Bob is less noisy than Eve, or when Eve is less
noisy than Bob and the channel is independent of the state.
In [13], the authors study a communication scenario where an
encoder transmits private messages to several receivers through
a broadcast erasure channel, and the receivers feed back
(publicly) their channel states. Capacity is characterized based
on linear complexity two-phase schemes: in the first phase
appropriate secret keys are generated which are exploited
during the second phase to encrypt each message.

Indeed, the generation of the secret key is a problem in
and of itself [14], [15]. Two models exist that tackle this
issue: the “source model”, when the generation is based on
the common randomness present in correlated sources, and

the “channel model”, when the common randomness is due
to the correlation between inputs and outputs of a channel.
The authors of [16] study the first model, where two nodes
generate common randomness with the aid of a third “helper”
node, all of them connected by noiseless rate-limited links.
This common randomness may be kept secret from a fourth
passive node that acts as an eavesdropper. The same authors
also analyze the channel model in [17]. Capacity results are
presented in both [16] and [17] when there is only one round
of communication over the noiseless public link. General lower
and upper bounds for both source and channel models when
interaction is allowed are found in [18] and [19].

More recently, [20] investigates a similar problem as [16]
but there is no helper node, the users communicate over a
WTC, and a public discussion channel may or may not be
available. On the other hand, [21] analyzes key agreement
over a multiple access channel, i.e., the channel model. Here
the receiver can actively send feedback, through a noiseless
or noisy link, to increase the size of the shared key. The
authors of [22] go one step further and study the simultaneous
transmission of a secret message along with a key generation
scheme using correlated sources. They obtain a simple expres-
sion that shows the trade-off between the achievable secrecy
rate and the achievable secret key rate.

Results based on the “feedback-dependent codebook”
approach, however, are not that numerous to the best of our
knowledge. Early work in [23] and [24] study the multiple
access channel (MAC) with generalized feedback and secrecy
constraints. In [23] the eavesdropper is an external user to the
MAC and the cooperating encoders use (partial) decode-and-
forward strategies to enlarge their achievable rates. On the
other hand, in [24], each encoder acts as an eavesdropper for
the other user and the authors propose lower bounds based
on compress-and-forward to increase the transmission rates
to levels that are only decodable by the destination. Com-
pletely outdated state-feedback can also be used to enhance
security. In [4] and [5], it is shown that outdated state-
feedback of either the legitimate channel, the eavesdropper’s
channel or both, increases the secure degrees of freedom of
the two-user Gaussian multiple-input multiple-output (MIMO)
wiretap channel.

Active feedback in a half-duplex fashion is used in [25],
where communication is split in two phases. In the first one,
the destination sends a random codeword which cannot be
decoded by the eavesdropper. On top of this “interference
sequence”, the codeword to be transmitted in the second phase
is superimposed. This scheme achieves positive secrecy rates
in the MIMO wiretap channel even when the eavesdropper
has more antennas than the source. An analogous scheme is
presented for the full-duplex two-way Gaussian wiretap chan-
nel in [26]. Here, the interference sequence sent in the first
phase is canceled at the eavesdropper thanks to the full-duplex
operation of the channel. Moreover, the authors show that
neglecting the feedback signal can lead to unbounded loss in
achievable rate under certain conditions.

In [27], the modulo-additive WTC with a full-duplex
destination node is investigated. The authors propose a
scheme where the legitimate receiver injects noise in the
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backward (feedback) channel, effectively eliminating any cor-
relation between the message sent and the eavesdropper’s
observation. This scheme achieves the full capacity of the
point-to-point channel in absence of the wiretapper, i.e., full
secrecy can be guaranteed at no rate cost. A similar con-
clusion is also drawn in [28], where the authors analyze an
additive white Gaussian noisy (AWGN) channel with perfect
output feedback from the legitimate receiver. They propose
a S-K coding scheme which achieves the full capacity of
the AWGN channel in absence of the wiretapper, as long as
the eavesdropper has only access to a noisy feedback signal.
This last result is generalized by the authors in [29], where
an achievable strategy that combines block Markov and S-K
schemes is introduced.

A closely related topic to the one addressed in this work
is the WTC with noncausal side-information available to
the parties. The model where the side-information is only
available at the encoder is studied in [30], where a lower
bound based on Gelfand and Pinsker’s strategy for channels
with state [31] is introduced. An extension to this model, with
both the encoder and legitimate decoder having access to cor-
related side-information, is investigated in [32]. More recently,
the authors of [33] analyze a slightly different scenario where
the state affecting the legitimate decoder’s channel is not equal
to the one affecting the eavesdropper’s channel. These channel
states are correlated and the encoder only knows the state of
the legitimate decoder’s channel.

B. Contributions and Organization of the Paper

In this work, we derive the following results:

• We first introduce our main contribution (see Theorem 1),
a lower bound based on the secret key approach, where
the feedback link is used to generate a key that encrypts
the message partially or completely.

• As an extension of Theorem 1, we derive a lower bound
(see Theorem 2) on secret key agreement for the same
channel model. The channel is used both as a source of
correlated randomness and as a means of communication,
i.e., there is no parallel public noiseless channel used by
the terminals.

• In order to assess the optimality of these strategies,
we derive upper bounds for a particular class of channels
(see Theorems 3 and 4) and we show that the lower
bound and its extension are optimal under some special
conditions (see Propositions 1 to 6).

• In addition to these new capacity results, the first lower
bound is shown to recover previously reported results for
different channel and feedback models (see Theorems 5
and 6). Consequently, the lower bound provided in this
work can be seen as a generalization and thus unification
of several results in the field.

The rest of this paper is organized as follows. Section II
introduces the general channel model and the one used
for the capacity results, as well as some basic definitions.
In Section III, we present our main results: the lower and
upper bounds, whose proofs are deferred to the appendices.
The new capacity results and the comparison with previously

reported lower bounds are shown in Section IV, while the
summary and concluding remarks are stated in Section V.

Notation and Conventions: In this work, we use the standard
notation of [34]. Specifically, given two integers i and j ,
the expression [i : j ] denotes the set {i, i +1, . . . , j}, whereas
for real values a and b, [a, b] denotes the closed interval
between a and b. Lowercase letters such as x and y are
mainly used to represent constants or realizations of random
variables, capital letters such as X and Y stand for the random
variables in itself, while calligraphic letters such as X and Y
are reserved for sets, codebooks or special functions.

We use the notation x j
i = (xi , xi+1, . . . , x j ) to denote the

sequence of length j − i + 1 for 1 ≤ i ≤ j . If i = 1, we drop
the subscript for succinctness, i.e., x j = (x1, x2, . . . , x j ). For
simplicity, n-sequences may be denoted either by xn or x. This
comes in handy in the proofs where we deal with b blocks of
n-sequences, i.e., xb = (x1, x2, . . . , xb).

The probability distribution (PD) of the random vector Xn ,
pXn(xn), is succinctly written as p(xn) without subscript
when it can be understood from the argument xn . Given
three random variables X , Y , and Z , if its joint PD can be
decomposed as p(xyz) = p(x)p(y|x)p(z|y), then they form
a Markov chain, denoted by X −�−Y −�− Z . Entropy is denoted
by H (·) and mutual information, I (·; ·). The expression |x |+
stands for max{x, 0}.

II. PROBLEM DEFINITION

In this work, we consider primarily the wiretap channel
with generalized feedback (WTC-GF). Nonetheless, we also
provide some insights on a specific class of channels that can
be derived from the original system model. We now introduce
these two models.

A. Wiretap Channel With Generalized Feedback

In the WTC-GF, Alice wants to securely transmit a message
Mn (uniformly distributed over a message set Mn) to Bob
with the aid of a feedback signal while Eve observes the
transmission. The WTC-GF, depicted in Fig. 1, is modeled as
a discrete memoryless channel whose nth extension satisfies

p(yi ŷi zi |xi yi−1 ŷi−1zi−1) = p(yi ŷi zi |xi ), (1)

for all i ∈ [1 : n]. The right-hand side of (1) is independent of
the time slot i and it is defined by the conditional probability
distribution

p(y ŷz|x) : X → Y × Ŷ × Z, (2)

where x ∈ X is Alice’s channel input, ŷ ∈ Ŷ is the feedback
signal, and y ∈ Y and z ∈ Z are Bob’s and Eve’s channel
outputs, respectively.

Definition 1 (Code): A (2nR, n) code cn for the WTC-GF
consists of a message set Mn � [1 : 2nR], a source of local
randomness at the encoder Rr ∈ Rr , a family of encoding
functions enci : (Mn,Rr , Ŷ i−1) → Xi , and a decoding
function dec : Yn → Mn .

The reliability performance of the (2nR , n) code cn is
measured in terms of its average probability of error

Pe(cn) � Pr
{
dec(Y n) �= Mn |cn

}
, (3)
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while its secrecy performance is measured in terms of the
information leakage

L(cn) � I (Mn; Zn|cn). (4)

Definition 2 (Achievable Rate): A weak secrecy rate R is
achievable for the WTC-GF if for every ε > 0 and sufficiently
large n, there exists a (2nR , n) code cn such that

Pe(cn) ≤ ε and
1

n
L(cn) ≤ ε. (5)

On the other hand, a strong secrecy rate R is achievable for
the WTC-GF if for every ε > 0 and sufficiently large n, there
exists a (2nR, n) code cn such that

Pe(cn) ≤ ε and L(cn) ≤ ε. (6)

Definition 3 (Capacity): The weak secrecy capacity Cs f

of the WTC-GF is the supremum of all achievable weak
secrecy rates. Similarly, the strong secrecy capacity Cs f of
the WTC-GF is the supremum of all achievable strong secrecy
rates.

In this work, we also consider the situation where the source
does not want to transmit a message but rather agree on a
secret key (SK) with the legitimate decoder while keeping it
private from the eavesdropper. The channel outputs, i.e., y,
ŷ, and z, may be seen as correlated sources. This scenario
is called “channel model” for key agreement, but in our case,
the communication also takes place in the same channel rather
than in a separate noiseless public broadcast channel.

Definition 4 (SK Code): A (2nRk , n) secret key code cn for
the WTC-GF consists of a key set Kn � [1 : 2nRk ], a source
of local randomness at the encoder Rr ∈ Rr , a family of
encoding functions ϕi : (Rr , Ŷ i−1) → Xi , a key generation
function ψa : (Rr , Ŷn) → Kn , and a key generation function
ψb : Yn → Kn .

Let K = ψa(Rr , Ŷ n), then, similar to (3)–(4), the perfor-
mance of the (2nRk , n) secret key code cn is measured in terms
of its average probability of error

Pe(cn) � Pr
{
ψb(Y

n) �= K |cn
}
, (7)

in terms of the information leakage

Lk(cn) � I (K ; Zn|cn), (8)

and in terms of the uniformity of the keys

Uk(cn) � n Rk − H (K |cn). (9)

Definition 5 (Achievable SK Rate): A weak secret key rate
Rk is achievable for the WTC-GF if for every ε > 0 and
sufficiently large n, there exists a (2nRk , n) SK code cn such
that

Pe(cn) ≤ ε,
1

n
Lk(cn) ≤ ε, and

1

n
Uk(cn) ≤ ε. (10)

On the other hand, a strong secret key rate Rk is achievable
for the WTC-GF if for every ε > 0 and sufficiently large n,
there exists a (2nRk , n) SK code cn such that

Pe(cn) ≤ ε, Lk(cn) ≤ ε, and Uk(cn) ≤ ε. (11)

Fig. 2. Wiretap channel with independent correlated sources.

Definition 6 (SK Capacity): The weak secret key capacity
Ck f of the WTC-GF is the supremum of all achievable weak
SK rates. Similarly, the strong secret key capacity Ck f of the
WTC-GF is the supremum of all achievable strong SK rates.

B. Wiretap Channel With Parallel Sources

The channel model (2) is general enough to encompass
different special scenarios; one of them, that we use later in
the derivation of our capacity results, is depicted in Fig. 2.
This model is a WTC without channel feedback where each
node has causal access to correlated sources; in particular,
Alice, Bob, and Eve observe Ŷs , Ys , and Zs , respectively.
The sources are i.i.d. and independent of the main channel’s
variables (Xc,Yc, Zc). The new model may thus be defined
based on the original one by the specific set of variables

Ŷ � Ŷs , Y � (Ys,Yc), and Z � (Zs, Zc), (12a)

with the following probability distribution

p(ys yc ŷszs zc|xc) = p(yczc|xc)p(ys ŷszs). (12b)

The performance metrics (3)–(4) and (7)–(9) as well as
Definitions 1–6 for the problems of weak secrecy capac-
ity (Cs ), strong secrecy capacity (Cs ), weak secret key capac-
ity (Ck), and strong secret key capacity (Ck), may be readily
extended to this new model using the set of variables (12).

III. SUMMARY OF MAIN RESULTS

We present the main results of this work in the sequel. The
proofs of these results are deferred to the appendices.

A. Wiretap Channel With Generalized Feedback

1) Secrecy Rate Lower Bound: We first introduce our main
contribution, a coding scheme that allows Alice and Bob to
agree on a secret key simultaneously with the transmission of a
message. The secret key is generated by virtue of the feedback
link and is used to encrypt at the bit level the next message
to be sent. For ease of reference, the achievable scheme is
denoted as “KG lower bound”.

Theorem 1 (KG Lower Bound): A lower bound on the
strong secrecy capacity of the WTC-GF is given by

Cs f ≥ max

{

max
p∈PI1

RK G1(p), max
p′∈PI2

RK G2(p′)
}

,
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where RK G1(p) is the set of all nonnegative rates satisfying

RK G1 ≤ I (U ; Y )− I (U ; Z |Q)− I (U ; T |QZ)

− max{I (Q; Y ), I (V ; XŶ |UY )}
+ I (V ; Y |U T )− I (V ; Z |U T ), (13a)

RK G1 ≤ I (U ; Y )− max{I (Q; Y ), I (V ; XŶ |UY )}, (13b)

whereas RK G2(p′) is the set of all nonnegative rates satisfying

RK G2 ≤ I (V ; Y |U T )− I (V ; Z |U T ), (14a)

RK G2 ≤ I (U ; Y )− I (V ; XŶ |UY ). (14b)

The maximization is performed over PI1 , the set of all
probability distributions given by

PI1 = {
p(quxvty ŷz)

= p(qu)p(x |u)p(y ŷz|x)p(t|v)p(v|ux ŷ)
}
, (15)

and PI2 , the subset in PI1 with Q = ∅. In the maximization,
it suffices to consider |Q| ≤ |X | + 4, |U | ≤ |Q|(|X | + 3),
|T | ≤ |X | · |Ŷ| + 2, and |V| ≤ |T |(|X |·|Ŷ| + 1).

Proof: In this scheme, the transmission is split into several
blocks and the transmitted message in each block is encrypted
fully (RK G2 ) or partially (RK G1 ). The codewords T and V are
used to convey a description of the feedback signal Ŷ from
the previous block, and thus they allow the legitimate users
to generate the secret key during the transmission. In RK G1 ,
the description is sent partially by Q and U, hence the presence
of the maximum in (13). Refer to Appendix A for further
details.

Insights behind (13) may be found by rewriting it as

RK G1 ≤ I (U ; Y |Q)− I (U ; Z |Q)− I (U ; T |QZ)

+ I (V ; Y |U T )− I (V ; Z |U T ), (16a)

RK G1 ≤ I (U ; Y |Q), (16b)

subject to

I (V ; XŶ |UY ) ≤ I (Q; Y ). (16c)

The achievable secrecy rate (16a) has two main components:
a part due to Wyner’s wiretap coding scheme, given by the
first two terms, and a part due to the encrypted message,
given by the last two terms in (16a). The remaining term,
i.e., I (U ; T |QZ), represents a rate penalty due to the corre-
lation between the channel codeword U and the description T
that Eve decodes. Moreover, the achievable secrecy rate cannot
be larger than the “effective link capacity” (16b), i.e., the
link capacity I (U ; Y ) once the cost of the key agreement
scheme (16c) is subtracted.

A similar analysis may be performed with (14), where only
an encrypted message is sent.

Remark 1: If we set Q = T = V = ∅, we recover the
achievable secrecy rate of the WTC without feedback.

2) SK Rate Lower Bound: In the absence of a message,
the scheme in Theorem 1 may be employed by Alice and Bob
to agree upon a secret key. This key could later be used to
encrypt the transmission or part of it on a higher layer.

Theorem 2: A lower bound on the strong secret key capac-
ity of the WTC-GF is given by

Ck f ≥ max
p∈PI1

[
I (V ; Y |U T )− I (V ; Z |U T )+ ∣

∣I (U ; Y )

− max{I (Q; Y ), I (V ; XŶ |UY )}
− I (U ; Z |Q)− I (U ; T |QZ)

∣
∣+
]
, (17)

subject to I (V ; XŶ |UY ) ≤ I (U ; Y ). (18)

The maximization in (17) is performed over PI1 , defined
in (15), and it suffices to consider random variables with the
same bounded cardinalities as in Theorem 1.

Proof: This result is a special case of the strategy in
Theorem 1, where there is no message to be transmitted,
i.e., R = 0, and we are only interested in generating a secret
key. Refer to Appendix B for details.

Remark 2: The results of Theorems 1 and 2 are obtained
using the weak secrecy conditions (5) and (10), respectively.
However, employing the method introduced in [35], we can
show that the strong secrecy conditions (6) and (11) also hold
true; therefore the theorems are expressed in terms of these
stronger notions of secrecy.

B. Wiretap Channel With Parallel Sources

1) Secrecy Rate Upper Bound for a Class of Channels: For
the specific channel model depicted in Fig. 2, we derive the
following upper bound on the secrecy capacity.

Theorem 3: An upper bound on the strong secrecy capacity
of the wiretap channel with parallel sources is given by

Cs ≤ max
p∈Po

R, (19)

where R is a nonnegative rate satisfying

R ≤ I (U ; Yc)− I (U ; Zc)+ I (V ; Ys |T )− I (V ; Zs |T ), (20a)

R ≤ I (Xc; Yc)− I (V ; Ŷs |Ys), (20b)

and the set of all input probability distributions is given by

Po = {
p(uxcvtyczc ys ŷszs)

= p(uxc)p(yczc|xc)p(ys ŷszs)p(t|v)p(v|ŷs)
}
, (21)

with |U | ≤ |Xc|, |T | ≤ |Ŷs | + 1, and |V| ≤ (|Ŷs | + 1)2.
Proof: Refer to Appendix C.

Remark 3: In the absence of the correlated sources,
the bound (20) collapses to the upper bound of the wiretap
channel.

2) SK Rate Upper Bound for a Class of Channels: Let us
now consider that, in the scenario depicted in Fig. 2, Alice and
Bob want to agree upon a secret key by means of the correlated
sources and the communication through the wiretap channel.

Theorem 4: An upper bound on the strong secret key capac-
ity of this channel model is given by

Ck ≤ max
p∈Po

[
I (U ; Yc)− I (U ; Zc)+ I (V ; Ys |T )

−I (V ; Zs|T )
]
, (22)

subject to I (V ; Ŷs |Ys) ≤ I (Xc; Yc), (23)
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where the set of all input probability distributions Po is defined
in (21) and the auxiliary random variables have the same
bounded cardinalities as in Theorem 3.

Proof: Refer to Appendix D.
Remark 4: The upper bound (22) is the sum of the secrecy

capacity of the wiretap channel p(yczc|xc), the first two terms
on the right-hand side of (22), and the secret key capacity
of the WTC with a public noiseless channel and correlated
sources [16, Th. 2.6], the other two terms in (22).

Remark 5: Although the upper bounds in Theorems 3 and 4
are derived under the assumption that Alice observes its source
sequence causally, both upper bounds are valid even if Alice
has noncausal access to it.

IV. CAPACITY RESULTS FOR SOME CHANNEL

AND FEEDBACK MODELS

In this section, we first introduce new capacity results for
the wiretap channel with parallel sources obtained by the
KG lower bound (Sections IV-A and IV-B). Next, we show
that previously reported results for other types of channel
and feedback models are recovered by this scheme as well
(Sections IV-C and IV-D). Finally, we present an example
where the KG lower bound is not optimal (Section IV-E).

A. Secret Key Capacity for the WTC With Parallel Sources

We first analyze the secret key agreement problem for
the model depicted in Fig. 2, where the nodes have access
to correlated sources independent of the main channel. The
upper bound for this model is found in Theorem 4, whereas
the lower bound is derived from Theorem 2 by taking the
set of variables (12) and restricting the input probability
distributions, cf. (21), to the form:

p(qu)p(xc|u)p(yczc|xc)p(ys ŷszs)p(t|v)p(v|ŷs). (24)

Then, the lower bound on the secret key rate (17) is given by

Ck ≥ I (V ; Ys |T )− I (V ; Zs|T )+ ∣
∣I (U ; Yc)− I (U ; Zc|Q)

− max{I (Q; Yc), I (V ; Ŷs |Ys)}
∣
∣+, (25)

maximized over (24) and subject to

I (V ; Ŷs |Ys) ≤ I (U ; Yc). (26)

This bound is tight in some special cases.
1) Eve Has a Less Noisy Channel: If Eve has a less

noisy channel than Bob, no secrecy can be guaranteed in the
main channel and the secret key is generated using only the
correlated sources.

Proposition 1: In this scenario, the strong secret key capac-
ity is given by

Ck = max
p(xc)p(t |v)p(v |ŷs)

[
I (V ; Ys |T )− I (V ; Zs|T )

]
, (27)

subject to I (V ; Ŷs |Ys) ≤ I (Xc; Yc). (28)

Proof: For a given PD in (21) and given the less noisy
condition on Eve’s channel, i.e., I (U ; Yc) ≤ I (U ; Zc) for any
RV U such that U −�− Xc −�− (Yc Zc), the upper bound from
Theorem 4 reduces to (27)–(28) which is equal to the lower
bound (25)–(26) with Q = ∅ and U = Xc.

Remark 6: The secret key capacity of the WTC with a
public noiseless channel of rate R [16, Th. 2.6] is a special
case of Proposition 1, where Xc = Yc = Zc and H (Xc) = R.
This result was also noted in [36, Th. 1].

2) Eve Has a Less Noisy Side Information: If Eve has a less
noisy side information than Bob, the legitimate users cannot
extract any secret bits from the correlated sources; the key is
the message carried by the codeword U, which is secured from
Eve by Wyner’s wiretap coding scheme.

Proposition 2: In this scenario, the strong secret key capac-
ity is given by

Ck = max
p(uxc)

[
I (U ; Yc)− I (U ; Zc)

]
. (29)

Proof: Given the less noisy condition on Eve’s side
information, i.e., I (V ; Ys) ≤ I (V ; Zs) for any RV V such
that V −�− Ŷs −�− (Ys Zs), the upper bound reduces to (29)
and the condition (23) disappears. Additionally, the lower
bound (25)–(26) achieves (29) with Q = T = V = ∅.

Remark 7: Since the side information cannot be used to
generate a secret key, the secret key capacity (29) is equal to
the secrecy capacity of the WTC.

3) Alice and Bob Have the Same Side Information: If the
legitimate users have access to the same side information, there
is no need to transmit the bin indices of the description.

Proposition 3: In this scenario, the strong secret key capac-
ity is given by

Ck = max
p(uxc)

[
H (Ys|Zs)+ ∣

∣I (U ; Yc)− I (U ; Zc)
∣
∣+
]
. (30)

Proof: If Ŷs = Ys , the transmission cost of the description
associated to the source disappears, i.e., I (V ; Ŷs |Ys) = 0,
which renders the conditions (23) and (26) redundant, and an
achievable rate according to both the upper and lower bounds
satisfies

Rk ≤ I (V ; Ys |Zs)+
∣
∣I (U ; Yc)− I (U ; Zc)

∣
∣+ (31a)

≤ H (Ys|Zs)+ ∣
∣I (U ; Yc)− I (U ; Zc)

∣
∣+, (31b)

where
• (31a) stems from the Markov chain T −�− V −�− Ys −�− Zs

(due to Ŷs = Ys ), and Q = ∅ in the lower bound; and,
• in (31b) we maximize the first term with V = Ys .

B. Secrecy Capacity for the WTC With Parallel Sources

We now study the secrecy capacity for the model depicted
in Fig. 2. The upper bound for this model is found in
Theorem 3, whereas the lower bound can be derived from
Theorem 1 by taking the set of variables (12) and restricting
the input probability distributions to the form (24). Then,
the achievable secrecy rate RK G1 (13) is given by

RK G1 ≤ I (V ; Ys |T )− I (V ; Zs |T )+ I (U ; Yc)− I (U ; Zc|Q)
− max{I (Q; Yc), I (V ; Ŷs |Ys)}, (32a)

RK G1 ≤ I (U ; Yc)− max{I (Q; Yc), I (V ; Ŷs |Ys)}, (32b)

and RK G2 (14) by

RK G2 ≤ I (V ; Ys |T )− I (V ; Zs|T ), (33a)

RK G2 ≤ I (U ; Yc)− I (V ; Ŷs |Ys). (33b)



BASSI et al.: WTC WITH GENERALIZED FEEDBACK: SECURE COMMUNICATION AND KEY GENERATION 2219

This bound is tight in some special cases.
1) Eve Has a Less Noisy Channel: As in Section IV-A1,

in the situation where Eve has a less noisy channel than
Bob, the achievable secrecy rate is only due to the secret key
generated using the correlated sources.

Proposition 4: In this scenario, the strong secrecy capacity
is given by

Cs = max
p(xc)p(t |v)p(v |ŷs)

min
{

I (V ; Ys |T )− I (V ; Zs|T ),

I (Xc; Yc)− I (V ; Ŷs |Ys)
}
. (34)

Proof: For a probability distribution in (21) and given
the less noisy condition on Eve’s channel, the upper bound
from Theorem 3 reduces to (34) which is equal to the lower
bound (33) with U = Xc.

2) Eve Has a Less Noisy Side Information: If Eve has a less
noisy side information than Bob, the legitimate users cannot
extract any secret bits from the correlated sources, and this
problem reduces to the wiretap channel.

Proposition 5: In this scenario, the strong secrecy capacity
is given by

Cs = max
p(uxc)

[
I (U ; Yc)− I (U ; Zc)

]
. (35)

Proof: Given the less noisy condition on Eve’s side infor-
mation, the bound (20a) becomes (35) while the bound (20b)
becomes redundant. The bound (35) is achieved by the lower
bound (32) with Q = T = V = ∅.

3) Alice and Bob Have the Same Side Information and Bob
Has a Less Noisy Channel: Unlike Section IV-A3, in order to
achieve capacity the legitimate users not only have to share
the same side information but also Bob needs a less noisy
channel than Eve.

Proposition 6: In this scenario, the strong secrecy capacity
is given by

Cs = max
p(xc)

min
{

I (Xc; Yc),

I (Xc; Yc)− I (Xc; Zc)+ H (Ys|Zs)
}
. (36)

Proof: If Ŷs = Ys , the transmission cost of the description
associated to the source disappears, i.e., I (V ; Ŷs |Ys) = 0, and
following similar arguments as those in (31), an achievable
rate according to the upper bound (20) satisfies

R ≤ min{I (Xc; Yc), I (U ; Yc)− I (U ; Zc)+ H (Ys|Zs)}.
We may further upper-bound part of this expression as follows:

I (U ; Yc)− I (U ; Zc)

= I (Xc; Yc)− I (Xc; Yc|U)− I (Xc; Zc)+ I (Xc; Zc|U)
≤ I (Xc; Yc)− I (Xc; Zc),

where the inequality is due to Bob’s channel being less noisy
than Eve’s. Hence, the upper bound becomes (36) under the
aforementioned conditions, which is achieved by the lower
bound (32) with Q = T = ∅, V = Ys , and U = Xc.

C. Wiretap Channel With Perfect Output Feedback

In [9], the authors analyze a wiretap channel with perfect
output feedback at the encoder, i.e., Ŷ = Y , and perfectly
secured from the eavesdropper.

Theorem 5 [9, Th. 1]: In this model, the KG lower bound
introduced in Theorem 1 achieves all rates satisfying

R ≤ max
p(ux)

min
{

I (U ; Y ),

|I (U ; Y )− I (U ; Z)|+ + H (Y |U Z)
}
. (37)

Proof: With the following choice of RVs

V = Y and T = Q = ∅,
the achievable secrecy rate RK G1 (13) becomes

RK G1 ≤ min{I (U ; Y )− I (U ; Z)+ H (Y |U Z), I (U ; Y )},
while the achievable secrecy rate RK G2 (14) reads

RK G2 ≤ min{H (Y |U Z), I (U ; Y )}.
Therefore, the maximization over both strategies can be suc-
cinctly written as (37).

Remark 8: The secrecy capacity results for the degraded
and reversely degraded WTC with perfect output feedback [9,
Corollaries 1 and 2] also apply here.

D. Wiretap Channel With Causal State Information

In [12], the authors analyze a wiretap channel affected
by a random state S, i.e., p(yz|xs)p(s), where the state
is available causally only at the encoder and the legitimate
decoder, i.e., Ŷ = S and Y = (Y, S).

Theorem 6 [12, Th. 1]: In this model, a slightly modified
version of the KG scheme presented in Theorem 1 achieves
all the rates satisfying

R ≤ max

{
max

p(u)u′(u,s)p(x |u′s)
min{I (U ; Y S)− I (U ; Z S)

+ H (S|Z), I (U ; Y S)},
max

p(u)p(x |us)
min{H (S|ZU), I (U ; Y |S)}

}
. (38)

Proof: First, we make the choice of RVs

V = S and T = Q = ∅.
Second, since the KG scheme is derived to handle strictly
causal feedback, and the present model assumes the state is
known causally at the encoder, i.e., si is present at time slot
i , we need to perform a slight modification of the scheme.

We can modify step 4) from the encoding procedure
(Appendix A-B) in the following way. For RK G1 , after the
encoder has chosen the codeword to transmit in block j ,
i.e., u(r j ), it computes u′

i = u′(ui (r j ), si ) and transmits a
randomly generated symbol xi according to p(xi |u′

i si ) for each
time slot i ∈ [1 : n]. The rate (13) becomes

RK G1 ≤ I (U ; Y S)− I (U ; Z)+ H (S|ZU)

= I (U ; Y S)− I (U ; Z S)+ H (S|Z),
RK G1 ≤ I (U ; Y S).
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For RK G2 , we proceed similarly but without the inclusion
of the function u′(·) between the codeword u(r j ) and the
generation of xi . The rate (14) becomes

RK G2 ≤ I (S; Y S|U)− I (S; Z |U) = H (S|ZU),

RK G2 ≤ I (U ; Y S) = I (U ; Y |S).
Therefore, the final expression for the rate is (38).
Remark 9: The secrecy capacity result for less noisy WTC

with state information available causally or noncausally at the
encoder and decoder [9, Th. 3] also applies here.

E. Erasure Wiretap Channel With State-Feedback

In [13], the authors analyze the erasure WTC with public
state-feedback from the legitimate receiver; therefore, both the
encoder and the eavesdropper know if there was an erasure or
not at the legitimate end. In other words, let S � 1{Y = e}
indicate the erasure event at the legitimate user, then

Ŷ � S and Z � (Z ′, S), (39)

where Z ′ is the eavesdropper’s channel output. Moreover,
the channels experience independent erasures, i.e., p(yz′|x) =
p(y|x)p(z′|x).

Proposition 7: In this scenario, it can be shown that the KG
lower bound from Theorem 1 achieves any rate

R ≤ (1 − δ)δE max

{
1 − δ

1 − δδE
,

1

1 + δE

}
, (40)

where δ denotes the erasure probability of the legitimate
receiver and δE , the one of the eavesdropper.

Proof: See Appendix G.
Even though (40) is the maximum secrecy rate achieved by

the KG scheme, it is strictly suboptimal. The secrecy capacity
of this channel model is given by [13, Corollary 1]

Cs f = (1 − δ)δE
1 − δδE

1 − δδ2
E

, (41)

and numerical analysis shows that (40) is strictly below (41)
for all δ and δE ∈ (0, 1).

V. SUMMARY AND CONCLUDING REMARKS

In this work, we presented an achievable scheme for the
wiretap channel with generalized feedback, the KG lower
bound, which allows the legitimate users to agree on a secret
key simultaneously with the transmission of a message. As
an extension to this scheme, we introduced a strategy for the
problem of secret key agreement, which is essentially the KG
lower bound when no message is transmitted.

Due to the complexity of the general problem, we resorted
to simpler channel models to characterize the merit of these
schemes. For a special class of channels, which we named
wiretap channel with parallel sources, we derived two novel
upper bounds and we showed the optimality of the KG lower
bound and its secret key counterpart under some special
conditions. As a side note, it should be mentioned that the
capacity result in Proposition 4 was recently re-discovered
in [37, Corollary 1] by employing a different coding scheme
than our work in [38].

In addition to these new capacity results, the KG lower
bound also recovered previously reported results for different
channel and feedback models. Consequently, this lower bound
could be seen as a generalization, and hence unification of
several results in the field. Nonetheless, the unification is not
complete since the KG lower bound failed to recover all known
results, as shown in Section IV-E.

APPENDIX A
PROOF OF THEOREM 1 (KG LOWER BOUND)

The encoder splits the transmission in b blocks of n channel
uses, during which it transmits b −1 messages of rate R. Dur-
ing each transmission block and in addition to the messages,
the encoder also sends the bin indices corresponding to two
layers of description of the feedback sequence it observed in
the previous block. This allows the legitimate users to agree on
a secret key which is used to encrypt part of the transmission.

The messages are sent using one of the following two
strategies. In the first one, the rate R = RK G1 is achievable
by the joint use of Wyner’s wiretap coding scheme, which
provides a secure rate of R0 bits, and a bitwise-encrypted
message, which grants the remaining R1 = R − R0 secure
bits. The second strategy only relies on the aforementioned
secret key to send an encrypted message of rate R = RK G2 .

In the sequel, we present the proof for RK G1 in detail while
only a sketch of the proof of RK G2 is provided after that. We
note that the rates are shown to be achievable according to the
weak secrecy condition (5). Nonetheless, we demonstrate at
the end of this Appendix that the strong secrecy condition (6)
also holds true.

A. Codebook Generation

Let us define the quantities

S1 = I (T ; U XŶ |Q)+ ε1, (42a)

S̃1 = I (T ; U XŶ |Q)− I (T ; UY |Q)+ ε1 + ε̃1, (42b)

S2 = I (V ; XŶ |U T )+ ε2, (42c)

S̃2 = I (V ; XŶ |U T )− I (V ; Y |U T )+ ε2 + ε̃2, (42d)

S̄2 = I (V ; Y |U T )− I (V ; Z |U T ), (42e)

R1+ R f = I (U ; T Z |Q)− ε′, (42f)

and fix the joint distribution (15) that achieves the maximum
in RK G1 . Then, for each block, create independent codebooks
as follows:

1) Randomly pick 2nS̃ ′
sequences q(l ′), l ′ ∈ [1 : 2nS̃ ′ ],

from T n
δ (Q).

2) For each q(l ′), randomly pick 2n(S̃ ′′+R0+R1+R f )

sequences u(r) ≡ u(l ′, l ′′,m0,m1, l f ), where l ′′ ∈ [1 :
2nS̃ ′′ ], m0 ∈ [1 : 2nR0 ], m1 ∈ [1 : 2nR1 ], and l f ∈ [1 :
2nR f ], from T n

δ (U |q(l ′)).
3) For each q(l ′), randomly pick 2nS1 sequences t(l ′, s1),

where s1 ∈ [1 : 2nS1], from T n
δ (T |q(l ′)). Distribute the

sequences uniformly at random in 2nS̃1 equal-sized bins
B1(l1), which is possible since S̃1 ≤ S1.

4) For each possible triplet (q(l ′),u(r), t(l ′, s1)),
randomly pick 2nS2 sequences v(r , s1, s2), where
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Fig. 3. Schematic representation of the codebook. The index s1 in the bins and sub-bins of v(·) is not shown to improve readability.

s2 ∈ [1 : 2nS2], from T n
δ (V |q(l ′),u(r), t(l ′, s1)).

Distribute the sequences uniformly at random in 2nS̃2

equal-sized bins B2(s1, l2) and the sequences in each
bin in 2nS̄2 equal-sized sub-bins B̄2(s1, l2, k). This
binning process is feasible if

S̃2 ≤ S2, (43a)

S̄2 ≤ S2 − S̃2, (43b)

which holds according to (42) as long as I (V ; Z |U T ) ≤
I (V ; Y |U T ). Moreover, partition the set [1 : 2nS̄2] in
2nR1 equal-sized subsets, which defines the mapping
k ′ = Mk(k), where k ′ ∈ [1 : 2nR1 ]. This partition is
possible if

R1 ≤ S̄2. (44)

See Fig. 3 for details.

B. Encoding

In the first block, the encoder chooses a codeword u(r1)
uniformly at random. It then transmits the sequence x1
that is randomly generated according to the conditional PD
p(x|u(r1)) = ∏n

i=1 p(xi |ui (r1)).
In block j ∈ [2 : b], proceed as follows:
1) Given the channel input and the feedback signal from the

previous block, the encoder looks for an index s1( j−1) ≡
ŝ1 such that
(

t(l ′j−1, ŝ1),q(l ′j−1),u(r j−1), x j−1, ŷ j−1

)

∈ T n
δ′ (T QU XŶ ),

where δ′ < ε1. If more than one index is found, choose
one uniformly at random, whereas if there is no such
index, choose one uniformly at random in [1 : 2nS1].
The probability of not finding such an index is arbitrarily
small as n → ∞.

2) Then, the encoder looks for an index s2( j−1) ≡ ŝ2 such
that
(
v(r j−1, s1( j−1), ŝ2), t(l ′j−1, s1( j−1)),q(l ′j−1),

u(r j−1), x j−1, ŷ j−1
) ∈ T n

δ′ (V T QU XŶ ),

where δ′ < ε2. If more than one index is found, choose
one uniformly at random, whereas if there is no such

index, choose one uniformly at random in [1 : 2nS2].
The probability of not finding such an index is arbitrarily
small as n → ∞.

3) Let v(r j−1, s1( j−1), s2( j−1)) ∈ B̄2(s1( j−1), l2( j−1), k j−1)
and t(l ′j−1, s1( j−1)) ∈ B1(l1( j−1)), and define the fol-
lowing mapping. Let (l ′j , l ′′j ) = Ml (l1( j−1), l2( j−1)),
such that Ml (·) is invertible. This function can be
defined if

S̃′ + S̃′′ = S̃1 + S̃2. (45)

4) In order to transmit the message m j = (m0 j ,m1 j ),
the encoder chooses uniformly at random a value for
the index l f j ∈ [1 : 2nR f ] and selects the codeword
u(l ′j , l ′′j ,m0 j ,m′

1 j , l f j ) = u(r j ), where m′
1 j = m1 j ⊕

k ′
j−1 and k ′

j−1 = Mk (k j−1). It then transmits the
sequence x j that is randomly generated according to the
conditional PD p(x|u(r j )) = ∏n

i=1 p(xi |ui (r j )).

C. Decoding

At the end of each transmission block j ∈ [1 : b],
the legitimate decoder looks for the unique set of indices
r j = (l ′j , l ′′j ,m0 j ,m′

1 j , l f j ) ≡ (l̂ ′, l̂ ′′, m̂0, m̂′
1, l̂ f ) such that

(
q(l̂ ′),u(l̂ ′, l̂ ′′, m̂0, m̂′

1, l̂ f ), y j
) ∈ T n

δ (QUY ).

The probability of error in decoding can be made arbitrarily
small provided that

S̃′′ + R0 + R1 + R f < I (U ; Y |Q)− δ, (46a)

S̃′ + S̃′′ + R0 + R1 + R f < I (U ; Y )− δ. (46b)

Additionally, in block j ∈ [2 : b], proceed as follows:

1) The legitimate decoder computes (l1( j−1), l2( j−1)) =
M−1

l (l ′j , l ′′j ).
2) It then looks for the unique index s1( j−1) ≡ ŝ1 such that

t(l ′j−1, ŝ1) ∈ B1(l1( j−1)) and

(
t(l ′j−1, ŝ1),q(l ′j−1),u(r j−1), y j−1

)
∈ T n

δ (T QUY ),

where δ < ε̃1. The probability of error in decoding is
arbitrarily small as n → ∞.
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3) The legitimate decoder additionally looks for the unique
index s2( j−1) ≡ ŝ2 such that v(r j−1, s1( j−1), ŝ2) ∈
B2(s1( j−1), l2( j−1)) and
(
v(r j−1, s1( j−1), ŝ2), t(l ′j−1, s1( j−1)),q(l ′j−1),

u(r j−1), y j−1
) ∈ T n

δ (V T QUY ),

where δ < ε̃2. The probability of error in decoding is
arbitrarily small as n → ∞.

4) The legitimate decoder is therefore able to
recover the secret key k ′

j−1 = Mk(k j−1) from
the sub-bin k j−1, i.e., v(r j−1, s1( j−1), s2( j−1)) ∈
B̄2(s1( j−1), l2( j−1), k j−1), and with this key,
it decrypts the message of the present block, i.e.,
m j = (m0 j ,m′

1 j ⊕ k ′
j−1).

D. Key Leakage

Let us denote with L1 j the random variable associated with
the bin index of codeword T j in block j , and L2 j and K j the
random variables associated with the bin and sub-bin index of
codeword V j in block j , respectively.

Remark 10: Owing to the encoding procedure, the variables
L1 j , L2 j , and K ′

j = Mk(K j ) are the only cause of the
correlation between blocks, the latter through M

′
1( j+1) =

M1( j+1) ⊕ K ′
j . This fact is used in many of the subsequent

Markov chains.
Consider the following,

H (K b−1|CZb)

=
∑b−1

j=1
H (K j |CZb K j−1)

≥
∑b−1

j=1
H (K j |CU j Zb

j ) (47a)

≥
∑b−1

j=1
H (K j |CU j Z j L1 j L2 j M

′
1( j+1)) (47b)

≥
∑b−1

j=1
H (K j |CU j Z j T j L2 j M

′
1( j+1))

=
∑b−1

j=1
H (K j X j Ŷ j |CU j Z j T j L2 j M

′
1( j+1))

− H (X jŶ j |CU j Z j T j L2 j K j ), (47c)

where
• (47a) is due to (Z j−1K j−1)−�− (CU j )−�− (Zb

j K j ) being a
Markov chain since U j contains (L1( j−1)L2( j−1)K ′

j−1),
see Remark 10; and,

• (47b) is due to Zb
j+1−�−(CL1 j L2 j M

′
1( j+1))−�−(K j U j Z j ).

The first term in (47c) can be bounded from below as follows,

H (X j Ŷ j |CU j T j Z j L2 j M
′
1( j+1))

= H (X jŶ j |CU j T j Z j )− I (X j Ŷ j ; L2 j |CU j T j Z j )

− I (X j Ŷ j ; M
′
1( j+1)|CU j T j Z j L2 j )

≥ H (XŶ|CUTZ)− H (L2 j)− I (K ′
j ; M

′
1( j+1)) (48a)

≥ H (XŶ|CUTZ)− nS̃2 (48b)

≥ H (XŶTZ|CU)− H (TZ|CU)− nS̃2

≥ H (XŶZ|CU)− H (Z|CU)− H (T|CUZ)− nS̃2

≥ n
[
H (XŶ |U Z)− ε′]− H (T|CUZ)− nS̃2 (48c)

≥ n
[
H (XŶ |U T Z)− ε1 − η − ε′ − S̃2

]
, (48d)

where

• (48a) is due to M
′
1( j+1) −�− K ′

j −�− (CU j T j X j Ŷ j Z j L2 j )
being a Markov chain, and the block index j in the first
term being removed for notational simplicity;

• (48b) is due to H (L2 j ) ≤ nS̃2, and H (M1( j+1)⊕ K ′
j ) =

H (M1( j+1)) since M1( j+1) is uniformly distributed on
[1 : 2nR1 ] and independent of K ′

j ;

• (48c) is due to C −�− U −�− (XŶZ) being a Markov chain,
and H (XŶZ|U) ≥ n

[
H (XŶ Z |U)− ε′] for some ε′ > 0

since all the sequences are jointly typical1; and,
• (48d) stems from the following lemma.2

Lemma 1: Let η > 0 and ε1 defined in (42). Then, given the
codebook generation and encoding procedure of the scheme,

H (T|CQUZ) ≤ n
[
I (T ; XŶ |U Z)+ ε1 + η

]
, (49)

for sufficiently large n.
Proof: The proof is found in Appendix E.

On the other hand, the second term in (47c) can be bounded
from above as

H (XŶ|CUZTL2 K )

= H (XŶ|CUZTV)+ I (XŶ; V|CUZTL2 K )

≤ nH (XŶ |U T V Z)+ H (V|CUZTL2K )

≤ n
[
H (XŶ |U T V Z)+ εn

]
, (50)

where the last inequality stems from the following lemma.
Lemma 2: Given the codebook generation and encoding

procedure of the scheme,

H (V|CUZTL2K ) ≤ nεn, (51)

where εn denotes a sequence such that εn → 0 as n → ∞.
Proof: The proof is found in Appendix F.

Therefore, joining (47), (48a), and (50), we obtain

H (K b−1|CZb)

≥
∑b−1

j=1
n
[
I (V ; XŶ |U T Z)− S̃2 − ε1 − η − εn

]

=
∑b−1

j=1
n
[
S̄2 − (ε1 + ε2 + ε̃2 + η + εn)

]

= n(b − 1)(S̄2 − ε), (52)

for some ε > 0. Finally,

E[Lk(C)] = I (K b−1; Zb|C)
= H (K b−1|C)− H (K b−1|CZb)

≤ n(b − 1)S̄2 − n(b − 1)(S̄2 − ε)

= n(b − 1)ε,

and the key is asymptotically secure.

1Given the encoding procedure, X is generated in an i.i.d. fashion given
U, and thus p(xŷz|u) = ∏

i p(xi ŷi zi |ui ). Although it is not true in general
that p(ŷz|x) = ∏

i p(ŷi zi |xi ) due to the use of feedback in the encoding
procedure, cf. (1), the scheme only correlates adjacent transmission blocks.
Therefore, inside a transmission block, we have a DMC without feedback.

2Although Q is not explicitly denoted in the conditioning of the entropy
in (48c), it is assumed to be there hidden behind U.
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E. Key Uniformity

The uniformity of the keys is defined in (9). Using (52),
we obtain

E[Uk(C)] = n(b − 1)S̄2 − H (K b−1|C)
≤ n(b − 1)S̄2 − H (K b−1|CZb)

≤ n(b − 1)ε,

and thus the key is asymptotically uniform.

F. Information Leakage

We now proceed to bound the information leakage of the
b − 1 messages M

b = (Mb
0,M

b
1). Consider first,

I (Mb
0; Zb|C)

=
∑b

j=2
I (M0 j ; Zb|CM

j−1
0 )

≤
∑b

j=2
I (M0 j ; ZbT j M

j−1
0 L1( j−1)L2( j−1)K

′
j−1|C)

=
∑b

j=2

[
I (M0 j ; Z j T j |CL1( j−1)L2( j−1)K

′
j−1)

+ I (M0 j ; Zb
j+1|CZ j T j L1( j−1)L2( j−1)K

′
j−1)

]
, (53)

where the last equality is due to (L1( j−1)L2( j−1)K ′
j−1) being

independent of M0 j and the Markov chain (Z j−1
M

j−1
0 ) −�−

(CL1( j−1)L2( j−1)K ′
j−1)−�− (M0 j Zb

j ), see Remark 10.
The first term on the right-hand side of (53) corresponds to

the information leakage in block j of the message M0 j given
the indices (L ′

j L ′′
j ), which is upper-bounded by nη1 thanks

to (42f). The conditioning over K ′
j−1 does not affect this term

because Z j is only correlated to M
′
1 j = M1 j ⊕ K ′

j−1 which is
independent of K ′

j−1, given that M1 j is uniformly distributed
on [1 : 2nR1 ] and independent of K ′

j−1.
On the other hand, the second term on the right-hand side

of (53) can be bounded as follows

I (M0 j ; Zb
j+1|CZ j T j L1( j−1)L2( j−1)K

′
j−1)

≤ I (M0 j L1( j−1)L2( j−1)K
′
j−1Z j ; Zb

j+1|CT j )

≤ I (U j Z j ; Zb
j+1|CT j ) (54a)

≤ I (U j Z j ; L1 j L2 j M
′
1( j+1)|CT j ) (54b)

= I (U j Z j ; L2 j |CT j )+ I (U j Z j ; M
′
1( j+1)|CT j L2 j )

≤ I (U j Z j ; L2 j |CT j )+ I (K ′
j ; M

′
1( j+1)) (54c)

= I (U j Z j ; L2 j |CT j ), (54d)

where

• (54a) is due to (M0 j L1( j−1)L2( j−1)K ′
j−1)−�− (CU j )−�−

(T j Zb
j ) being a Markov chain since U j hides the indices;

• (54b) is due to (U j T j Z j )−�−(CL1 j L2 j M
′
1( j+1))−�−Zb

j+1,
see Remark 10;

• (54c) is due to the Markov chain M
′
1( j+1) −�− K ′

j −�−
(CU j T j Z j L2 j ); and,

• (54d) is again due to H (M1( j+1) ⊕ K ′
j ) = H (M1( j+1)).

We proceed to bound (54d), where we remove the block
index j for notational simplicity,

I (UZ; L2|CT)

= H (L2|CT)− H (L2|CUTZ)

= H (L2|CT)− H (L2K V|CUTZ)

+ H (K |CUTZL2)+ H (V|CUTZL2K )

≤ nS̃2 − H (V|CUTZ)+ nS̄2 + nεn, (55)

where the inequality follows from bounding the indices L2
and K by their cardinality, and the last entropy by Lemma 2.
The remaining entropy may be bounded using the following
lemma.

Lemma 3: Let η > 0 and ε2 defined in (42). Then, given the
codebook generation and encoding procedure of the scheme,

H (V|CUTZ) ≥ n
[
I (V ; XŶ |U T Z)+ ε2 − η

]
. (56)

for sufficiently large n.
Proof: The proof is found in Appendix E.

Using the definitions of S̃2 and S̄2 from (42), and Lemma 3,
we bound (55) as follows

I (UZ; L2|CT) ≤ n(ε̃2 + εn + η) � nη2,

for some η2 > 0, which let us bound (54), and in turn, (53),

I (Mb
0; Zb|C) ≤

b∑

j=2

(nη1 + nη2) � n(b − 1)η3.

Now consider,

I (Mb
1; Zb|CM

b
0)

=
∑b

j=2
I (M1 j ; Zb|CM

b
0M

j−1
1 )

≤
∑b

j=2
I (M1 j ; U j−1T j

j−1Zb|CM
b
0M

j−1
1 )

=
∑b

j=2

[
I (M1 j ; U j−1T j−1Z j−1|CM

b
0M

j−1
1 )

+ I (M1 j ; T j Z j |CM
b
0M

j−1
1 U j−1T j−1Z j−1)

+ I (M1 j ; Zb
j+1|CM

b
0M

j−1
1 U j−1T j

j−1Z j )
]
. (57)

The first term in (57) is zero due to the independence between
(CU j−1T j−1Z j−1

M
b
0M

j−1
1 ) and M1 j , while the second term

can be bounded as follows

I (M1 j ; T j Z j |CM
b
0M

j−1
1 U j−1T j−1Z j−1)

≤ I (M1 j ; M
′
1 j |CM

b
0M

j−1
1 U j−1T j−1Z j−1) (58a)

≤ I (Mb
0M

j
1Z j−2; M

′
1 j |CU j−1T j−1Z j−1)

= I (Mb
0M

j
1Z j−2; K ′

j−1|CU j−1T j−1Z j−1)

+ H (M′
1 j |CU j−1T j−1Z j−1)

− H (K ′
j−1|CU j−1T j−1Z j−1)

≤ n R1 − H (K j−1|CU j−1T j−1Z j−1)

+ H (K j−1|CU j−1T j−1Z j−1 K ′
j−1) (58b)

≤ nS̄2 − H (K |CUTZ), (58c)

= nS̄2 − H (K L2V|CUTZ)+ H (L2|CUTZK )

+ H (V|CUTZL2K )
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≤ n
[
S̄2 − I (V ; XŶ |U T Z)− ε2 + η + S̃2 + εn

]
(58d)

= n(ε̃2 + η + εn), (58e)

where

• (58a) is due to M1 j −�− M
′
1 j −�− (T j Z j ) being a Markov

chain since M
′
1 j = M1 j ⊕ K ′

j−1;

• (58b) is due to (Mb
0M

j
1Z j−2)−�− (CU j−1T j−1Z j−1)−�−

K ′
j−1 being a Markov chain and H (M′

1 j) = n R1;
• (58c) is due to H (K j−1|CK ′

j−1) ≤ n(S̄2 − R1) and the
block index j being removed for brevity; and,

• (58d) follows similar steps as (55).
The third term in (57) may be bounded from above as

follows

I (M1 j ; Zb
j+1|CM

b
0M

j−1
1 U j−1T j

j−1Z j )

≤ I (M1 j ; L1 j L2 j M
′
1( j+1)|CM

b
0M

j−1
1 U j−1T j

j−1Z j )

≤ I (Mb
0M

j
1U j−1T j−1Z j ; L1 j L2 j M

′
1( j+1)|CT j )

≤ I (U j Z j ; L1 j L2 j M
′
1( j+1)|CT j )

≤ nη2,

where the last inequality is bounded exactly as (54b).
Thus, (57) is upper-bounded as

I (Mb
1; Zb|CM

b
0) ≤

b∑

j=2

2nη2 = 2n(b − 1)η2.

Finally, the total information leakage is

E[L(C)] = I (Mb
0M

b
1; Zb|C)

= I (Mb
0; Zb|C)+ I (Mb

1; Zb|CM
b
0)

≤ n(b − 1)(2η2 + η3),

which assures that the eavesdropper has negligible knowledge
of the messages asymptotically.

G. Sufficient Conditions (RK G1)

Putting all the pieces together, we have proved that the
proposed scheme allows the encoder to transmit a message
uniformly distributed in [1 : 2nR ], R = RK G1 = R0 + R1,
while keeping it secret from the eavesdropper if

I (V ; Z |U T ) ≤ I (V ; Y |U T ),

S̃′ + S̃′′ = S̃1 + S̃2 = I (V ; XŶ |UY )+ ε12,

R1 ≤ S̄2 = I (V ; Y |U T )− I (V ; Z |U T ),

S̃′′ + R0 + R1 + R f < I (U ; Y |Q)− δ,

S̃′ + S̃′′ + R0 + R1 + R f < I (U ; Y )− δ,

R1 + R f = I (U ; Z |Q)+ I (U ; T |QZ)− ε′,

where ε12 = ε1 +ε2 + ε̃1 + ε̃2. After applying Fourier-Motzkin
elimination, we obtain the bounds in (13) subject to

I (V ; Z |U T ) ≤ I (V ; Y |U T ), (59a)

I (U ; T Z |Q) ≤ I (U ; Y |Q), (59b)

I (V ; XŶ |UY )+ I (U ; T Z |Q) ≤ I (U ; Y ). (59c)

Nonetheless, these conditions are redundant after the maxi-
mization process. If for a certain PD, condition (59a) is not

satisfied, then, RK G1 with T = V = ∅ attains a higher value.
Similarly, if either (59b) or (59c) does not hold for a certain
PD, then, RK G2 with Q = ∅ attains a higher value.

We have shown thus far that, averaged over all pos-
sible codebooks, the probability of error, the key leak-
age and (non-)uniformity, and the information leakage
rate become negligible as (n, b) → ∞ if condi-
tions (13) hold true. Nonetheless, by applying the selection
lemma [39, Lemma 2.2], we may conclude that there exists
a specific sequence of codebooks such that the probability of
error, the key leakage and (non-)uniformity, and the informa-
tion leakage rate tend to zero as (n, b) → ∞.

The bounds on the cardinality of the alphabets Q,
U , T , and V follow from Fenchel–Eggleston–
Carathéodory’s theorem and the standard cardinality bounding
technique [34, Appendix C]; therefore their proof is omitted.

H. Achievable Rate RK G2

The second strategy tackles the situation where the eaves-
dropper experiences a better channel than the legitimate
receiver and can therefore decode everything sent by the
encoder. In RK G1 , when either the condition (59b) or (59c)
is not satisfied, the rate of the unencrypted message (R0) is
negative. Therefore, in this second strategy the message is
encrypted completely. The proof is similar to the one of RK G1

and we only point out the differences in what follows.
1) Codebook Generation: Since the eavesdropper is able to

decode everything, there is no need for the codeword q(·) as a
lower layer for u(·), which in turn makes the bit recombination
(l ′j , l ′′j ) = Ml (l1( j−1), l2( j−1)) unnecessary. Additionally, since
the encoder cannot send the message without encrypting it,
R0 = 0 and R f = 0, and the condition (42f) disappears. We
therefore take the joint distribution (15) with Q = ∅ and build
the codebooks for each block as in Appendix A-A without
q(·) and with t(·) superimposed over u(·). The quantities (42)
are modified as follows:

S1 = I (T ; XŶ |U)+ ε1,

S̃1 = I (T ; XŶ |U)− I (T ; Y |U)+ ε1 + ε̃1.

2) Encoding and Decoding: These steps are analogous to
the previous proof with two main differences. First, there is
no bit recombination in the transmission of the bin indices.
Second, the encoder only sends an encrypted message m′

j =
m j ⊕ k ′

j−1 using the key obtained from the feedback of
the previous block. Briefly, if t(r j−1, s1( j−1)) ∈ B1(l1( j−1))

and v(r j−1, s1( j−1), s2( j−1)) ∈ B̄2(s1( j−1), l2( j−1), k j−1), the
encoder sends u(l1( j−1), l2( j−1),m′

j ) = u(r j ) during block j .
3) Key and Information Leakage: The proof for the key

secrecy and uniformity is the same while the one for the infor-
mation leakage is simplified. Since there is no unencrypted
message, i.e., R0 = 0 the bounding of I (Mb

0; Zb|C) becomes
trivial and the condition (42f) is no longer necessary.

4) Final Expression: The sufficient conditions in this sec-
ond strategy for the encoder to transmit a message uniformly
distributed in [1 : 2nR], R = RK G2 , while keeping it secret
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from the eavesdropper are given by

I (V ; Z |U T ) ≤ I (V ; Y |U T ), (60a)

S̃1 + S̃2 = I (V ; XŶ |UY )+ ε1 + ε2 + ε̃1 + ε̃2, (60b)

R ≤ S̄2 = I (V ; Y |U T )− I (V ; Z |U T ), (60c)

S̃1 + S̃2 + R < I (U ; Y )− δ, (60d)

which yields (14) after applying Fourier Motzkin elimination.

I. Final Remarks

The preceding proof guarantees that there exists a spe-
cific (2nR, n) code cn whose rate is achievable under the
weak secrecy condition (5). Nevertheless, using the method
proposed in [35], we can show that the achievable secrecy
rate also complies with the strong secrecy condition (6).
In the sequel, we show how this is achieved following
[39, Proposition 4.10].

Let ε > 0 and consider a code cn with rate

R = max

{

max
p∈PI1

RK G1(p), max
p′∈PI2

RK G2(p′)
}

− ε, (61)

where the definitions for the rates are found in (13) and (14),
such that condition (5) holds. The encoder then uses this code
m times3 to transmit m independent messages. In each trans-
mission i ∈ [1 : m], the encoder transmits Mi , the decoder
obtains M̂i , and the eavesdropper observes Zi . This situation
is akin to the “source model” in the problem of secret key gen-
eration where the encoder, the decoder, and the eavesdropper
observe m realizations of the random variables

X ′ � M, Y ′ � M̂, and Z ′ � Z, (62)

respectively. According to [39, Th. 4.7] and for some ε′ > 0,
the legitimate users can agree on a strong secret key K̄ of
length

k = m
[
I (X ′; Y ′)− I (X ′; Z ′)− ε′] ≥ mn(R − ε′′),

where the inequality follows, for some ε′′ > 0, from the
definitions in (62), the condition (5), and the fact that the rate
of M is determined by (61).

The strong secret key K̄ is obtained by means of a one-way
direct reconciliation protocol and privacy amplification with
extractors. These two steps involve the transmission of addi-
tional information through the channel; in particular, the one-
way reconciliation protocol needs m[H (X ′|Y ′) + δ] bits of
communication and the privacy amplification, mδ′ bits, for
some δ, δ′ > 0. Nonetheless, these additional m′ channel uses
are negligible compared to the total transmission time for large
m and n, i.e., m′ ≤ mnδ′′, for some small δ′′ > 0; thus, the rate
of the strong secret key K̄ is bounded from below as

k

mn + m′ ≥ R − ε̄,

3The proof of the scheme is based on splitting the transmission in b blocks
of n channel uses; thus, the whole weakly secret transmission takes place in
nb channel uses. To simplify the presentation of this part, we consider that a
weakly secret transmission, i.e., each of the m times the code cn is employed,
takes place in n channel uses.

for some ε̄ > 0. We refer the reader to [39, Sec. 4.5] for the
details.

Lastly, it remains to be seen if the secret key K̄ can be
interpreted as a message. Given that all the transmissions
are one-way, it is possible for the encoder to choose the
key K̄ ahead of time and “invert” the reconciliation and
privacy amplification processes; the encoder then obtains the
m messages to transmit using the weak code cn . Therefore,
the final strong secret-key K̄ can be treated as a message M

that satisfies the strong secrecy condition (6). This concludes
the proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2 (SK RATE LOWER BOUND)

In this scheme, the encoder is not interested in transmitting a
message but rather agreeing on a secret key with the legitimate
receiver. As in the proof of Theorem 1, the encoder splits the
transmission in b blocks of n channel uses and employs one
of two available strategies to generate the shared secret key.

In the first strategy, the secret key has two components:
one is sent over the channel and is kept secret from the
eavesdropper by using Wyner’s wiretap coding scheme, while
the second component is generated thanks to the correlation
between the outputs Y and Ŷ . On the other hand, the second
strategy generates a secret key only relying on the correlation
between the channel outputs.

In the following, we present a brief sketch of the proof for
both strategies given the similarities with respect to the proof
of Theorem 1 in Appendix A. Consequently, the secret key rate
is achievable according to the weak secrecy condition (10) but
we show at the end of this Appendix that the strong secrecy
condition (11) also holds true.

A. First Strategy

This part follows the same steps as the proof of the achiev-
able secrecy rate RK G1 , found in Appendix A, but without the
transmission of an encrypted message. Thus, at the end of the
b transmission blocks, the encoder and the legitimate receiver
will agree with high probability on a key of rate b−1

b Rk . Due
to the similarity with the proof of RK G1 , we only point out
the differences in the sequel.

1) Codebook Generation: The codebook is generated in
the same way as for the achievable rate RK G1 , with the
exception of the codeword u(·). Specifically, the message m0
carried by that scheme becomes a part of the secret key here,
i.e., R0 = Rk0, and the key generated through the feedback
link is not used to encrypt a message but rather becomes
the second part of the secret key, i.e., R1 = 0, Rk1 = S̄2,
and R f = I (U ; T Z |Q)− ε′ replaces (42f).

Step 2 in Appendix A-A thus becomes:

2) For each q(l ′), randomly pick 2n(S̃ ′′+Rk0+R f ) sequences
u(r) ≡ u(l ′, l ′′, k0, l f ), where l ′′ ∈ [1 : 2nS̃ ′′ ], k0 ∈ [1 :
2nRk0 ], and l f ∈ [1 : 2nR f ], from T n

δ (U |q(l ′)).
2) Encoding and Decoding: These steps are similar to

the ones for the achievable rate RK G1 but no message is
transmitted. In each block j ∈ [2 : b], the encoder chooses
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uniformly at random a key index k0 j ∈ [1 : 2nRk0 ] and a
noise index l f j ∈ [1 : 2nR f ]. It then sends these indices,
along with the bin indices (l ′j , l ′′j ) of the description of the
previous block’s feedback sequence, through the codeword
u(l ′j , l ′′j , k0 j , l f j ) = u(r j ).

3) Key and Information Leakage: The proof for the key
leakage of the achievable rate RK G1 assures that the part
of the key that is created using the description, i.e., k1,
is kept secret from the eavesdropper, while the proof of
the information leakage guarantees that the part that is sent
through the codeword u(r), i.e., k0, is also secure. Both proofs
get simplified since k1 is not used to encrypt a message, and,
therefore, it is not transmitted. Remark 10 should now state
that only the variables L1 j and L2 j are responsible for the
correlation between blocks.

4) Key Uniformity: The encoding procedure states that the
first part of the key, i.e., k0, is chosen uniformly at random,
while the proof of the key uniformity of the achievable rate
RK G1 assures that the other part, i.e., k1, is asymptotically
uniform.

5) Final Expression: The sufficient conditions in this first
strategy, which allows the legitimate users to agree upon a
key uniformly distributed in [1 : 2nRk ], Rk = Rk0 + Rk1,
while keeping it secret from the eavesdropper, are

I (V ; Z |U T ) ≤ I (V ; Y |U T ),

S̃′ + S̃′′ = S̃1 + S̃2 = I (V ; XŶ |UY )+ ε1 + ε2 + ε̃1 + ε̃2,

Rk1 ≤ S̄2 = I (V ; Y |U T )− I (V ; Z |U T ),

S̃′′ + Rk0 + R f < I (U ; Y |Q)− δ,

S̃′ + S̃′′ + Rk0 + R f < I (U ; Y )− δ,

R f = I (U ; Z |Q)+ I (U ; T |QZ)− ε′.

After applying Fourier Motzkin elimination to this set of
inequalities, we obtain

Rk ≤ I (U ; Y )− I (U ; Z |Q)+ I (V ; Y |U T )− I (V ; Z |U T )

− I (U ; T |QZ)− max{I (Q; Y ), I (V ; XŶ |UY )},
(63)

subject to the conditions (59). However, these conditions are
redundant after the maximization process as in RK G1 .

B. Second Strategy

This part is derived from the achievable rate RK G2 , where
we are only interested in generating a secret key, i.e., Rk ≤
S̄2. As before, the encoder does not transmit an encrypted
message, i.e., R = 0, and the codeword u(·) is modified
accordingly. Refer to Appendix A-H for details.

The sufficient conditions in this second strategy are derived
from (60):

I (V ; Z |U T ) ≤ I (V ; Y |U T ),

S̃1 + S̃2 = I (V ; XŶ |UY )+ ε1 + ε2 + ε̃1 + ε̃2,

Rk ≤ S̄2 = I (V ; Y |U T )− I (V ; Z |U T ),

S̃1 + S̃2 < I (U ; Y )− δ.

After applying Fourier Motzkin elimination to this system,
we obtain

Rk ≤ I (V ; Y |U T )− I (V ; Z |U T ) (64)

subject to the condition

I (V ; XŶ |UY ) ≤ I (U ; Y ). (65)

C. Final Remarks

The final achievable secret key rate Rk , which is the union
of (63) and (64) conditioned on (65) and maximized over
all possible joint PDs, can be succinctly written as (17)
and (18). As in the proof of Theorem 1, the preceding rate was
shown to be achievable under the weak secrecy condition (10).
Nonetheless, following the same procedure as in Appendix A-
I, we can show that said rate is also achievable under the strong
secrecy condition (11).

In short, the encoder employs the previously described SK
code cn m times and the legitimate users agree on m weakly
secure keys. These keys may be considered as m observations
of correlated sources and, similarly to [39, Proposition 4.10],
they may be further distilled to obtain a strong secret key by
means of information reconciliation and privacy amplification
with extractors. The proof is a simplified version of the one
presented in Appendix A-I, and thus we omit it here. The
main difference is the absence of a transmitted message,
which eliminates the need to “invert” the reconciliation and
privacy amplification processes. This concludes the proof of
Theorem 2.

APPENDIX C
PROOF OF THEOREM 3 (SECRECY RATE UPPER BOUND)

Let R be an achievable strong secrecy rate according to
Definition 2 with the appropriate modifications for the model
with parallel sources. Then, for ε > 0 and sufficiently large
n, there exist functions enci(·) and dec(·) such that

Xci = enci (Mn, Rr , Ŷ i−1
s ), (66a)

M̂n = dec(Y n
s ,Y n

c ), (66b)

which verify

Pr{M̂n �= Mn} ≤ ε, (67)

I (Mn; Zn
s Zn

c ) ≤ ε, (68)

where we have dropped the conditioning on the codebook cn

from (68) and all subsequent calculations for clarity.
First consider,

n R = H (Mn)

= H (Mn|Zn
s Y n

c )+ I (Mn; Zn
s Y n

c )

≤ H (Mn|Zn
s Y n

c )+ I (Mn; Zn
s Y n

c )− I (Mn; Zn
s Zn

c )+ ε

(69a)

= H (Mn|Zn
s Y n

c )+ I (Mn; Y n
c |Zn

s )− I (Mn; Zn
c |Zn

s )+ ε

≤ H (Mn|Zn
s Y n

c )− H (Mn|Y n
s Y n

c )

+ I (Mn; Y n
c |Zn

s )− I (Mn; Zn
c |Zn

s )+ nεn (69b)
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= I (Mn; Y n
s |Y n

c )− I (Mn; Zn
s |Y n

c )︸ ︷︷ ︸
Rs

+ I (Mn; Y n
c |Zn

s )− I (Mn; Zn
c |Zn

s )︸ ︷︷ ︸
Rc

+ nεn, (69c)

where
• (69a) is due to the security condition (68); and,
• (69b) follows from (66), (67), and Fano’s inequality,

H (Mn|Y n
s Y n

c ) ≤ nε′
n .

We now study separately the “source” term Rs and the
“channel” term Rc.

Rs =
∑n

i=1
I (Mn; Ysi |Y n

c Y i−1
s )− I (Mn; Zsi |Y n

c Zn
s(i+1))

=
∑n

i=1
I (Mn; Ysi |Y n

c Y i−1
s Zn

s(i+1))

− I (Mn; Zsi |Y n
c Y i−1

s Zn
s(i+1)) (70a)

=
∑n

i=1
I (Vi ; Ysi |Ti )− I (Vi ; Zsi |Ti ) (70b)

= n
[
I (VJ ; Ys J |TJ J )− I (VJ ; Zs J |TJ J )

]
(70c)

= n
[
I (V ; Ys |T )− I (V ; Zs |T )

]
, (70d)

where
• (70a) is due to Csiszár sum identity;
• (70b) stems from the definition of the auxiliary RVs Ti =
(Y n

c Y i−1
s Zn

s(i+1)) and Vi = (Mn Ti );
• in (70c) we add the auxiliary RV J uniformly distributed

on [1 : n] and independent of all the other variables; and,
• (70d) follows from the definition of random variables

T = (TJ J ), V = (VJ J ), Ys = Ys J , and Zs = Zs J .
This establishes the “source” term in (69c) with auxiliary RVs
(T V ) that satisfy the following Markov chain

Ti −�− Vi −�− Ŷsi −�− (Ysi Zsi). (71)

The first part of (71) is trivial given the definition Vi =
(Mn Ti ), whereas the second part follows from the i.i.d. nature
of the sources and that they are correlated to the main channel
only through the encoder’s input (66a),

(MnY n
c Y i−1

s Zn
s(i+1))−�− Ŷsi −�− (Ysi Zsi).

The “channel” term Rc can be single-letterized similarly,

Rc =
∑n

i=1
I (Mn; Yci |Zn

s Y i−1
c )− I (Mn; Zci |Zn

s Zn
c(i+1))

=
∑n

i=1
I (Mn; Yci |Zn

s Y i−1
c Zn

c(i+1))

− I (Mn; Zci |Zn
s Y i−1

c Zn
c(i+1)) (72a)

=
∑n

i=1
I (Ui ; Yci |Qi )− I (Ui ; Zci |Qi ) (72b)

= n
[
I (UL ; YcL |QL L)− I (UL ; ZcL |QL L)

]
(72c)

= n
[
I (U ; Yc|Q)− I (U ; Zc|Q)

]
, (72d)

where
• (72a) is due to Csiszár sum identity;
• (72b) stems from the definition of the auxiliary RVs Qi =
(Zn

s Y i−1
c Zn

c(i+1)) and Ui = (Mn Qi );
• in (72c) we add the auxiliary RV L uniformly distributed

on [1 : n] and independent of all the other variables; and,
• (72d) follows from the definition of random variables

Q = (QL L), U = (UL L), Yc = YcL , and Zc = ZcL .

The auxiliary RVs in this term, i.e., (QU), satisfy the follow-
ing Markov chain

Qi −�− Ui −�− Xci −�− (Yci Zci ),

where the nontrivial part is due to the memorylessness prop-
erty of the channel and (66a). Since neither Q nor U appear
on other parts of the upper bound, we may expand Rc as

Rc = n
∑

q∈Q
pQ(q)

[
I (U ; Yc|Q = q)− I (U ; Zc|Q = q)

]

≤ n max
q∈Q

[
I (U ; Yc|Q = q)− I (U ; Zc|Q = q)

]

= n
[
I (U �; Yc)− I (U �; Zc)

]
, (73)

where in the last step we set the auxiliary RV U � ∼ pU |Q(·|q)
with the specific q that maximizes the preceding expression.

Putting (69), (70), and (73) together, letting n → ∞, and
taking arbitrarily small εn , we obtain the bound (20a).

In order to obtain (20b), consider the following,

n(R − εn)

≤ I (Mn; Y n
s Y n

c ) (74a)

= I (Mn; Ŷ n
s Y n

s Y n
c )− I (Mn; Ŷ n

s |Y n
s Y n

c )

= I (Mn; Y n
c |Ŷ n

s )− I (Mn; Ŷ n
s |Y n

s Y n
c ) (74b)

= I (Mn Ŷ n
s ; Y n

c )− I (Ŷ n
s ; Y n

c )− I (Mn; Ŷ n
s |Y n

s Y n
c )

≤ I (Mn Ŷ n
s ; Y n

c )− I (Ŷ n
s ; Y n

c |Y n
s )− I (Mn; Ŷ n

s |Y n
s Y n

c )

(74c)

= I (Mn Ŷ n
s ; Y n

c )− I (MnY n
c ; Ŷ n

s |Y n
s )

≤ I (Xn
c ; Y n

c )− I (MnY n
c ; Ŷ n

s |Y n
s ) (74d)

≤ nI (Xc; Yc)− I (MnY n
c ; Ŷ n

s |Y n
s ), (74e)

where

• (74a) stems from Fano’s inequality;
• (74b) and (74c) follow from Ŷ n

s being independent of Mn

and the Markov chain Y n
s −�− Ŷ n

s −�− (MnY n
c );

• (74d) stems from the encoding procedure (66a); and,
• (74e) is due to the channel being memoryless.

The second term in (74e) can be lower-bounded as follows,

I (MnY n
c ; Ŷ n

s |Y n
s )

= I (MnY n
c ; Ŷ n

s Zn
s |Y n

s ) (75a)

=
∑n

i=1
I (MnY n

c ; Ŷsi Zsi |Y n
s Ŷ n

s(i+1)Z
n
s(i+1))

≥
∑n

i=1
I (MnY n

c Y i−1
s Zn

s(i+1); Ŷsi Zsi |Ysi ) (75b)

=
∑n

i=1
I (Vi ; Ŷsi Zsi |Ysi ) (75c)

≥
∑n

i=1
I (Vi ; Ŷsi |Ysi)

= nI (VJ ; Ŷs J |Ys J J ) (75d)

= nI (VJ J ; Ŷs J |Ys J ) (75e)

= nI (V ; Ŷs |Ys), (75f)

where

• (75a) is due to Zn
s −�− (Y n

s Ŷ n
s )−�− (MnY n

c );
• (75b) follows from the sources being i.i.d., i.e., (Ŷsi Zsi)−

�− Ysi −�− (Y i−1
s Y n

s(i+1)Ŷ
n
s(i+1)Z

n
s(i+1));
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• in (75c) we introduce the auxiliary RV Vi , see (70b);
• in (75d) we introduce the auxiliary RV J , see (70c);
• (75e) is due to the independence of J and (Ŷs J Ys J ); and,
• (75f) stems from the definition of random variables V =
(VJ J ), Ys = Ys J , and Ŷs = Ŷs J .

Putting (74) and (75) together, letting n → ∞, and taking
an arbitrarily small εn , we obtain the bound (20b).

Although the definition of the auxiliary RVs (U T V ) used
in the proof makes them arbitrarily correlated, the bound (20)
only depends on the marginal PDs p(uxc) and p(tv|ŷs).
Consequently, we can restrict the set of possible joint PDs
to (21), i.e., independent source and channel variables, and
still achieve the maximum.

The bound on the cardinality of the alphabets U , T , and V
follow from Fenchel–Eggleston–Carathéodory’s theorem and
the standard cardinality bounding technique [34, Appendix C];
therefore their proof is omitted. This concludes the proof of
Theorem 3.

APPENDIX D
PROOF OF THEOREM 4 (SK RATE UPPER BOUND)

Let Rk be an achievable strong secret key rate according to
Definition 5. Then, for ε > 0 and sufficiently large n, there
exist functions ϕi (·), ψa(·), and ψb(·) such that

Xci = ϕi (Rr , Ŷ i−1
s ), (76a)

Kn = ψa(Rr , Ŷ n
s ), (76b)

K̂n = ψb(Y
n
s ,Y n

c ), (76c)

which verify

Pr{K̂n �= Kn} ≤ ε, (77)

I (Kn; Zn
s Zn

c ) ≤ ε, (78)

n Rk − H (Kn) ≤ ε, (79)

where we have dropped the conditioning on the codebook cn

from (78), (79), and all subsequent calculations for clarity.
This proof follows similar steps as the proof presented in

Appendix C, thus we only point out the differences. First
consider,

n Rk ≤ H (Kn)+ ε

≤ I (Kn; Y n
s |Y n

c )− I (Kn; Zn
s |Y n

c )+ I (Kn; Y n
c |Zn

s )

− I (Kn; Zn
c |Zn

s )+ nεn (80a)

≤ n
[
I (V ; Ys |T )− I (V ; Zs |T )+ I (U ; Yc)

− I (U ; Zc)+ εn
]
, (80b)

where

• (80a) is obtained using similar steps as those in (69); and,
• (80b) arises from the same procedure as in (70), (72),

and (73) but with Kn instead of Mn .

Letting n → ∞, and taking arbitrarily small εn , we obtain the
bound (22).

In order to obtain (23), we use the following Markov chain
that is a consequence of (76a),

(Y n
s Zn

s )−�− Ŷ n
s −�− Xn

c −�− (Y n
c Zn

c ). (81)

Due to the data processing inequality, we have

I (Ŷ n
s ; Y n

c ) ≤ I (Xn
c ; Y n

c ) ≤ nI (Xc; Yc), (82)

where the last inequality is due to the memorylessness property
of the channel. Next consider,

I (Ŷ n
s ; Y n

c ) = I (Ŷ n
s Y n

s ; Y n
c ) (83a)

≥ I (Ŷ n
s ; Y n

c |Y n
s )

= I (Ŷ n
s ; KnY n

c |Y n
s )− I (Ŷ n

s ; Kn|Y n
s Y n

c )

≥ I (Ŷ n
s ; KnY n

c |Y n
s )− nεn (83b)

≥ n
[
I (Ŷs ; V |Ys)− εn

]
, (83c)

where

• (83a) follows from the Markov chain (81);
• (83b) stems from H (Kn|Y n

s Y n
c ) ≤ nεn due to (76), (77),

and Fano’s inequality, and H (Kn|Y n
s Y n

c Ŷ n
s ) ≥ 0 since Kn

is a discrete RV; and,
• (83c) is obtained using similar steps as those in (75) with

the proper definition for the auxiliary RV V .

Putting (82) and (83) together, letting n → ∞, and taking an
arbitrarily small εn , we obtain the bound (23).

As in the proof of Theorem 3, we can restrict the cardinality
of the auxiliary RVs and the set of possible joint PDs to (21),
i.e., independent source and channel variables, and still achieve
the maximum. This concludes the proof of Theorem 4.

APPENDIX E
PROOF OF LEMMAS 1 AND 3

The proof of Lemmas 1 and 3 are similar, and thus we only
present the first one in detail. The specific differences in the
proof of Lemma 3 are shown later in Appendix E-B.

A. Proof of Lemma 1

The proof of this lemma follows largely from the proofs
of [34, Lemma 22.2] and [39, Lemma 4.1]. Unlike those
proofs, however, we analyze here the behavior of the codeword
T j rather than the bin index associated to a source sequence.
In the sequel, we remove the block index j to improve clarity
in the presentation.

Let us first introduce the random variable ϒ , such that

ϒ � 1
{
(Q,U,X, Ŷ,Z) ∈ T n

δ (QU XŶ Z)
}
.

Given the random codebook C, the randomness in the code-
word T comes from its index S. Then, using the binary
variable ϒ , it follows that,

H (T|CQUZ) = H (S|CQUZ)

≤ 1 + H (S|CQUZϒ)

≤ 1 + H (S|CQUZ, ϒ = 1)+ nS1ε
′, (84)

where the last inequality is due to Pr{ϒ = 0} ≤ ε′.
Now, for a specific codebook C = cn (which determines the

codewords Q = q and U = u) and a sequence Z = z, let us
define the random variable Sc with distribution

pSc � pS|C=cn,Q=q,U=u,Z=z,ϒ=1.
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Therefore,

H (Sc) = H (S|C = cn,Q = q,U = u,Z = z, ϒ = 1). (85)

Before proceeding, we note that although S ∈ [1 : 2nS1],
the index Sc has only a non-zero probability in a smaller
subset of indices given the condition on U = u, Z = z,
and ϒ = 1. In other words, Sc ∈ S where S = [1 : 2nS ′

1]
and the average value of S′

1 is provided in the following
lemma.

Lemma 4: Let η1 > 0 and ε1 > 0, and let χ1 be a function
of the codebook cn and the sequence z defined as

χ1(cn, z) = 1
{∣
∣S′

1 − I (T ; XŶ |U Z)− ε1
∣
∣ ≥ η1

}
, (86)

where ε1 is defined in (42). Then, for sufficiently large n,
Pr{χ1(C,Z) = 1 | ϒ = 1} ≤ ε1.

Proof: According to the codebook generation procedure
from Appendix A-A, the expected number of sequences
t ∈ cn such that t ∈ T n

δ (T |quz) is ECZ[|S|] = 2n(S1−α)
where

α = − 1

n
log

|T n
δ (T |quz)|

|T n
δ (T |q)| .

for some (q,u, z) ∈ T n
δ (QU Z). If we calculate the variance

of |S|, we may then use Chebyshev’s inequality to bound the
values of |S|

Pr
{∣∣|S| − ECZ[|S|]∣∣ ≥ ε ECZ[|S|]} ≤ ε−22−n(S1−α). (87)

The value of α may be bounded using standard bounds for
the cardinality of typical sets. Finally, taking the logarithm
in the argument of the probability of (87) and with an
appropriate definition of η1 and ε1, we recover the lemma’s
statement.

Continuing from (85), and due to Q and U being determin-
istic given the codebook C,

H (S|CQUZ, ϒ = 1)

= ECZ
[
H (Sc)

]

≤ ECZ
[
H (Sc) | χ1(C,Z) = 0

]+ nS1ε1, (88)

where the last step follows from Lemma 4. Due to the
symmetry of the random codebook generation and encoding
procedure, the probability pSc is independent of the specific
value of the index and it only depends on whether the index
belongs or not to S. This is addressed in the following
lemma.

Lemma 5: Let ε > 0 and ε2 > 0, and let χ2 be a function
of the codebook cn and the sequence z defined as

χ2(cn, z) = 1
{∣
∣pSc(1)− |S|−1

∣
∣ ≥ ε |S|−1

}
. (89)

Then, Pr{χ2(C,Z) = 1 | χ1(C,Z) = 0, ϒ = 1} ≤ ε2 for suffi-
ciently large n.

Proof: See Appendix E-C.
Therefore,

ECZ
[
H (Sc) | χ1(C,Z) = 0

]

≤ ECZ
[
H (Sc) | χCZ

]+ ε2 log |S| (90a)

=
∑

s∈S
ECZ[−pSc(s) log pSc(s) | χCZ] + ε2 log |S|

= |S| ECZ[−pSc(1) log pSc(1) | χCZ] + ε2 log |S|
≤ (1 + ε)

[
log |S| − log(1 − ε)

]+ ε2 log |S| (90b)

≤ (1 + ε + ε2) n
[
I (T ; XŶ |U Z)+ ε1 + η1

]

− (1 + ε) log(1 − ε) (90c)

≤ n
[
I (T ; XŶ |U Z)+ ε1 + η′], (90d)

where

• (90a) is due to Lemma 5, and χCZ is shorthand notation
for {χ1(C,Z) = 0, χ2(C,Z) = 0};

• (90b) follows from bounding pSc(1) using Lemma 5;
• (90c) follows from bounding |S| using Lemma 4; and,
• (90d) holds for some η′ > 0.

Finally, combining (84), (88), and (90), we obtain

H (T|CQUZ) ≤ n [I (T ; XŶ |U Z)+ ε1 + η′′],
where η′′ = η′ +n−1 + (ε′ +ε1)S1, which concludes the proof
of Lemma 1.

B. Proof of Lemma 3

Let us first introduce a new definition4 for the auxiliary
random variable ϒ ,

ϒ � 1
{
(U,T,X, Ŷ,Z) ∈ T n

δ (U T XŶ Z)
}
.

Second, we note again that given the random codebook
C, the randomness in the codeword V comes from its
index S. Third, for a specific codebook C = cn (which
determines the codewords U = u and T = t) and a
sequence Z = z, let us define the random variable Sc with
distribution

pSc � pS|C=cn,U=u,T=t,Z=z,ϒ=1. (91)

Fourth, we note that although S ∈ [1 : 2nS2], the index Sc

has only a non-zero probability in a smaller subset of indices
given the condition on Z = z and ϒ = 1. In other words,
Sc ∈ S where S = [1 : 2nS ′

2] and the average value of S′
2 is

provided in the following lemma.
Lemma 6: Let η1 > 0 and ε1 > 0, and let χ1 be a function

of the codebook cn and the sequence z defined as

χ1(cn, z) = 1
{∣
∣S′

2 − I (V ; XŶ |U T Z)− ε2
∣
∣ ≥ η1

}
, (92)

where ε1 is defined in (42). Then, for sufficiently large n,
Pr{χ1(C,Z) = 1 | ϒ = 1} ≤ ε1.

Proof: It follows similar steps as those in Lemma 4, and
thus it is omitted.

Fifth, due to the symmetry of the random codebook
generation and encoding procedure, the probability pSc is
independent of the specific value of the index and it
only depends on whether the index belongs or not to
S. The statement of Lemma 5 holds although the proof
involves characterizing the behavior of the index of V

4The sequence Q is omitted in the sequel given the Markov chain Q −�−
(CUT)−�− (VXŶZ) that arises due to the codebook generation procedure.
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instead of that of T. The proof is omitted due to its
similarity.

Finally, since we are interested in a lower bound of the index
of the codeword V, (84), (88), and (90) may be simplified as

H (V|CUTZ)

= H (S|CUTZ)

≥ H (S|CUTZ, ϒ = 1)(1 − ε′) (93a)

= ECZ
[
H (Sc)

]
(1 − ε′) (93b)

≥ ECZ
[
H (Sc) | χ1(C,Z) = 0

]
(1 − ε′)(1 − ε1) (93c)

≥ ECZ
[
H (Sc) | χCZ

]
(1 − ε) (93d)

= |S| ECZ[−pSc(1) log pSc(1) | χCZ](1 − ε)

≥ (1 − ε)
[

log |S| − log(1 + ε)
]
(1 − ε) (93e)

≥ (1 − ε) n
[
I (V ; XŶ |U T Z)+ ε2 − η1

]
(1 − ε)

− (1 − ε) log(1 + ε)(1 − ε) (93f)

≥ n
[
I (V ; XŶ |U T Z)+ ε2 − η′], (93g)

where

• (93a) follows from Pr{ϒ = 1} ≥ 1 − ε′;
• (93b) stems from (91) since u and t are fixed given the

codebook cn;
• (93c) is due to Pr{χ1(C,Z) = 0 | ϒ = 1} ≥ 1 − ε1

according to Lemma 6;
• (93d) follows from Lemma 5, χCZ as defined in (90a),

and (1 − ε) = (1 − ε′)(1 − ε1)(1 − ε2);
• (93e) stems from bounding pSc(1) using Lemma 5;
• (93f) stems from bounding |S| using Lemma 6; and,
• (93g) holds for some η′ > 0.

This concludes the proof of Lemma 3.

C. Proof of Lemma 5

According to the encoding procedure detailed in
Appendix A-B, the index S is chosen uniformly among
all the jointly typical codewords or, if there is no jointly
typical codeword, uniformly on the whole codebook. However,
due to the conditioning on U, Z, and ϒ = 1, we restrict the
indices to the set S. We may thus characterize pSc(1) as

pSc(1) =
∑

(x,ŷ)∈T n
δ (XŶ )

p(x, ŷ)

Pr
{
T n
δ (XŶ )

} ϒx,ŷ, (94)

where

ϒx,ŷ = ν1

1 +∑|S|
i=2 νi

+ |S|−1
|S|∏

i=1

(1 − νi ) (95)

and νi is the event that the codeword t(i) is jointly typical
with the pair (x, ŷ), i.e.,

νi � 1
{
t(i) ∈ T n

δ (T |u, x, ŷ) | t(i) ∈ T n
δ (T |q,u, z),

(q,u, z) ∈ T n
δ (QU Z |x, ŷ)

}
.

The first term in (95) distributes the probability of each pair
(x, ŷ) ∈ T n

δ (XŶ ) uniformly among all the jointly typical
codewords, while the second term in (95) distributes this
probability uniformly among all codewords in S, given that

no one was jointly typical with (x, ŷ). It is not hard to see that
the expected value of νi is

ECZ[νi ] = |T n
δ (T |u, x, ŷ)|

|T n
δ (T |q,u, z)| � γ,

for some (q,u, x, ŷ, z) ∈ T n
δ (QU XŶ Z).

The expected value of (94) depends on the behavior of
ϒx,ŷ. Each νi is a Bernoulli RV with ECZ[νi ] = γ and it
is independent of the other νi ’s. Let us define

ν =
∑|S|

i=2
νi ,

then ν is a Binomial RV, and thus, for j ∈ [0 : |S| − 1],
pν( j) =

(|S| − 1

j

)
γ j (1 − γ )|S|−1− j .

After some manipulations, it is possible to show that

ECZ

[
1

1 + ν

]
= 1 − (1 − γ )|S|

γ |S| .

Hence,

ECZ[ϒx,ŷ] = ECZ

⎡

⎣ ν1

1 + ν
+ 1

|S|
|S|∏

i=1

(1 − νi )

⎤

⎦ = 1

|S| ,

and consequently, the expected value of (94) is

ECZ[pSc(1)] = ECZ[ϒx,ŷ] = |S|−1.

Noting that ϒx,ŷ and ϒx′,ŷ′ are independent variables given
different pairs of sequences (x, ŷ) and (x′, ŷ′), and that
(ϒx,ŷ)

2 ≤ ϒx,ŷ, we obtain

ECZ[(pSc(1))
2] ≤ 2−n[H(XŶ )−ξ ]|S|−1 + |S|−2,

for some ξ > 0. Therefore,

Var[pSc(1)] ≤ 2−n[H(XŶ )−ξ ]|S|−1,

and in view of Chebyshev’s inequality,

Pr
{∣
∣pSc(1)− |S|−1

∣
∣ ≥ ε |S|−1

}

≤ ε−22−n[H(XŶ )−ξ ]|S|
≤ ε−22−n[H(XŶ )−I (T ;XŶ |U Z)−ε1−η1−ξ ]

= ε−22−n[I (U Z ;XŶ )+H(XŶ |U T Z)−ε1−η1−ξ ],

where the last inequality follows from Lemma 4. This con-
cludes the proof of Lemma 5.

APPENDIX F
PROOF OF LEMMA 2

Let us modify the problem definition and then extend the
scheme of Theorem 1 by introducing a virtual receiver. For
each transmission block j , this new receiver observes the same
channel output Z j as the eavesdropper, but it has also perfect
access to the codewords Q j , U j , and T j as well as the indices
L2 j and K j . In this new setup, we require the virtual receiver
to decode the codeword V j in each block j .

With a slight abuse of notation, we know that according
to the codebook generation procedure from Appendix A-A
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and conditioned on the codewords U j and T j , there are 2nS2

codewords V(L2 j , K j , Sd j ). The dummy index Sd j represents
the position of codeword V inside the sub-bin K j and,
given the decoding step 3 in Appendix A-C, it is correctly
decoded by the legitimate decoder. Therefore, if we redefine
the probability of error for this enhanced WTC-GF as

P′
e(cn) � Pr

{
(M̂b, Ŝb

d ) �= (Mb, Sb
d ) or Ŝb

d �= Sb
d | cn

}
,

we see that a valid code for the enhanced WTC-GF described
here is also a valid code for the original WTC-GF.

The extension of Theorem 1 is then straightforward; we
only need to define the decoding procedure at the virtual
receiver. At each block ( j + 1) ∈ [2 : b], and given q j , u j , t j ,
z j , l2 j , and k j , the virtual receiver looks for the unique index
sd j ≡ ŝ such that

(
v(l2 j , k j , ŝ),q j ,u j , t j , z j

) ∈ T n
δ (V QU T Z).

Given that S2 − S̃2 − S̄2 = I (V ; Z |U T )− ε̃2, the probability
of error in decoding is arbitrarily small as n → ∞ if δ < ε̃2.
Then, using Fano’s inequality, we have

H (Sd j |CQ j U j T j Z j L2 j K j ) ≤ nεn,

where εn denotes a sequence such that εn → 0 as n → ∞. The
lemma’s statement follows from the deterministic relationship
between Sd j and V given the codebook, and where we omitted
Q j due to the Markov chain Q j −�− (CU j T j Z j )−�− V. This
concludes the proof of Lemma 2.

APPENDIX G
PROOF OF PROPOSITION 7

We proceed to bound from above expressions (13) and (14),
for which we will make use of the variables defined in (39).
We then show that these upper bounds are achievable with a
specific set of random variables. In particular, an upper bound
of (13a) is given by

RK G1 ≤ I (U ; Y |Q)− I (U ; Z ′S|Q)+ I (V ; Y |U T )

− I (V ; Z ′S|U T ), (96)

since I (U ; T |QZ ′S) ≥ 0 and I (V ; X S|UY ) might be larger
than I (Q; Y ). Consider now the first two terms on the
right-hand side of (96), where we note that we may add the
auxiliary variables S � 1{Y = e} and SE � 1{Z ′ = e} along-
side Y and Z ′ without increasing the mutual informations,

I (U ; Y |Q)− I (U ; Z ′S|Q)
= I (U ; Y S|Q)− I (U ; Z ′SSE |Q)
= I (U ; Y |QS)− I (U ; Z |QSSE ) (97a)

= I (U ; X |Q, S = 0)(1 − δ)

− I (U ; X |QS, SE = 0)(1 − δE )

= I (U ; X |Q)(δE − δ) (97b)

≤ I (U ; X)(δE − δ), (97c)

where

• (97a) and (97b) are due to (Q,U, X) being independent
of (S, SE ); and,

• (97c) follows from the Markov chain Q −�− U −�− X
assuming that δE − δ ≥ 0. If δE − δ < 0, (97) is
negative, which means that it is not possible to transmit
an unencrypted message, and the rate RK G2 is larger.
The reader may later compare the final expressions (100)
and (103) to corroborate this claim.

Let us concentrate now on the last two terms on the right-hand
side of (96),

I (V ; Y |U T )− I (V ; Z ′S|U T )

= I (V ; Y S|U T )− I (V ; Z ′SSE |U T )

= I (V ; Y |U T S)− I (V ; Z ′SE |U T S)

= I (V ; Y |U T S)− I (V ; Z ′|U T SSE ) (98a)

= I (V ; X |U T, S = 0)(1 − δ)

− I (V ; X |U T S, SE = 0)(1 − δE )

= I (V ; X |U T, S = 0)(1 − δ)δE

− I (V ; X |U T, S = 1)(1 − δE )δ (98b)

≤ I (V ; X |U T, S = 0)(1 − δ)δE (98c)

≤ H (X |U T, S = 0)(1 − δ)δE

≤ H (X |U)(1 − δ)δE , (98d)

where

• (98a) and (98b) are due to (U, X, T, V , S) being inde-
pendent of SE ; and,

• (98c) stems from the non-negativity of the mutual infor-
mation.

On the other hand, an upper bound of (13b) is given by

RK G1 ≤ I (U ; Y |Q)= I (U ; X |Q)(1 − δ) ≤ I (U ; X)(1 − δ),

(99)

which follows similar steps as (97). Therefore,
joining (96)–(99), the rate RK G1 may be bounded from
above by

RK G1 ≤ max
p(ux)

min
{

I (U ; X)(δE − δ)+ H (X |U)(1 − δ)δE ,

I (U ; X)(1 − δ)
}
, (100)

which is indeed achievable by selecting the following set of
variables:

T = Q = ∅ and V =
{

X if S = 0

∅ if S = 1.
(101)

Given that 0 ≤ H (X |U) ≤ H (X) ≤ 1, we may rewrite the
bound (100) using H (X |U) = β, β ∈ [0, 1],
RK G1 ≤ max

β∈[0,1] min
{
(1 − β)(δE − δ)+ β(1 − δ)δE ,

(1 − β)(1 − δ)
}
.

Upon inspection, we see that the first term increases linearly
with β while the second one decreases. Therefore, there is a
unique maximizer:

RK G1 ≤ (1 − δ)δE
1 − δ

1 − δδE
for β = 1 − δE

1 − δδE
. (102)
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We can proceed similarly for the rate RK G2 , by selecting
the variables as indicated in (101), and obtain

RK G2 ≤ max
p(ux)

min
{

H (X |U)(1 − δ)δE , I (U ; X)(1 − δ)
}
,

(103)

or equivalently:

RK G2 ≤ max
β∈[0,1] min

{
β(1 − δ)δE , (1 − β)(1 − δ)

}
,

whose maximization gives

RK G2 ≤ (1 − δ)δE
1

1 + δE
for β = 1

1 + δE
. (104)

Finally, joining (102) and (104) we obtain the statement of
Proposition 7.
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