
P VERSUS NP
A Millennium Prize Problem selected by the Clay Mathematics Institute

On P versus NP
Frank Vega

March 16, 2019

Abstract: P versus NP is considered as one of the great open problems of science. This
consists in knowing the answer of the following question: Is P equal to NP? This problem
was first mentioned in a letter written by John Nash to the National Security Agency in 1955.
However, a precise statement of the P versus NP problem was introduced independently by
Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this huge
problem have failed. Another major complexity class is coNP. Whether NP = coNP is another
fundamental question that it is as important as it is unresolved. To attack the P versus NP
problem, the concept of coNP-completeness is very useful. We prove there is a problem in
coNP-complete that is not in P. In this way, we show that P is not equal to coNP. Since P =
NP implies P = coNP, then we also demonstrate that P is not equal to NP.

Introduction

P versus NP is a major unsolved problem in computer science [3]. It is considered by many to be the
most important open problem in the field [3]. It is one of the seven Millennium Prize Problems selected
by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [3].

In 1936, Turing developed his theoretical computational model [1]. The deterministic and nondeter-
ministic Turing machines have become in two of the most important definitions related to this theoretical
model for computation. A deterministic Turing machine has only one next action for each step defined in
its program or transition function [6]. A nondeterministic Turing machine could contain more than one
action defined for each step of its program, where this one is no longer a function, but a relation [6].

ACM Classification: F.1.3.3, F.1.3.2

AMS Classification: 68Q15, 68Q17

Key words and phrases: P, NP, coNP, coNP-complete, Minimum, Boolean circuit

http://en.wikipedia.org/wiki/P_versus_NP_problem

FRANK VEGA

Another huge advance in the last century has been the definition of a complexity class. A language
over an alphabet is any set of strings made up of symbols from that alphabet [2]. A complexity class is a
set of problems, which are represented as a language, grouped by measures such as the running time,
memory, etc [2].

In the computational complexity theory, the class P contains those languages that can be decided in
polynomial time by a deterministic Turing machine [5]. The class NP consists in those languages that
can be decided in polynomial time by a nondeterministic Turing machine [5].

The biggest open question in theoretical computer science concerns the relationship between these
classes: Is P equal to NP? In 2002, a poll of 100 researchers showed that 61 believed that the answer was
no, 9 believed that the answer was yes, and 22 were unsure; 8 believed the question may be independent
of the currently accepted axioms and so impossible to prove or disprove [4]. All efforts to solve the P
versus NP problem have failed [6].

Another major complexity class is coNP [6]. We show a new kind of reduction that we called the
Conjunction reduction. Using this definition as an argument, we prove there is a problem in coNP that is
not in P. Since P = NP implies that every coNP problem is in P, then we can deduce that P 6= NP [6].

1 Theoretical notions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings over Σ [1]. A
Turing machine M has an associated input alphabet Σ [1]. For each string w in Σ∗ there is a computation
associated with M on input w [1]. We say that M accepts w if this computation terminates in the accepting
state, that is, M(w) = “yes” [1]. Note that M fails to accept w either if this computation ends in the
rejecting state, or if the computation fails to terminate [1].

The language accepted by a Turing machine M, denoted L(M), has an associated alphabet Σ and is
defined by

L(M) = {w ∈ Σ
∗ : M(w) = “yes”}.

We denote by tM(w) the number of steps in the computation of M on input w [1]. For n ∈ N we denote by
TM(n) the worst case running time of M; that is

TM(n) = max{tM(w) : w ∈ Σ
n}

where Σn is the set of all strings over Σ of length n [1]. We say that M runs in polynomial time if there
exists k such that for all n, TM(n)≤ nk +k [1]. In contraposition, we can define the best case running time
of M. For n ∈ N we denote by T ′M(n) the best case running time of M; that is

T ′M(n) = min{tM(w) : w ∈ Σ
n}

where Σn is the set of all strings over Σ of length n [1]. The notations we use to describe the asymptotic
running time of an algorithm are defined in terms of functions whose domains are the set of natural
numbers [2]. Such notations are convenient for describing the worst and best case running time functions,
which is usually defined only on integer input sizes [2]. For a given function g(n), we denote by O(g(n))
the set of functions

O(g(n)) = { f (n) : There exist positive constants c and n0

P VERSUS NP 2

http://en.wikipedia.org/wiki/P_versus_NP_problem

ON P VERSUS NP

such that 0≤ f (n)≤ c×g(n) for all n≥ n0}

where O-notation provides an asymptotic upper bound [2]. For a given function g(n), we denote by
Ω(g(n)) the set of functions

Ω(g(n)) = { f (n) : There exist positive constants c and n0

such that 0≤ c×g(n)≤ f (n) for all n≥ n0}

where Ω-notation provides an asymptotic lower bound [2].
A language L is in class P if L = L(M) for some deterministic Turing machine M which runs in

polynomial time [1]. We state the complexity class NP using the following definition: A verifier for a
language L is a deterministic Turing machine M, where

L = {w : M(w,c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in
polynomial time in the length of w [7]. A verifier uses additional information, represented by the symbol
c, to verify that a string w is a member of L. This information is called certificate.

For polynomial time verifiers, the certificate is polynomially bounded by the length of w, because
that is all the verifier can access in its time bound [7]. NP is the class of languages that have polynomial
time verifiers [7].

If NP is the class of problems that have succinct certificates, then the complexity class coNP must
contain those problems that have succinct disqualifications [6]. That is, a “no” instance of a problem in
coNP possesses a short proof of its being a “no” instance [6].

A proper complexity function is a function g mapping a natural number to a natural number such that:

• g is nondecreasing;

• there exists a k-string Turing machine M such that on any input of length n, M halts after O(n+g(n))
steps, uses O(g(n)) space, and outputs g(n) consecutive blanks [6].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic Turing
machine M, on every input w, halts in polynomial time with just f (w) on its tape [7]. Let {0,1}∗
be the infinite set of binary strings, we say that a language L1 ⊆ {0,1}∗ is polynomial time reducible
to a language L2 ⊆ {0,1}∗, written L1 ≤p L2, if there exists a polynomial time computable function
f : {0,1}∗→{0,1}∗ such that for all x ∈ {0,1}∗,

x ∈ L1 iff f (x) ∈ L2

where iff means “if and only if”. An important complexity class is coNP–complete [5]. A language
L⊆ {0,1}∗ is coNP–complete if

1. L ∈ coNP, and

2. L′ ≤p L for every L′ ∈ coNP.

P VERSUS NP 3

http://en.wikipedia.org/wiki/P_versus_NP_problem

FRANK VEGA

Furthermore, if L is a language such that L′ ≤p L for some L′ ∈ coNP–complete, then L is in
coNP–hard [2]. Moreover, if L ∈ coNP, then L ∈ coNP–complete [2].

A principal coNP–complete problem is CIRCUIT–UNSAT [5]. An instance of CIRCUIT–UNSAT
is a Boolean circuit C which is a directed acyclic graph C = (V,E), where the nodes V = {1, . . . ,n}
are called the gates of C [6]. We can assume that all edges are of the form (i, j) where i < j [6]. All
nodes in the graph have in-degree (number of incoming edges) equal to 0, 1 and 2 [6]. Also, each
gate i ∈ V has a sort c(i) associated with it, where c(i) ∈ {true, f alse,∧,∨,⇁}∪ {x1,x2, . . .} [6]. If
c(i) ∈ {true, f alse}∪{x1,x2, . . .}, then the in-degree of i is 0, that is, i must have no incoming edges [6].
Gates with no incoming edges are called the inputs of C [6]. If c(i) =⇁, then i has in-degree one [6]. If
c(i) ∈ {∧,∨}, then the in-degree of i must be two [6]. Finally, node n (the largest numbered gate in the
circuit, which necessarily has no outgoing edges), is called the output gate of the circuit [6].

Let X(C) be the set of all Boolean variables that appear in the circuit C (that is, X(C) = {x ∈ X :
c(i) = x for some gate i in C}) [6]. We say that a truth assignment T is appropriate for C if it is defined
for all the variables in X(C) [6]. Given such a T , the truth value of gate i ∈ V , T (i), is defined, by
induction on i, as follows: If c(i) = true then T (i) = true, and similarly if c(i) = f alse [6]. If c(i) ∈ X ,
then T (i) = T (c(i)) [6]. If now c(i) =⇁, then there is a unique gate j < i such that (j, i) ∈ E [6]. By
induction, we know T (j), and then T (i) is true if T (j) = f alse, and vice versa [6]. If c(i) = ∨, then there
are two edges (j, i) and (j′, i) entering i. T (i) is then true if and only if at least one of T (j), T (j′) is true
[6]. If c(i) = ∧, then T (i) is true if and only if both T (j) and T (j′) are true, where (j, i) and (j′, i) are
the incoming edges [6]. Finally, the value of the circuit, T (C), is T (n), where n is the output gate [6].

The CIRCUIT–UNSAT can be formulated as follows: Given a Boolean circuit C, is not there any truth
assignment T , appropriate to C, such that T (C) = true?

2 Results

2.1 Conjunction reduction

Definition 2.1. In computer science, O–notation and Ω–notation are used to classify algorithms accord-
ing to their running time or space requirements [2]. In this work, we are going to use the definition of
the O–notation and Ω–notation based on the running time requirement. We say that a language L is in
O(g(n)) when the worst case running time is in O(g(n)) for some algorithm deciding L where g(n) is a
proper complexity function [2]. We say that a language L is in Ω(g(n)) when the best case running time
is in Ω(g(n)) for all the algorithms deciding L where g(n) is a proper complexity function [2]. We say
that a language L is not in O(g(n)) when there is not any possible algorithm which decides L in the worst
case running time O(g(n)) where g(n) is a proper complexity function [2].

Definition 2.2. For two languages L1 and L2, the concatenation language L1L2 consists of all strings of the
form vw where v is a string from L1 and w is a string from L2, or formally L1L2 = {vw : v ∈ L1,w ∈ L2}.

Theorem 2.3. For two languages L1 and L2, if L1 /∈ O(g(n)) and L2 /∈ O(g(n)), then L1L2 /∈ O(g(n))
where g(n) is a proper complexity function.

Proof. Suppose that L1 /∈ O(g(n)) and L2 /∈ O(g(n)), but L1L2 ∈ O(g(n)). If L1 /∈ O(g(n)) and L2 /∈
O(g(n)), then for all the strings x∈ L1 and y∈ L2 the problem of deciding whether xy∈ L1L2 cannot not be

P VERSUS NP 4

http://en.wikipedia.org/wiki/P_versus_NP_problem

ON P VERSUS NP

decided in a running time O(g(n)) due to the properties of the O–notation. However, this is a contradiction
since when we assume L1L2 ∈ O(g(n)), then the instances xy can be decided in a running time O(g(n)).
For instance, let y′ ∈ L2 be the shortest string that belongs to L2. Now, we can consider each string xy′ for
every x ∈ L1. If L1L2 ∈ O(g(n)), then we can decide the instances xy′ ∈ L1L2 in a running time O(g(n)).
Since the string length of y′ has a constant size, then this produces if we can decide xy′ ∈ L1L2 in a
running time O(g(n)), then we can decided every x ∈ L1 in the same running time O(g(n)). This is due
to the properties of the O–notation remain equivalents when the function g(n) is multiplied by a constant
[2]. But this result is not possible, because we assumed that L1 /∈O(g(n)) as the initial premise. The same
happens when we assume that L2 /∈ O(g(n)) and take y′ ∈ L1 as the shortest string that belongs to L1.
However, we must assume that both languages comply with L1 /∈ O(g(n)) and L2 /∈ O(g(n)) to guarantee
that L1L2 /∈ O(g(n)). Certainly, for some cases if L1 ∈ O(g(n)) and L2 /∈ O(g(n)) or L1 /∈ O(g(n))
and L2 ∈ O(g(n)) then L1L2 ∈ O(g(n)). Therefore, we obtain L1L2 /∈ O(g(n)) when L1 /∈ O(g(n)) and
L2 /∈ O(g(n)) as a consequence of applying the reduction ad absurdum.

Definition 2.4. We say that two languages L1 ⊆ {0,1}∗ and L2 ⊆ {0,1}∗ are conjunctive reducible to a
language L3 ⊆ {0,1}∗, written L1∧L2 ≤c L3, if for all x ∈ {0,1}∗, y ∈ {0,1}∗ and z ∈ {0,1}∗,

(x,y) ∈ L1∧ (y,z) ∈ L2 iff (x,y,z) ∈ L3

where iff means “if and only if”.

Theorem 2.5. If L1∧L2 ≤c L3 with L1 /∈ O(g(n)) and L2 /∈ O(g(n)), then L3 /∈ O(g(n)) where g(n) is a
proper complexity function.

Proof. Suppose that L1∧L2 ≤c L3 with L1 /∈ O(g(n)) and L2 /∈ O(g(n)), but L3 ∈ O(g(n)). The concate-
nation language L1L2 cannot be decided in a running time O(g(n)) due to Theorem 2.3. However, if L3 ∈
O(g(n)) then we can accept the instance (x,y,z) in a running time O(g(n)) when (x,y) ∈ L1∧ (y,z) ∈ L2.
Consequently, we can accept the instance (x,y)(y,z) in a running time O(g(n)) since we can do the same
with (x,y,z) when (x,y) ∈ L1∧ (y,z) ∈ L2. In this way, we obtain the concatenation language L1L2 can
be decided in a running time O(g(n)) under the assumption of L3 ∈ O(g(n)). Therefore, for the sake of
contradiction we have L3 /∈ O(g(n)).

2.2 The Problem MINIMUM

Definition 2.6. Given a set S of n positive integers, SEARCH–MINIMUM is the problem of finding the
minimum of S.

Lemma 2.7. How many comparisons are necessary to determine the minimum of a set of n positive
integers?

Proof. We can easily obtain an upper bound of n−1 comparisons: examine each integer of the set in
turn and keep track of the smallest element seen so far [2]. Is this the best we can do? Yes, since we can
obtain a lower bound of n−1 comparisons for the problem of determining the minimum [2]. Think of
any algorithm that determines the minimum as a tournament among the elements [2]. Each comparison
is a match in the tournament in which the smaller of the two elements wins [2]. The key observation is

P VERSUS NP 5

http://en.wikipedia.org/wiki/P_versus_NP_problem

FRANK VEGA

that every element except the winner must lose at least one match [2]. Hence, n− 1 comparisons are
necessary to determine the minimum, and the algorithm SEARCH–MINIMUM is optimal with respect to
the number of comparisons performed [2].

Definition 2.8. Given a number x and a set S of n positive integers, MINIMUM is the problem of deciding
whether x is the minimum of S.

Lemma 2.9. MINIMUM ∈Ω(|S|) where | . . . | represents the cardinality of the set.

Proof. How many comparisons are necessary to determine whether some x is the minimum of a set of
n positive integers? We can easily obtain an upper bound of n comparisons: find the minimum in the
set and check whether the result is equal to x. Is this the best we can do? Yes, since we can obtain a
lower bound of n−1 comparisons for the problem of determining the minimum and another obligatory
comparison for checking whether that minimum is equal to x.

Theorem 2.10. MINIMUM /∈ O(b
√
|S|c) where b. . .c represents the floor function and | . . . | the cardi-

nality of the set.

Proof. As we mentioned above, the problem MINIMUM complies with MINIMUM ∈Ω(|S|) and there-
fore MINIMUM /∈ O(b

√
|S|c), where |S|= n is the cardinality of the set S with n positive integers.

2.3 The Problem REPRESENTATION

Definition 2.11. A representation of a set S with n positive integers is a Boolean circuit C, such that C
accepts the binary representation of a bit integer i (translated the bit 1 to true and 0 to false over the input
variable gates) iff i ∈ S where iff means “if and only if”.

Definition 2.12. Given a set S of n positive integers and a Boolean circuit C, REPRESENTATION is the
problem of deciding whether C is a representation of the set S.

Theorem 2.13. CIRCUIT–UNSAT cannot be decided in constant time.

Proof. Suppose that the language CIRCUIT–UNSAT can be decided in constant time. This would imply
that CIRCUIT–UNSAT is a regular language [6]. If some language L is infinite and regular, then there are
x, y and z in Σ∗ such that y is not an empty string and xyiz ∈ L for all i≥ 0 where yi is the ith concatenation
of the same repeated string y [6]. However, CIRCUIT–UNSAT is infinite and there are no instances in
CIRCUIT–UNSAT for which the previous statement is true. Hence, CIRCUIT–UNSAT is not a regular
language and therefore, this cannot be decided in constant time.

Theorem 2.14. REPRESENTATION /∈O(b
√
|S|c) where b. . .c represents the floor function and | . . . | the

cardinality of the set.

Proof. Since the empty set cannot be represented by a Boolean circuit C with some truth assignment T
appropriate to C such that T (C) = true, then we could make a polynomial time reduction as follows:

C ∈ CIRCUIT–UNSAT iff (/0,C) ∈ REPRESENTATION.

P VERSUS NP 6

http://en.wikipedia.org/wiki/P_versus_NP_problem

ON P VERSUS NP

However, this reduction can be done in constant time. That means we cannot decide every instance
(/0,C)∈ REPRESENTATION in constant time, because that would mean we can decide CIRCUIT–UNSAT
in constant time. In addition, we cannot decide the language CIRCUIT–UNSAT in constant time according
to the Theorem 2.13. Nevertheless, from an instance (/0,C) ∈ REPRESENTATION, we would have
S = /0 and |S| = 0. Thus, we can assure if REPRESENTATION ∈ O(b

√
|S|c), then we could decide

CIRCUIT–UNSAT in constant time. For that reason, we can confirm REPRESENTATION /∈ O(b
√
|S|c).

2.4 The Problem SUCCINCT-MINIMUM

Definition 2.15. Given a positive integer x and a Boolean circuit C, we define SUCCINCT–MINIMUM
as the problem of deciding whether x is the smallest bit integer which accepts C as input.

Definition 2.16. REPRESENTATION–MINIMUM is equal to

MINIMUM∧REPRESENTATION≤c

REPRESENTATION–MINIMUM

such that for every instance (x,S,C) of the language REPRESENTATION–MINIMUM we have the
following property,

(x,S) ∈MINIMUM∧ (S,C) ∈ REPRESENTATION

iff (x,S,C) ∈ REPRESENTATION–MINIMUM.

Theorem 2.17. REPRESENTATION–MINIMUM /∈ O(b
√
|S|c) where b. . .c represents the floor function

and | . . . | the cardinality of the set.

Proof. As result of Theorems 2.5, 2.10, 2.14 and Definition 2.16, then we have the following statement
REPRESENTATION–MINIMUM /∈ O(b

√
|S|c).

Theorem 2.18. SUCCINCT–MINIMUM /∈ O(b
√
|S|c) where S is the set that represents the Boolean

circuit C, b. . .c represents the floor function and | . . . | the cardinality of the set.

Proof. If we have REPRESENTATION–MINIMUM /∈ O(b
√
|S|c) then SUCCINCT–MINIMUM cannot

be decided in a running time O(b
√
|S|c). Indeed, if SUCCINCT–MINIMUM can be decided in a running

time O(b
√
|S|c) by a deterministic Turing machine, then REPRESENTATION–MINIMUM ∈O(b

√
|S|c).

Since this is contradiction according to Theorem 2.17, then SUCCINCT–MINIMUM /∈ O(b
√
|S|c).

Theorem 2.19. SUCCINCT–MINIMUM /∈ P.

Proof. For certain kind of instances, the input (x,C) is exponentially more succinct than the cardinality of
the set S that represents C [6]. Since we have that SUCCINCT–MINIMUM /∈ O(b

√
|S|c), then we could

not decide every instance of SUCCINCT–MINIMUM in polynomial time.

Theorem 2.20. SUCCINCT–MINIMUM ∈ coNP.

P VERSUS NP 7

http://en.wikipedia.org/wiki/P_versus_NP_problem

FRANK VEGA

Proof. If (x,C) /∈ SUCCINCT–MINIMUM, then it would exist a positive integer y such that y < x and C
accepts the bit integer y or simply it would be the case when C does not accept the input bit integer x.
Since we can evaluate whether C accepts or not the bit integers x and y in polynomial time and we have
that y is quadratic polynomially bounded by x, then we can confirm SUCCINCT–MINIMUM ∈ coNP due
to the verification of y < x and the evaluation on the Boolean circuit can be done in polynomial time.

Theorem 2.21. SUCCINCT–MINIMUM ∈ coNP–complete.

Proof. Given a Boolean circuit C, we can check whether C does not accept the positive integer 2b−1
where b is the number of input gates in C. By input gates, we actually mean the input gates which are
associated to some variable. In that case, we create a succinct Boolean circuit C′ which only accepts the bit
integer 2b−1 and has the same number of input gates of C. We combine C with C′ coinciding their input
gates into a new Boolean circuit C′′ which only accepts when C or C′ accept. This is possible just adding
a gate OR between the output gates of C and C′. The instance of the positive integer 2b−1 and the final
Boolean circuit C′′ belongs to SUCCINCT–MINIMUM if and only if C is in CIRCUIT–UNSAT. Certainly,
2b−1 is the minimum of the set S that represents C′′ if there is not any other input which C′′ accepts.
In addition, C′′ accepts the positive integer 2b−1 because of the construction of C′ under C. Since we
can create the succinct Boolean circuit C′ and evaluate C on the input 2b−1 in polynomial time, then
we can reduce CIRCUIT–UNSAT to SUCCINCT–MINIMUM in polynomial time. CIRCUIT–UNSAT is
a known coNP–complete problem [6]. Hence, the language SUCCINCT–MINIMUM is in coNP–hard
[6]. As result of Theorem 2.20, we obtain SUCCINCT–MINIMUM is also in coNP and thus, the proof is
completed.

Theorem 2.22. P 6= NP.

Proof. If any single coNP–complete problem cannot be decided in polynomial time, then P 6= coNP [6].
Certainly, the result P = NP implies that P = NP = coNP because P is closed under complement and
therefore, we can conclude P 6= NP due to P = NP = coNP is false under the basis of P 6= coNP [6].

Conclusions

This proof explains why after decades of studying the NP problems no one has been able to find
a polynomial time algorithm for any of more than 300 important known NP–complete problems [5].
Indeed, it shows in a formal way that many currently mathematically problems cannot be solved efficiently,
so that the attention of researchers can be focused on partial solutions or solutions to other problems.

Although this demonstration removes the practical computational benefits of a proof that P = NP, it
would represent a very significant advance in computational complexity theory and provide guidance
for future research. In addition, it proves that could be safe most of the existing cryptosystems such as
the public key cryptography [5]. On the other hand, we will not be able to find a formal proof for every
theorem which has a proof of a reasonable length by a feasible algorithm.

P VERSUS NP 8

http://en.wikipedia.org/wiki/P_versus_NP_problem

ON P VERSUS NP

References

[1] SANJEEV ARORA AND BOAZ BARAK: Computational complexity: A modern approach. Cambridge
University Press, 2009. 1, 2, 3

[2] THOMAS H. CORMEN, CHARLES ERIC LEISERSON, RONALD L. RIVEST, AND CLIFFORD STEIN:
Introduction to Algorithms. MIT Press, 2 edition, 2001. 2, 3, 4, 5, 6

[3] LANCE FORTNOW: The Golden Ticket: P, NP, and the Search for the Impossible. Princeton
University Press. Princeton, NJ, 2013. 1

[4] WILLIAM I. GASARCH: The P=?NP poll. SIGACT News, 33(2):34–47, 2002. 2

[5] ODED GOLDREICH: P, Np, and Np-Completeness. Cambridge: Cambridge University Press, 2010.
2, 3, 4, 8

[6] CHRISTOS H. PAPADIMITRIOU: Computational Complexity. Addison-Wesley, 1994. 1, 2, 3, 4, 6, 7,
8

[7] MICHAEL SIPSER: Introduction to the Theory of Computation. Thomson Course Technology, 2
edition, 2006. 3

AUTHOR

Frank Vega
Computational Researcher
Joysonic
Belgrade, Serbia
vega frank gmail com
https://uh-cu.academia.edu/FrankVega

ABOUT THE AUTHOR

FRANK VEGA is essentially a back-end programmer graduated in Computer Science since
2007. In August 2017, he was invited as a guest reviewer for a peer-review of a manuscript
about Theory of Computation in the flagship journal of IEEE Computer Society. In
October 2017, he contributed as co-author with a presentation in the 7th International
Scientific Conference on economic development and standard of living (“EDASOL 2017
- Economic development and Standard of living”). In February 2017, his book “Protesta”
(a book of poetry and short stories in Spanish) was published by the Alexandria Library
Publishing House. He was also Director of two IT Companies (Joysonic and Chavanasoft)
created in Serbia.

P VERSUS NP 9

https://uh-cu.academia.edu/FrankVega
http://en.wikipedia.org/wiki/P_versus_NP_problem

	Theoretical notions
	Results
	Conjunction reduction
	The Problem MINIMUM
	The Problem REPRESENTATION
	The Problem SUCCINCT-MINIMUM

	References

