
Evaluation of Move Method refactorings
recommendation algorithms: are we doing it right?

Evgenii Novozhilov
Saint Petersburg State University

Russia
evgenii.novozhilov@gmail.com

Ivan Veselov
JetBrains Research

Higher School of Economics
Russia

idveselov@edu.hse.ru

Mikhail Pravilov
JetBrains Research

Higher School of Economics
Russia

mepravilov@edu.hse.ru

Timofey Bryksin
JetBrains Research

Saint Petersburg State University
Russia

t.bryksin@spbu.ru

Abstract—Previous studies introduced various techniques for
detecting Move Method refactoring opportunities. However, dif-
ferent authors have different evaluations, which leads to the
fact that results reported by different papers do not correlate
with each other and it is almost impossible to understand which
algorithm works better in practice. In this paper, we provide
an overview of existing evaluation approaches for Move Method
refactoring recommendation algorithms, as well as discuss their
advantages and disadvantages. We propose a tool that can be
used for generating large synthetic datasets suitable for both
algorithms evaluation and building complex machine learning
models for Move Method refactoring recommendation.

Index Terms—automatic refactoring recommendation, move
method refactoring, feature envy, algorithms evaluation, code
smells, dataset generation

I. INTRODUCTION

In software engineering, plenty of effort is put into min-
imizing human resources required to implement and main-
tain the required features. In object-oriented programming, a
significant part of this effort concerns software architecture,
which in time tends to drift from its original implementation
and make the code less clear and more error-prone. To detect
architectural degradation issues developers define so called
code smells: specific code patterns or idioms that indicate
possible architectural problems. One of the code smells is
Feature Envy: a method suffers from the Feature Envy if it
uses other classes more than its own class. One popular way
to eliminate this code smell is to apply a refactoring that moves
this method to a more appropriate class [6].

Automatic detection of code smells and refactoring oppor-
tunities seems like a well-researched field, a lot of papers that
address this topic and propose various techniques have been
published in the last two decades [2, 4, 15]. But software
architecture is an emerging area of expertise that is highly
subjective, which makes formal evaluation of refactoring rec-
ommendation algorithms a very difficult and controversial
task. Since only a human developer is able to actually say
whether this particular refactoring should be applied or not,

most of the researchers choose expert assessment as a way to
evaluate their work and compare it with other studies. Diverse
opinions of various developers on what a good architecture
is combined with different evaluation datasets lead to a very
upsetting situation when different authors report results that
simple don’t correlate with each other. For example, in one
of the recent studies [14] the authors examined papers on
automatic refactoring recommendation published within the
last ten years and found out that five different papers report
five completely different evaluation results for the same tool
(see Table I).

Paper Precision Recall
HIST [10] 0.65 0.71
JMove [12] 0.15 0.4
TACO [11] 0.57 0.69
c-JRefRec [17] 0.385 0.25
Domino [7] 0.76 n/a

TABLE I
JDEODORANT’S EVALUATION RESULTS IN DIFFERENT PAPERS [14]

In this paper we explore the reasons why such cases
arise and discuss how the scientific community in this field
could address this issue. Section II presents a comparative
analysis of evaluation approaches used in research papers on
Move Method refactoring recommendation. We come to a
conclusion that a large and representative public dataset is
an essential requirement for replicability and reproducibility
of the obtained results. Section III examines already existing
approaches to creating a dataset for Move Method refactor-
ings recommendation algorithms, discusses requirements and
storage format for such a dataset, and describes the proposed
tool for injecting Feature Envy code smells into existing open
source projects. We also provide a link to a dataset created
using this tool.



II. RELATED WORK

A. Evaluation approaches

Evaluation is a crucial part of any research, which often
involves tedious yet very important experimental work. Only
an experiment can prove the value of the algorithm by com-
paring it to existing approaches. During the literature review,
we have identified six major ways to evaluate refactoring
recommendation algorithms.

1) Case studies on small projects where all refactorings
are obvious: Researches manually explore some project and
compile a complete list of existing code smells and possible
refactoring opportunities. It could be an artificial example
project showcasing selected code smells or a small real re-
search project [15, 18]. This evaluation approach has obvious
advantages: small projects are easy to comprehend, therefore
labeling the methods does not require a lot of effort. But the
results of the evaluation are not statistically significant since
a small number of projects are studied (usually from 1 to 3)
and these projects are highly specific, often created solely for
the evaluation purpose. It could act as an example of how
the proposed algorithm is designed to work but tells almost
nothing about how it performs on complex real-world projects.

2) Expert assessment of the algorithm result on a real-
world project: In these evaluations experts are asked to
manually review the result of the algorithm for some exist-
ing real-world project and mark every obtained refactoring
recommendation as valuable or not [15, 8, 1]. Since the list of
recommendations is usually small, this approach also doesn’t
require a lot of human effort, but it’s almost impossible to
calculate the recall metric that way since experts only assess
the algorithm’s result, leaving all other possible refactoring
opportunities unexplored.

3) Tracking software metrics: Another approach to evaluate
algorithms is based on software metrics values [15, 2, 9, 1].
Most of them are cohesion and coupling metrics and their
derivatives. The closer each metrics value gets to its ideal
value after the recommended refactoring has been applied,
the more valuable this particular refactoring is considered to
be. This evaluation approach could easily be automated, but
it depends highly on the selected metrics set, which could
be very subjective. Moreover, this kind of evaluation does
not allow to measure precision, recall or any other statistical
metrics since most often it is run on an unlabeled dataset.

4) Evaluation on refactorings mined from historical data:
The idea of this evaluation approach is to collect refactorings
that were actually used by developers in the past in real
projects [7]. To gather them, each modification in the version
control system is analyzed and two consecutive snapshots S1

and S2 are compared to see if a particular refactoring took
place in this modification. Then the algorithm is run on the
S1 snapshot to see if this refactoring will be recommended
or not. Based on existing refactoring mining tools (e.g.,
RefactoringMiner [16]), this evaluation method doesn’t require
much human effort, but for a whole project (which could be
pretty large) only one or several refactorings are expected to

be found, which is not very effective. In addition, we also fail
to accurately measure precision, recall and other metrics.

5) Evaluation on a labeled dataset: This evaluation ap-
proach is the most widely used one [1, 4, 5, 10]. A group of
experts (often Master’s or PhD students or industry experts) is
asked to go through some large open source projects and mark
each method, depending on whether it should be moved away
or not. This activity results in a fully labeled dataset, which
can be used to calculate metrics like precision or recall. But
the obvious drawback here is that is takes a huge amount of
effort to label large number of real-world projects this way,
especially if one wants to have unbiased labels, meaning that
each project should be labeled by more than one developer
expert.

6) Evaluation on a dataset with artificially introduced code
smells: This approach is based on the assumption that the
proportion of methods with Feature Envy to all methods in a
real-world long-term project is rather small, and if a method
will be moved from one class to another, a Feature Envy
code smell will most likely be introduced. The algorithm is
evaluated by how many of the moved methods it recommends
to move back to their original class [12, 8, 17]. The advantage
of this approach is that the dataset could be gathered auto-
matically, and it could be as large as the evaluation needs.
But this approach obviously follows the assumption that all
methods are initially positioned correctly, which is never true
in large real-world projects. Besides, when a method is moved
randomly, you can make a case of Feature Envy code smell
too obvious, which makes the evaluation too artificial.

As the literature review shows, almost all papers inevitably
discuss how to build a dataset in their evaluation. Most of
the authors collect their own data, which leads to different
evaluation results. One possible solution to this problem is
to create an open dataset or a tool that allows to create it
automatically. With such labeled data publicly available, the
evaluation of any new algorithm would require significantly
less effort, and would finally make comparison of different
approaches accurate, which could lead to a better adoption of
these approaches by the industry.

III. DATASET GENERATION

A. Dataset generation approaches

As was mentioned before, one way to create the described
dataset is to manually label each code smell occurrences
in each project. Several authors used this approach in their
evaluation [11, 4]. Unfortunately, these datasets are rather
small: for each code smell type they usually have roughly
couple of hundreds entries. Evaluation on such datasets simply
can’t be representative enough to capture all the peculiar
properties of the compared algorithms. Besides, machine
learning approaches, which have been used for code smells
detection more often recently, usually require much more data
for training.

Another promising possibility is to create a dataset of Move
Method refactorings performed in real-world projects in the
past. To achieve this, we fetched 15 top-rated GitHub open



source Java projects and applied RefactoringMiner tool to
get possible refactorings from these projects’ histories (23447
commits were processed). Unfortunately, despite reporting the
best results for such mining tools, RefactoringMiner provided
a lot of false-positives while detecting Move Method refac-
torings (for instance, when a method was moved to a new
class, which is a clear case of Extract Class refactoring, and
several others). After thorough filtering, less than 20 correct
items were left out of 1348 initially detected Move Method
refactorings. This is significantly less than the size of manually
constructed datasets, which suggests automatic dataset creation
from commit history is not very efficient with the tools that
are currently available.

The third way to create a dataset is to generate synthetic
code smells based on real-world projects. This approach
was used in several studies (for example, [8, 13]) and can
potentially be scaled. As mentioned in Section II-A6, the idea
is to displace methods from their containing classes to some
other classes. Surely, this leaves us with an artificial dataset,
but it seems like the only feasible way that allows to collect
large amount of data and that does not require tremendous
human effort. Moreover, as long as the selected projects have
good architecture and most of their methods are contained in
appropriate classes, the noise in the resulting dataset should
not be significant.

In this work we have chosen the last approach as the only
viable possibility to generate large amount of data automati-
cally.

B. Dataset structure

Different approaches require different information extracted
from the input data. The vast majority of algorithms use
numerical features calculated for each point in the dataset
(fields, methods, classes, etc.). These features and data points
vary from one algorithm to another. For example, JDeodor-
ant [15] uses Jaccard distance to measure similarity between
a method and a class. The same formula was reused in [8] to
calculate input features for a classifier based on a deep neural
network. On the other hand, in [4] the authors use standard
object-oriented metrics as inputs to statistical machine learning
models. Methods that are based on textual information [2, 11]
require source code of the entities to statically analyze them.
Clustering approaches [3] might require the whole project to
perform their analysis. Also, the entire project history might
be used to evaluate history-based algorithms [7].

As long as the data is synthetic and is supposed to suit as
much existing approaches as possible, the most generalized
and compact way to store it is to store only the information
that is needed to generate all data points on demand. A
special instance of the dataset could be created for each
particular approach. For example, a set of independent method
relocations could be applied to a project to generate a code
base with a particular number of code smells in it. Then this
modified project could be used to evaluate some clustering-
based approach. Or a special instance of the dataset could be
created for a metrics-based approach, consisting of vectors of

metrics values for each class or method. Unfortunately, it is
quite hard to generate a reasonable dataset for history-based
approaches, so we leave them out of scope in this work.

C. The proposed tool

To support our idea we have implemented a tool1 that
accepts a Java project as input and produces all possible
method relocations as output. More precisely, the tool returns
a list of all methods that can be moved from their class to
some other class in the project. Each entry in this list is a
value containing a method, its original class, and a nonzero
number of other classes this method can be placed to.

Not every method can be moved to some other class and
is suitable for the output dataset. First of all, static methods
are not considered as candidates since they represent global
functions and differ from the usual instance methods. The
most usual destination (target) class candidates for a non-static
method are classes of this method’s parameters: it’s usually a
simple technical task to move a method to such a class, as
objects of these classes are definitely present in the context
of every call of the moved method. So, if a methods doesn’t
have any parameters it is also not considered as a candidate.

Even if a method has a target class, it may not be possible to
automatically move this method out of its original class. For
example, a method may access a private field of its current
class. In this case, moving this method away will produce
code that can’t be compiled. One way to fix this would be to
generate additional getter methods for the used private fields,
but we believe that this kind of modifications change the code
structure too much comparing to the original project. These
methods are also considered non-movable.

Another example of a non-movable method is a class con-
structor. It is quite obvious that a constructor of one class can’t
be moved to another class. Abstract methods, getters, setters,
and overridden methods are also considered non-movable and
are filtered out from the candidate list.

There are also methods that are movable and have valid
target classes, but there is no practical value to add them to
the dataset. For example, a method’s body may consist of a
single statement that throws an exception; such methods are
also filtered out. It is very unlikely that any algorithm could
determine which class is the right one for such a method
looking only at its code. Empty and delegation methods are
removed from the list for the same reason.

Moreover, the tool ignores all methods from annotations,
builders and empty classes. Test classes are ignored as well.

Table II presents the results of the tool run on several
open source projects from GitHub. The numbers of detected
movable methods could seem small compared to the whole
number of methods. However, the whole process is fully
automated, which means that this data could be easily scaled
by simply adding new repositories.

To construct such a dataset from the MoveMethodGen-
erator’s output we have used the IntelliJ Platform SDK to

1A tool for generation of Move Method refactorings recommendation
datasets, https://github.com/ml-in-programming/MoveMethodGenerator

https://github.com/ml-in-programming/MoveMethodGenerator


automate the movements of the methods. The obtained dataset
is also available online2.

Project Commit Methods
in project

Movable
methods

Apache Cayenne a4c6d99 16904 140
JUnit 91e8cd6 2821 25
PMD db2348b 9768 133
Spring 33cbe2e 28941 198

TABLE II
TOOL OUTPUT FOR SEVERAL OPEN SOURCE PROJECTS

IV. CONCLUSION

As can be seen from the literature review, the refactoring
recommendation field lacks a commonly used technique to
compare research results. This makes it hard to understand
the actual state of research and integrate state-of-the-art
refactoring recommendation approaches into modern software
development tools. In this paper we provide an overview of
several evaluation techniques being used in existing papers.
Based on their advantages and disadvantages we propose a
tool capable of generating synthetic datasets from real-world
projects that could be used both for the evaluation of the Move
Method refactoring recommendation approaches and for new
research based on machine learning techniques that require
large amounts of data (e.g. deep learning models).

REFERENCES

[1] Vahid Alizadeh, Marouane Kessentini, Wiem Mkaouer,
Mel Ocinneide, Ali Ouni, and Yuanfang Cai. An inter-
active and dynamic search-based approach to software
refactoring recommendations. IEEE Transactions on
Software Engineering, 2018.

[2] Gabriele Bavota, Rocco Oliveto, Malcom Gethers, Denys
Poshyvanyk, and Andrea De Lucia. Methodbook: Rec-
ommending move method refactorings via relational
topic models. IEEE Transactions on Software Engineer-
ing, 40(7):671–694, 2014.

[3] Timofey Bryksin, Evgenii Novozhilov, and Aleksei Sh-
pilman. Automatic recommendation of move method
refactorings using clustering ensembles. In Proceedings
of the 2Nd International Workshop on Refactoring, IWoR
2018, pages 42–45, New York, NY, USA, 2018. ACM.

[4] Francesca Arcelli Fontana, Mika V Mäntylä, Marco
Zanoni, and Alessandro Marino. Comparing and ex-
perimenting machine learning techniques for code smell
detection. Empirical Software Engineering, 21(3):1143–
1191, 2016.

[5] Francesca Arcelli Fontana and Marco Zanoni. Code
smell severity classification using machine learning tech-
niques. Knowledge-Based Systems, 128:43–58, 2017.

[6] Martin Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Boston, MA, USA,
1999.

2The dataset obtained via the MoveMethodGenerator tool: https://github.
com/ml-in-programming/MoveMethodDataset

[7] Hui Liu, Yuting Wu, Wenmei Liu, Qiurong Liu, and
Chao Li. Domino effect: Move more methods once a
method is moved. In Software Analysis, Evolution, and
Reengineering (SANER), 2016 IEEE 23rd International
Conference on, volume 1, pages 1–12. IEEE, 2016.

[8] Hui Liu, Zhifeng Xu, and Yanzhen Zou. Deep learning
based feature envy detection. In Proceedings of the
33rd ACM/IEEE International Conference on Automated
Software Engineering, pages 385–396. ACM, 2018.

[9] Mark OKeeffe and Mel O Cinnéide. Search-based
refactoring for software maintenance. Journal of Systems
and Software, 81(4):502–516, 2008.

[10] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta,
Rocco Oliveto, Denys Poshyvanyk, and Andrea De Lu-
cia. Mining version histories for detecting code smells.
IEEE Transactions on Software Engineering, 41(5):462–
489, 2015.

[11] Fabio Palomba, Annibale Panichella, Andrea De Lucia,
Rocco Oliveto, and Andy Zaidman. A textual-based tech-
nique for smell detection. In Program Comprehension
(ICPC), 2016 IEEE 24th International Conference on,
pages 1–10. IEEE, 2016.

[12] Vitor Sales, Ricardo Terra, Luis Fernando Miranda, and
Marco Tulio Valente. Recommending move method
refactorings using dependency sets. In Reverse Engineer-
ing (WCRE), 2013 20th Working Conference on, pages
232–241. IEEE, 2013.

[13] Ricardo Terra, Marco Tulio Valente, Sergio Miranda,
and Vitor Sales. Jmove: A novel heuristic and tool to
detect move method refactoring opportunities. Journal
of Systems and Software, 138:19–36, 2018.

[14] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander
Chatzigeorgiou. Ten years of jdeodorant: Lessons learned
from the hunt for smells. In 2018 IEEE 25th Interna-
tional Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 4–14. IEEE, 2018.

[15] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Iden-
tification of move method refactoring opportunities.
IEEE Transactions on Software Engineering, 35(3):347–
367, 2009.

[16] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari,
Davood Mazinanian, and Danny Dig. Accurate and
efficient refactoring detection in commit history. In
Proceedings of the 40th International Conference on
Software Engineering, ICSE ’18, pages 483–494, New
York, NY, USA, 2018. ACM.

[17] Naoya Ujihara, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. c-jrefrec: Change-based identification of move
method refactoring opportunities. In Software Analy-
sis, Evolution and Reengineering (SANER), 2017 IEEE
24th International Conference on, pages 482–486. IEEE,
2017.

[18] Santiago A Vidal, Claudia Marcos, and J Andrés Dı́az-
Pace. An approach to prioritize code smells for refac-
toring. Automated Software Engineering, 23(3):501–532,
2016.

https://github.com/ml-in-programming/MoveMethodDataset
https://github.com/ml-in-programming/MoveMethodDataset

	Introduction
	Related work
	Evaluation approaches
	Case studies on small projects where all refactorings are obvious
	Expert assessment of the algorithm result on a real-world project
	Tracking software metrics
	Evaluation on refactorings mined from historical data
	Evaluation on a labeled dataset
	Evaluation on a dataset with artificially introduced code smells


	Dataset generation
	Dataset generation approaches
	Dataset structure
	The proposed tool

	Conclusion

