Building sets of reference stars for current and future spectroscopic stellar parameters survey

Marcelo Tucci Maia

Universidad Diego Portales Núcleo de Astronomía

Gaia FGK Benchmark Stars

- Spectroscopy lacked a clearly defined standard stars
- Era of the large stellar surveys
- Calibration of large data sets
- Better understanding of the MW
- Reference sample of stars for Xcorrelation of different surveys

Name	$T_{\rm eff} = u(T_{\rm eff})$	$\% u(T_{eff})$	$\log q$	$u(\log g)$
	[K]		[cm s ⁻²]	
F dwarfs				
Procyon	6554 84	1.28	4.00	0.02
HD 84937	6356 97	1.52	4.05	0.04
HD 49933	6635 91	1.38	4.20	0.03
FGK subgiants				
δEri	4954 30	0.61	3.76	0.02
HD 140283	[5522] [105]	[1.91]	3.58	0.11
ϵ For	5123 78	1.53	[3.52]	[0.08]
η Boo	6099 28	0.45	3.79	0.02
βHyi	5873 45	0.77	3.98	0.02
G dwarfs				
a Cen A	5792 16	0.27	4.31	0.01
HD 22879	5868 89	1.52	4.27	0.04
Sun	5771 1	0.01	4.4380	0.0002
µ Cas	5308 29	0.54	[4.41]	[0.06]
T Cet	5414 21	0.39	[4.49]	[0.02]
α Cen B	5231 20	0.38	4.53	0.03
18 Sco	5810 80	1.38	4.44	0.03
μ Ara	[5902] [66]	[1.12]	4.30	0.03
βVir	6083 41	0.68	4.10	0.02
FGK giants				
Arcturus	4286 35	0.82	[1.64]	[0.09]
HD 122563	4587 60	1.31	1.61	0.07
µ Leo	4474 60	1.34	2.51	0.11
β Gem	4858 60	1.23	2.90	0.08
ϵ Vir	4983 61	1.21	2.77	0.02
<i>ξ</i> Hya	5044 40	0.78	2.87	0.02
HD 107328	4496 59	1.32	2.09	0.13
HD 220009	[4217] [60]	[1.43]	[1.43]	[0.12]
M giants				
a Tau	3927 40	1.01	1.11	0.19
a Cet	3796 65	1.71	0.68	0.23
β Ara	[4197] [50]	[1.20]	[1.05]	[0.15]
y Sge	3807 49	1.28	1.05	0.32
	[3472] [92]	[2.65]	[0.51]	[0.18]
K dwarfs				
€ Eri	5076 30	0.60	4.61	0.03
Gmb 1830	[4827] [55]	[1.14]	4.60	0.03
61 Cyg A	4374 22	0.49	4.63	0.04
61 Cyc B	4044 32	0.78	4.67	0.04

Gaia FGK Benchmark Stars

- Bright stars of different spectral types, luminosity and metallicities
- Stars previously used as reference, calibration or test objects (eps Vir in Smiljanic+ 2007, Procyon in Porto de Mello+ 2014)
- Stellar parameters and abundances determined in a homogeneous way
- Wide range of temperatures (<4000 to 6500 K). Some M giants were also included
- Temperature and log g determined independently from spectroscopy

Heiter+2015

Temperature

$$T_{\rm eff} = \left(\frac{F_{\rm bol}}{\sigma}\right)^{0.25} (0.5 \,\theta_{\rm LD})^{-0.5}.$$

- Where $\mathsf{F}_{\mathsf{bol}}$ is the bolometric flux and θ_{LD} the limb darkened angular diameter
- Most values for F_{bol} and θ_{LD} from literature (Ex: Pasinetti Fracassini et al. 2001, Blackwell & Lynas-Gray 1998)
- \bullet Additional values for θ_{LD} from indirect calibrations (Claret 2000 and Claret et al. 1995)

Gravity

 $g = GM/R^2$

R from angular diameter and parallax; complementation from asteroseismology when available

M from evolutionary tracks (Padova and Y2) with Teff, L and [Fe/H] (Jofré+2014) as constraints

Visual or eclipsing binaries

Heiter + 2015

GBS 2.1

- Abundances of Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co and Ni
- Updated stellar parameters: some objects were excluded and metal-poor added, making a total of 36 stars
- GBS light elements (Li, C, N, O, Na, Al) *available next year
- Refine parameters with parallaxes from Gaia
- GBS 3.0 (work in progress)

Uncertainties

- Combining abundances from different surveys is nontrivial due to the uncertainty arising from different data analysis and different error treatment
- Random (input data) and systematic (methodology) errors

Instrumental error

Blends cannot be identified depending on the R and S/N

Jofré + 2018

Normalization process and continuum placement

Line list

• Quality is better than quantity

• Saturated, blended, too weak, poor atomic data, poor HFS treatment, telluric contamination and etc. may only add noise to your analysis

Stellar Parameters

Roederer + 2014

Improving the Precision

Differential Analysis

$$\log\left(\frac{W}{\lambda}\right) = B + A_X + \log gf + \log \lambda - \theta_{\chi_{exc}} - \log \kappa_{cont}.$$

$$\log\left(\frac{W_{1,i}}{W_{2,i}}\right) = A_{X,i}^1 - A_{X,i}^2 - (\theta^1 - \theta^2)_{\chi_{exc}} - \log\left(\frac{\kappa_{cont}^1}{\kappa_{cont}^2}\right).$$

$$\delta A_{\chi,i} \sim \log(W_i/W_i^{\odot}) + (\theta - \theta^{\odot})_{\chi_{exc}}$$

Errors on the differential method between very similar stars are mostly due to errors in the EW measurement

Solar Twins

Stellar Parameters

Excitation equilibrium (Temperature)

Ionization equilibrium (Gravity)

 σ Teff ~ 10 K σ log g < 0.02 dex σ [X/H] ~ 0.01 dex

Solar Twins

- Stars very similar to the Sun
- Temperatures 5777 ± 100K, gravity 4.44 ± 0.10 dex,
 [Fe/H] 0.0 ± 0.1 dex
- Very similar spectra

[Y/Mg] Chemical clock

Tucci Maia et al. 2016

Apsis

Gaia pipeline calibration GBS and solar twins Tucci Maia+ 2016

GBS 3.0

- Apply similar method as the solar twins
- Spectroscopic standard stars so we can fill the stellar parameter space to differentially access stars of various spectral type
- Determination of its parameters using the same approach of the previous benchmark stars together with the differential analysis
- Take into account different stellar ages

Summary

- It is necessary a "universal" set of reference star for Xcorrelation between different surveys
- Uncertainties can be improved by differential analysis
- Determination of stellar parameters using the same approach as the other benchmark stars together with differential methods
- More benchmark stars to fill the gaps on the stellar parameter space to access with high precision stars with different spectral types (GBS 3.0)