The star formation history and metallicity in the Galactic inner bulge revealed by the RGBB

Universidad de Granada Escuela Internacional de Posgrado Francisco Nogueras Lara <u>fnogue</u>

fnoguer@iaa.es

Instituto de Astrofísica de Andalucía

R. Schödel, A. T. Gallego-Calvente, H. Dong, E. Gallego-Cano, J. H. V. Girard, M. Hilker, P. T. de Zeeuw, A. Feldmeier-Krause, S. Nishiyama, F. Najarro and N. Neumayer

F. Nogueras-Lara

The GALACTICNUCLEUS survey

- JHK_s imaging survey
- High angular resolution 0.2"

Speckle Holography (Schödel et al. 2013)

Data quality

J ≤ 20 - Uncertainties below 0.05 at - H ≤ 17 Ks ≤ 16

Zero Point computed using SIRIUS/IRTF (Nagayama et al. 2003)

- Systematic uncertainties of 0.036 mag

Gbx2018

The final product

RGB image using JHKs bands

The Inner Bulge

Two features detected

In agreement with $\alpha = 2.30 \pm 0.08$ (Nogueras-Lara et al. 2018a)

F. Nogueras-Lara

Extinction map

fnoguer@iaa.es

F. Nogueras-Lara

1.- RC at different distances

Equal extinction

2.- RC age and metallicity

At most 0.5 mag in Ks (Girardi 2016)

Even less for stars older than 2 Gyr

3.- Detection of the RGBB

3.- Detection of the RGBB

3.- Detection of the RGBB

Fitting theoretical Luminosity functions (BaSTI)

The best fit in both cases:

$12.8 \pm 0.6 \text{ Gyr} \ Z = 0.040 \pm 0.003$

F. Nogueras-Lara

3.- Detection of the RGBB

Fitting theoretical Luminosity functions (BaSTI)

The best fit in both cases:

$12.8 \pm 0.6 \text{ Gyr} \ \mathbf{Z} = 0.040 \pm 0.003$

F. Nogueras-Lara

3.- Detection of the RGBB

Fitting theoretical Luminosity functions (BaSTI)

The best fit in both cases:

$12.8 \pm 0.6 \text{ Gyr} \ Z = 0.040 \pm 0.003$

F. Nogueras-Lara

Information from the RGBB

Young stars fraction

Variation with the extinction

No significant variation

Information from the RGBB

Spatial variation

Everything compatible with the derived age and metallicity

Metallicity gradient

Our results favour a flattening of the metallicity gradient

This is compatible with Rich et al. 2007

Conclusions

- **1.** Data 0.2" FWHM JHK_s photometry of two fields in the inner bulge
- **2.-** Detection of RC and RGBB
- **3.-** K_s LF fits results in single age stellar population of 12.8 \pm 0.6 Gyr and Z = 0.040 \pm 0.03 for both fields
- **4.-** No indication of population < 5 Gyr
- **5.** Metallicity gradient appears to flatten at R < 500 pc
- **6.** Secondary result: Extinction index consistent with the one for the central field (2.30 \pm 0.08).
- 7.- Stellar population in the nuclear bulge more complex (multi age) than in inner bulge

