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Abstract—One recent, significant advance in modeling source
code for machine learning algorithms has been the introduction
of path-based representation – an approach consisting in repre-
senting a snippet of code as a collection of paths from its syntax
tree. Such representation efficiently captures the structure of
code, which, in turn, carries its semantics and other information.
Building the path-based representation involves parsing the code
and extracting the paths from its syntax tree; these steps build up
to a substantial technical job. With no common reusable toolkit
existing for this task, the burden of mining diverts the focus of
researchers from the essential work and hinders newcomers in
the field of machine learning on code.

In this paper, we present PathMiner – an open-source li-
brary for mining path-based representations of code. Path-
Miner is fast, flexible, well-tested, and easily extensible to
support input code in any common programming language.
Preprint [https://doi.org/10.5281/zenodo.2595271]; released tool
[https://doi.org/10.5281/zenodo.2595257].

I. INTRODUCTION

Recent achievements in methods of statistical learning have
been lately making their way to the field of software engineer-
ing. Approaches based on machine learning have improved
the state of the art in various software engineering contexts,
such as program synthesis [1], [2], language modeling [3],
[4], code summarization [5], [6], optimization [7], [8], code
completion [9], and automatic code review [10].

The first step in applying machine learning algorithms to
source code is to represent the subject code in a way that both
captures aspects that are relevant to the task at hand and is
digestible by the algorithms. Examples of such representations
include a vector of tokens [3], a set of explicitly defined AST
metrics [11], and a traversal sequence of the syntax tree [12].

The recently introduced path-based representation [13] is
a particularly interesting modeling approach, because—even
though it was initially introduced for prediction of program
properties—it had since proven applicable to several tasks,
such as learning embeddings of snippets of code [14] and
mining of error-handling specifications [15].

The extraction of code representations requires substantial
technical work, but, to date, we have no well-known and
reusable tooling for this task. Conducting this technical work
has several implications: (1) It diverts researchers’ effort and
focus away from the essential part of the work – designing
the models and evaluating their applicability in practice, (2) it

implies effort duplication within the research community, and
(3) it poses a barrier for newcomers in the research area of
machine learning on code. As a result, both the development
and the adoption of machine learning on code are impaired.

In this paper, we present PathMiner – a library for mining of
path-based representations of code. By providing a convenient
API for retrieval of the path-based representations and efficient
storage of the extracted data, PathMiner strives to provide
value for both SE and ML communities by allowing the
researchers to skip the time-consuming step of writing custom
mining pipelines for the models that utilize the path-based
representations of code.

PathMiner supports mining of code in Java as well as
Python and is designed to be easily extensible to support
other programming languages. We achieve this extensibility by
providing a convenient extension point for parsers generated
by ANTLR [16]. In addition, in the distribution of PathMiner
we provide a Python library to read and process the output of
PathMiner, and an example of usage of its output as a dataset
for a machine learning task.

II. PATH-BASED REPRESENTATIONS

The idea of the path-based representation is to model a
snippet of code as a collection of paths between the nodes in its
syntax tree. In this section, we describe the related concepts.

A. Abstract Syntax Tree

An abstract syntax tree (AST) is a tree-based structure that
represents the syntactic structure of a program. ASTs do not
represent the complete contents of a program’s source code –
some information (such as formatting of the code, parentheses,
and the exact form of syntactic constructs) is omitted. Each
node in the AST represents a syntactic unit of the program
– such as a variable, an operation, or a logical operator. The
children of the node represent the lower-level units associated
with the current one.

Figure 1 features a simple code snippet and its AST. While
omitting some information, an AST represents the essential
structural information about the code, which, along with its
own strict tree-based structure, makes it a good intermediate
form of code representation in a wide variety of tasks, such as



int square(int x) {
    return x * x;
}
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(b) The snippet’s syntax tree. An example of a path is highlighted in pink.

Fig. 1. An example code snippet and its syntax tree

prediction of variable names [13], code summarization [17],
and authorship attribution [11].

B. Abstract Syntax Tree Paths

An AST path is a sequence of connected vertices in the
AST, logically representing a path from one vertex to another.
While, in theory, a path can connect arbitrary nodes of the
AST, existing approaches operate with paths between two
leaves, which can be linked to concrete tokens in the code.

In practical contexts, a path is denoted by a sequence of
types of its nodes and marks of traversal direction. Moreover,
the concrete tokens denoting the start and the end vertex of the
path are added to the representation, forming a path-context.

In Figure 1, we highlight an example of an AST path
in pink. This path can be denoted as follows (using the
abbreviated labels for node types and arrows for direction):

SN ↑ MD ↓ B ↓ RS ↓ IE ↓ SN

Along with the tokens of the end nodes, it forms the
following path-context:

(square, SN ↑ MD ↓ B ↓ RS ↓ IE ↓ SN, x)

Formal definitions of path and path-context are available in
existing literature [13], [14].

Semantically, a single AST path denotes a logical connec-
tion between two concrete elements of code. Representing the
whole tree by a set of the contained paths allows to efficiently
capture the semantics of code. This is demonstrated by high
performance of path-based representations in tasks such as
prediction of names for variables as well as methods, and
prediction of variable types [13].

Mining of path-based representations involves parsing the
code and extracting paths from its syntax tree. With the variety
of programming languages, each requiring a specific toolkit
for analysis, mining pipelines are generally not reusable. With
PathMiner, by providing a reusable and extensible mining

library, we strive to help the researchers to dedicate less
effort to mining, thus allowing our community to focus on
the essence of research problems.

III. PATHMINER: AN OVERVIEW

PathMiner is designed to do one thing: extracting path-
based representations from code. The core of PathMiner is the
PathMiner class, whose only method extracts all the paths
meeting the height and width limitations from a provided AST.

Practically, it often makes sense to require the extracted
paths not to exceed certain width (i.e., the distance between
the end nodes in the ordered list of AST leaves) and height
(i.e., the distance between the topmost node in the path
and the lower of its end nodes). In fact, this step helps to
reduce the amount of generated data and to only capture
connections between the nearby code elements [14]. For
this reason, the PathMiner class is instantiated with a
PathRetrievalSettings object denoting the limits for
path extraction.

ASTs for code in various languages are generated by various
Parser implementations. The path extraction results are
handled by PathStorage classes, which also produce the
output. Listing 1 demonstrates an example of usage of the core
components of PathMiner.

The value of PathMiner stands in reduction of development
effort for implementation of the extraction of paths – instead of
implementing the complete mining pipeline, the code written
by the users of PathMiner should only provide integration of
PathMiner into their own mining pipelines. Another strength of
PathMiner is the ease in supporting arbitrary languages, which
is achieved through integration with ANTLR (Section III-C1).

The distribution of PathMiner contains several usage exam-
ples (Section III-E). In the following, we describe PathMiner’s
inner workings in more detail.
v a l f i l e = F i l e ("Example.java" )
// instantiate the PathMiner
v a l miner = Pa thMiner (

P a t h R e t r i e v a l S e t t i n g s ( maxHeight = 5 , maxWidth = 5 ) )
// generate the AST from the file
v a l a s t R o o t = J a v a 8 P a r s e r ( ) . p a r s e ( f i l e . i n p u t S t r e a m ( ) )
// retrieve the paths from the AST
v a l p a t h s = miner . r e t r i e v e P a t h s ( a s t R o o t )
// convert the paths into path-contexts and store
s t o r a g e . s t o r e ( p a t h s . map { t o P a t h C o n t e x t ( i t ) } ,

e n t i t y I d = f i l e . p a t h )
// produce the output in the specified folder
s t o r a g e . s ave ("out_examples/single_java_file" )

Listing 1. An example of usage of PathMiner in Kotlin

A. An Overview Of The Internals

Converting a piece of code into its path-based representation
includes several steps, which define the workflow and archi-
tecture of PathMiner. Figure 2 presents an overview of path
extraction workflow and the key components of PathMiner.

Parsing. The first step towards a path-based representation
is to build an AST from code. All AST operations in Path-
Miner operate with Node – a simple interface representing a
node of an AST. The implementations of Node are required to
support a limited set of operations that are absolutely essential
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Fig. 2. An overview of PathMiner’s workflow and components.

for path extraction, such as retrieval of node’s type label and
access to children and parent nodes, as well as storage of
arbitrary metadata in the node object.

The code in the text form is converted to tree-shaped
hierarchies of Node implementations by implementations of
Parser – an interface defining a single method that takes
an InputStream as an argument and returns an instance
of a class implementing Node. The concrete implementations
of Node and the corresponding Parser are defined by the
programming language and the concrete underlying parser
implementation that actually processes the source code. A
parser can be implemented either from scratch, which is
a hefty task, or, in a simpler way, as an adapter of an
external parsing library.PathMiner supports two practical ways
to implement a Parser, thus supporting a new programming
language: (1) conversion from an existing standalone library
with parsing capabilities (see GumTreeJavaParser class,
which wraps the AST representation created by GumTree [18]
into Node, for an example) and (2) generation of a parser from
a predefined grammar with ANTLR (see Section III-C1).

Extracting paths. Extracting the paths from the tree is
the task of the PathWorker class. Given a Node object
representing the root node of an AST and an object that defines
limitations on width and height of the paths, PathWorker
traverses the tree bottom-up starting from the leaves, mem-
orizing sequences of nodes encountered during the traversal
up to the given node. For each non-leaf node, PathWorker
matches the sequences from each of the node’s children
and collides the pairs of these sequences to complete paths.
Matching of the sequences is performed in a way that ensures
that all generated paths are trivial, i.e., each path features a
node at most once, and that the paths do not exceed the limits
on height and width.

Output. Upon extraction, paths are passed to an implemen-
tation of PathStorage interface. These entities take care
of storing the paths and producing the output. An AST of
even a simple program may potentially yield thousands of
paths, if the limits are not strict enough. Due to a potentially
high amount of produced data, the default implementation of
PathStorage (i.e., VocabularyPathStorage) uses a dedupli-
cation technique to ensure an efficient usage of the memory.
The output format (Section III-D) is also designed to avoid
storing duplicate information in the output.

PathMiner features multiple extension points to ensure its
applicability to a wide range of path extraction tasks. Sec-
tion III-C provides details on possible extension scenarios.

B. Technologies In Use

PathMiner is implemented in Kotlin [19], but its output
is designated for use in machine learning pipelines, which
are commonly implemented in Python. While implementing
PathMiner in Python would help ensure easier interoperability,
implementation of PathMiner in a statically typed language
was our prerequisite to ensure better code quality, null-safety,
maintainability, and ease of debugging. To compensate for
the extra effort of using the output of PathMiner in Python
pipelines, the distribution of PathMiner includes a Python
library to handle its output format, as well as an example of
its usage for a machine learning task.

PathMiner depends on GumTree for one of the parser im-
plementations, on the ANTLR runtime for generated parsers,
and (only in compile time) on JUnit for unit testing.

C. Extensibility

PathMiner includes several extension points, which help
ensure its applicability in a wide range of contexts.

1) Custom language support: One can easily extend Path-
Miner to process code in languages that are not supported out
of the box. We achieve this by integrating with ANTLR [16].
c l a s s P y t h o n P a r s e r : P a r s e r<SimpleNode> {

o v e r r i d e fun p a r s e ( c o n t e n t : I n p u t S t r e a m ) : SimpleNode ? {
// Instantiate the lexer and parser generated by ANTLR
v a l l e x e r = Py3Lexer ( ANTLRInputStream ( c o n t e n t ) )
v a l t o k e n s = CommonTokenStream ( l e x e r )
v a l p a r s e r = P y 3 P a r s e r ( t o k e n s )
// Retrieve the root node from the tree by ANTLR
v a l c o n t e x t = p a r s e r . f i l e i n p u t ( )
// Convert the tree to PathMiner format
re turn c o n v e r t A n t l r T r e e ( c o n t e x t , P y 3 P a r s e r . ru leNames )

}
}

Listing 2. A complete implementation of Python support for PathMiner

Given a grammar in a predefined format, ANTLR generates
a lexer and a parser for the language described by the grammar.
Resulting classes transform the source code input into a
syntax tree. With many existing grammars for ANTLR [20],
PathMiner supports a wide variety of languages. In fact,
any language supported by ANTLR 4 can be supported by
PathMiner through the implementation of a simple wrapper
around the lexer and parser classes generated by ANTLR.
Implementing the wrapper is necessary due to variation in
methods to retrieve the root node of the parse tree across



various generated ANTLR parsers. However, the coding effort
is very minimal: Listing 2 features a complete example of an
implementation of support for a new language in PathMiner,
containing only 4 lines of meaningful code.

2) AST splitting: Parsers in PathMiner generate a single
AST for the whole input – the basic unit of input is a
file. Depending on the task, one can operate with smaller
units of code, such as method definitions. To support possible
scenarios of use for extracting paths from smaller units of
code, PathMiner features the TreeSplitter interface. Its
implementations extract finer units from the tree, returning a
collection of AST nodes, each representing such unit.
i n t e r f a c e T r e e S p l i t t e r <T : Node> {

fun s p l i t ( r o o t : T ) : C o l l e c t i o n<T>
}

Due to variability of AST node types across languages
and corresponding parsers, the implementations of
TreeSplitter are not reusable across languages and
have to be implemented individually. Our distribution
of PathMiner includes an example implementation
(GumTreeMethodSplitter) that extracts method
definition nodes from the ASTs generated by
GumTreeJavaParser.

3) Output: Storage of extracted path-contexts and gen-
eration of output are handled by the ancestors of the
PathStorage class. PathMiner includes a default imple-
mentation (VocabularyPathStorage) that handles the
storage and output in a memory-efficient manner. However,
mining tasks that require alternative representations of the data
can be supported by implementing a custom PathStorage.

D. Output format

By default, PathMiner uses a custom output format, intro-
duced by the authors of the path-based representation [14]. The
format is designed to present the data in numerical form, while
storing it in a memory-efficient manner. Figure 3 presents
an overview of the format, which is based on vocabulary
tables. The format exploits the fact that, due to the structured
nature of code and limited number of unique node types and
tokens, many identifiers and paths are likely to occur more
than once over mining tasks of significant size. The storage
algorithm associates every token, node type, and path with a
unique identifier, thus avoiding storing duplicate data. Each
vocabulary table is stored on disk in a separate .csv file.

E. Distribution And Usage Examples

The distribution of PathMiner [21] includes several ex-
amples of its usage. The examples of path retrieval tasks,
implemented in Kotlin and Java, are located in the examples
package.

To ease further use of the vocabulary-based output of
PathMiner in real-world machine learning tasks, we include
a small Python library that reads the output and wraps it into
wrapper classes for fast access to tokens, paths, node types
and path-contexts. Data in this form can later be used with
any machine learning framework.

Path-contexts are encoded as 
(start token id, path id, end token id) 

Paths are stored
as sequences of

node type idsEach token is
associated with a
unique token id

Each node type along with a
direction is associated with a

unique node type id

Token vocabulary Node type vocabulary Path vocabulary

Fig. 3. An example of vocabulary encoding for two path-contexts

To demonstrate the usage of the Python library,1 we also
provide an example of use of the path-based representations
for an actual machine learning task. We implement a linear
classifier that is trained to distinguish between two possible
projects of origin for a file based on its path-based representa-
tion. When evaluated on two projects of several thousand Java
files each, the classifier achieves over 99% accuracy, precision,
and recall after a few minutes of training.

While we only provide the classifier as an example of
usage of PathMiner’s output for a new task, high accuracy
achieved with a very simple model suggests that the range of
applications for path-based representations stretches beyond
existing research. This point highlights the potential value of
PathMiner for the research community.

IV. QUALITY AND PERFORMANCE

The critical components of PathMiner—path extraction
pipeline and parsers—are covered by unit tests, which are run
on every change by a continuous integration system. To ensure
quality and readability of PathMiner’s sources, we employed
code reviews during the development process: All of the code
in PathMiner was reviewed by, at least, a second developer.

On a mid-range developer machine, PathMiner is capable
of processing 300-500 Java files per second, with the most of
CPU time being spent on I/O and parsing. This suggests that
PathMiner is efficient and is not going to be a bottleneck in
existing pipelines. Our own experience with using PathMiner
for ongoing research projects confirms its high performance.
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