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1 Executive summary

The goal of the Two!Ears project is to develop an intelligent, active computational model
of auditory perception and experience in a multi-modal context. At the heart of the
project is a software architecture that optimally fuses prior knowledge with the currently
available sensor input, in order to find the best explanation of all available information.
Top-down feedback plays a crucial role in this process. The software architecture will
be implemented on a mobile robot endowed with a binaural head and stereo cameras,
allowing for active exploration and understanding of audiovisual scenes. Our approach
recasts a conventional “blackboard system” in a modern machine learning framework. In
the blackboard system, knowledge sources cooperate to solve a problem; in this case, the
problem is to identify the acoustic sources that are present in the environment and ascribe
meaning to them.

This deliverable documents our progress on the design and development of the Two!Ears
software architecture. We have developed a blackboard system with three layers. In the
first layer, the acoustic input is pre-segmented using information about pitch, onsets/offsets,
interaural coherence and amplitude modulation. This allows sound sources of interest to
be separated from the acoustic background. Visual information gathered from cameras (or
initially from a 3D simulation) are also segmented. Since sound sources of interest in the
environment will not be static, we have also developed a framework for nonlinear tracking
of sound sources which models their underlying motion dynamics. In the second layer of
the expert system, audio-visual events are labelled to indicate their attributes. So far,
we have focused on attributes relating to the spatial location of sound events and their
source type (e.g., ‘female voice’ or ‘telephone ring’). Correctly labelling these attributes in
noisy and reverberant acoustic environments is a challenging problem; we have developed
techniques for improving the robustness of spatial location estimation (using multi-condition
training and head movements) and source type classification (using noise-adaptive linear
discriminant analysis). We have also developed an i-vector approach to speaker recognition
which gives very promising results. In the third layer of the blackboard system, events are
interpreted to derive a meaningful description of the auditory scene. We aim to achieve
this within a graphical model framework, based on the open-source software toolkit GMTK.
To date, we have demonstrated how sound source localisation can be cast within this
framework.
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2 Introduction

The main objective of this work package is to implement an expert system using a graphical-
model-based architecture on top of the monaural and binaural models provided by WP2.
The blackboard system is able to interpret complex acoustic environments containing
multiple sound sources, via the use of a multi-layered architecture connected by feedback
pathways. In the first layer, the auditory scene is pre-segmented into different streams that
correspond to sound sources and the acoustic background. In the second (event-expert)
layer, information about foreground streams is used to define auditory events. These are
semantically interpreted and annotated, creating a first symbolic scene description. In the
third layer, symbolic information about multiple auditory events is combined in a graphical
model architecture. Sounds events are considered in context in order to disambiguate their
interpretation and assign meaning to the auditory scene. The flexible structure of the
blackboard architecture also allows for the inclusion of knowledge from other modalities
(vision and motor control).

2.1 Structure of this report

The main purpose of this report is to describe the initial implementation of the Two!Ears
software architecture. The report is structured in three main sections, which document
our progress against tasks in the work plan for work package three (WP3) as described
below:

Software architecture (Task 3.1). This section describes recent progress on the imple-
mentation of a blackboard-based software architecture for auditory scene understanding.
Following an overview of the blackboard architecture and a discussion of the motivation
for it, we describe the developments that have been made to the blackboard system after
the initial design and implementation described in the 6-month report (Deliverable D3.1).
These focus on more sophisticated ways to dynamically request signals and store data,
and an improved scheduler. A summary of the knowledge sources currently implemented
within the blackboard system is given.

Pre-segmentation and tracking (Task 3.2). Here we describe approaches to pre-
segmentation and tracking in the first layer of the blackboard. Techniques for fore-
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2 Introduction

ground/background classification, onset/offset detection, segmentation based on periodicity
and amplitude modulation, and nonlinear tracking have been developed. We also report
preliminary work on visual processing, which has been enabled by the implementation
of a visual simulator. Planned work on audio-visual speaker identification is briefly de-
scribed.

Formation of auditory objects (Tasks 3.3, 3.4 & 3.5). This section describes progress
on the second layer of the blackboard, which concerns source models and predictors for
assigning attributes to sound events. We describe a system for sound localisation that
is robust to reverberation and uses human-like head movements to resolve front-back
confusions. Machine learning techniques have been applied to identify different source
types (e.g., ‘female speech’, ‘fire’), using both discriminative classifiers and probabilistic
models. Also, an i-vector approach has been developed for determining the identify of
different speakers.

2.2 Major achievements in this period

The main achievements over the first 12 months of this work package can be summarised
as follows:

• Specification, design and implementation of a flexible, dynamic and main-
tainable blackboard architecture for auditory scene understanding. The
blackboard system is tightly integrated with the outputs of other work packages; it
interfaces with the auralization environment developed in WP1, is integrated with
the peripheral processing and feature extraction stages of WP2, and provides an
interface for implementing feedback mechanisms that are addressed in WP4.

• Methods for pre-segmenting the acoustic input, based on pitch, onsets/offsets
and the amplitude modulation spectrum.

• A framework for nonlinear tracking of sound sources, which can be integrated
with the blackboard architecture and allows the motion dynamics of a source to be
modelled as dynamical system.

• Implementation of a 3D virtual test environment, the Bochum Experimental
Feedback Testbed (BEFT), which mimics feedback-relevant parts of the Two!Ears
system and thus allows for early testing of feedback mechanisms.

• A machine-hearing system for sound localisation, implemented within the
blackboard architecture, that employs head movements and multi-condition training
to achieve robust performance in reverberant environments.
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2.2 Major achievements in this period

• Building a flexible pipeline for model training, which is able to efficiently
create multi-conditional auditory scene data via the WP1 acoustic front-end and
WP2 auditory front-end, and facilitates experimentation with different feature creation
and model training methods via exchangeable modules. This pipeline will allow for
rapid creation and testing of robust methods for auditory scene description.

• Classifiers for source type, based on a discriminative approach (support vector
machines) and a probabilistic modelling approach (Gaussian mixture models). Source
identification performance has been optimised using feature selection (by mixture of
factors analysis), and a novel noise-adaptive linear discriminant analysis (NALDA)
technique.

• Speaker identification techniques based on Gaussian mixture models with a
universal background model (GMM-UBM), and using an i-vector approach to avoid
undue influence of the recording channel and room acoustics.

5





3 Software architecture

This chapter documents the design of the Two!Ears software architecture and describes
the motivation for the approach taken.

3.1 Overview of software architecture

The goal of the Two!Ears project is to develop an intelligent, active computational model
of auditory perception and experience in a multi-modal context. In order to do so, the
system must be able to recognise acoustic sources and optical objects, and achieve perceptual
organisation of sound in the same manner as human listeners do. Bregman (1990) has
referred to the latter phenomenon as auditory scene analysis (ASA), and to reproduce this
ability in a machine system a number of factors must be considered:

• ASA involves diverse sources of knowledge, including both primitive (innate) grouping
heuristics and schema-driven (learned) grouping principles;

• Solving the ASA problem requires the close interaction of top-down and bottom-up
processes through feedback loops;

• Auditory processing is flexible, adaptive, opportunistic and context-dependent.

The characteristics of ASA are well-matched to those of blackboard problem-solving ar-
chitectures. A blackboard system consists of a group of independent experts (‘knowledge
sources’) that communicate by reading and writing data on a globally-accessible data
structure (‘blackboard’). The blackboard is typically divided into layers, corresponding to
data, hypotheses and partial solutions at different levels of abstraction. Given the contents
of the blackboard, each knowledge source indicates the actions that it would like to perform;
these actions are then coordinated by a scheduler, which determines the order in which
actions will be carried out.

Blackboard systems were introduced by Erman et al. (1980) as an architecture for speech
understanding, in their Hearsay-II system. In the 1990s, a number of authors described
blackboard-based systems for machine hearing (Cooke et al., 1993, Lesser et al., 1995, Ellis,
1996, Godsmark and Brown, 1999). All of these systems were in most respects ‘conventional’
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3 Software architecture

blackboard architectures, in which the knowledge sources employed rule-based heuristics.
In contrast, the Two!Ears architecture aims to exploit recent developments in machine
learning, by combining the flexibility of a blackboard architecture with powerful learning
algorithms afforded by probabilistic graphical models.
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Figure 3.1: Overview of the general software architecture across all work-packages.

The general structure of the complete Two!Ears software architecture is shown in
Figure 3.1. Since Deliverable D3.1, major progress has been made towards integration
of all related software modules across work packages. The current system includes the
auralization environment developed by work package one (WP1), which is interfaced with
the peripheral processing and feature extraction stage of work package two (WP2). The
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3.2 Progress on development of the Two!Ears system

blackboard system, developed by WP3, acts as the core of the integrated framework and
provides additional interfaces to include feedback mechanisms investigated within work
package four (WP4) and a robotic interface to communicate with work package five (WP5).
Recent development on the software architecture is focused on integrating simulated visual
processing, based on the (MORSE, 2014) simulator provided by WP5, into the framework.
This will provide capabilities necessary to simulate acoustic and visual scenes that will be
investigated within the Two!Ears application scenarios.

In the following sections, we describe in more detail the progress on the design and implemen-
tation of the integrated framework as well as individual knowledge sources.

3.2 Progress on development of the Two!Ears system

The Two!Ears computational framework is targeted as the front-end for a great variety
of applications, providing an architecture that integrates experience formation and active
behaviour from a set of different functional modules. These modules can work on different
levels of abstraction, independently from each other or in “collaboration”, in a bottom-up
or top-down manner. A key feature of this system should be its ability to evolve during
(and after) the project lifetime, so that easy modification, exchange and/or extension of
modules can be achieved within a scalable architecture.

To achieve the above mentioned goals, recent software development of the Two!Ears
architecture has focused on implementing more dynamic behaviour, construction and
communications.

3.2.1 Two!Ears system architectural considerations

In order to implement this integrative and system-wide view, some core attributes of the
system have been established as follows.

Building a flexible system The system we develop is a platform, i.e. it provides function-
ality to execute other functionality. While the “target” functionality is clear – auditory
and multimodal experience formation, scene understanding and exploration – it involves
many different problems, each with many possible solutions. We therefore design the
Two!Ears system with extension in mind, trying not to constrain possible functionality
of modules.

In particular, the blackboard system allows the “plugging-in” of different knowledge sources.
Knowledge sources are modules that define their own functionality, to be executed in
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3 Software architecture

the organized frame of our system. They define by themselves which data they need for
execution and which data they produce – the blackboard system provides the tools for
requesting and storing this data, but does not care about the actual contents (while the
knowledge sources do not need to care about where and how data is stored). It is also
important that the blackboard system has no static knowledge of what types of knowledge
sources are available. So long as knowledge sources follow a certain implementation scheme,
independent of their actual functionality they can register dynamically (i.e. at runtime)
as a module in the blackboard system. Thus, a library of knowledge sources can be built
during this project that can be extended arbitrarily, without need to modify the blackboard
system. Implementors of new modules need only be concerned with implementing their
functionality.

The Two!Ears architecture has been designed and implemented using an object-oriented
approach. Accordingly, the “implementation scheme” knowledge sources must adhere to
is provided in the form of an abstract class (see Section 3.3.1). Additionally, to enable
creation of new knowledge sources that depend on auditory signals without needing to
hard-code a signal request into the Two!Ears system, an “auditory front-end dependent
knowledge source superclass” has been developed (see Section 3.3.3).

Building a dynamic system Key to providing the described flexibility is to neither hard-
code lists of usable knowledge sources nor the interactions between them. Hard-coded (or
static) lists and dependencies would be overly restrictive – the system must be open to
dynamic change.

At the same time, flexibility for extension is not the only cause for needing a dynamic
system. The Two!Ears system is intended to be an active system that does not only
work in a signal processing bottom-up manner, but also in a “cognitive” top-down manner.
Modules must therefore be allowed to change the system setup at runtime. This means
that it is essential for our system to be equipped with functionality for dynamic module
instantiation, registration and removal. This also implies the need for on-the-fly rewiring
of the communication links between modules.

Building a usable system The Two!Ears architecture is a platform for integrating the
modules produced by different partners of the Two!Ears consortium. Also, the platform
will be open to the public, empowering further research. It is thus very important to make
the system usable and easy to configure for different tasks, and we have put great emphasis
on writing clean program code: to keep classes and methods small and understandable,
clearly separate responsibilities between classes, make use of inheritance and abstract
classes, and encapsulation. As much of the “system machinery” as possible is hidden from
the user while providing an open and easy-to-use functional interface.
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3.2 Progress on development of the Two!Ears system

3.2.2 Dynamic system construction

To ensure an easy-to-use system, we implemented as the main class a wrapper that
integrates the different main components, and hides their connections where possible. This
main class is called BlackboardSystem, since the blackboard is the central component
of our platform. This is an excerpt of its definition:

class BlackboardSystem
properties

blackboard;
blackboardMonitor;
scheduler;
robotConnect;
dataConnect;

methods
BlackboardSystem ()
setRobotConnect( robotConnect )
setDataConnect( connectorClassName )
buildFromXml( xmlName )
addKS( ks )
createKS( ksClassName , ksConstructArgs )
numKSs ()
run()

The “engine” of our system is distributed across the BlackboardSystem, Blackboard,
BlackboardMonitor and Scheduler classes, with the BlackboardSystem class holding
instances of the latter three. These four classes each have genuine responsibilities: the
BlackboardSystem integrates the framework parts, responsible for constructing and setting
up the system. The blackboard is the central storage of functional data and knowl-
edge sources. It holds a data map that saves arbitrary knowledge source data along
time, together with methods to add and recall data from within knowledge source code.
Additionally, the knowledge sources themselves are put into blackboard storage by the
BlackboardSystem.

The BlackboardMonitor is responsible for creating bindings on demand between knowledge
sources, by instantiating event listeners. It keeps track of these bindings and maintains the
agenda of knowledge sources. The Scheduler is the executive component of the system.
While the BlackboardMonitor keeps control of the knowledge sources in the agenda, the
Scheduler decides about the order of those knowledge sources to be executed. It does
that based on the attentional priorities of the knowledge sources. Figure 3.2 shows the
system class diagram.

Several core functionalities are provided through the BlackboardSystem class:
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3 Software architecture
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Figure 3.2: Class diagram of the whole blackboard system. The BlackboardSystem class is the
integrative system component holding the other modules and giving access to system functionality.

• Connecting the robot/binaural simulator (see Deliverable D6.1) to the blackboard
system. The connected object must implement the robot interface for delivering
audio “ear” signals and commanding movement and head rotation. The blackboard
system and all its components including the knowledge sources get access to the
audio stream and robot actions through this connection (setRobotConnect method).

• Setting the type of the module that integrates with the auditory front-end (AFE; see
Deliverable 2.2), instantiating it and connecting it to the blackboard system. This
module is a knowledge source itself, responsible for processing the ear signals into
cues (such as interaural time differences) needed by other knowledge sources. The
AFE itself is connected to the robot/binaural simulator in order to obtain the ear
signals. See also Section 3.3.2 (setDataConnect method).

• Instantiating and adding knowledge sources. These knowledge sources must inherit
from AbstractKS (see Section 3.3.1) or AuditoryFrontEndDepKS (see Section 3.3.3)
to be able to be interfaced and run by the system. Knowledge sources that inherit
from AuditoryFrontEndDepKS automatically get connected with the AFE by the
system in order to place their signal/cue requests.
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3.2 Progress on development of the Two!Ears system

<blackboardsystem >
<dataConnection Type=" AuditoryFrontEndKS "/>

<KS Name="baby" Type=" IdentityKS">
<Param Type="char">baby </Param >
<Param Type="char " >6687829 ce1a73694a1ce41c7c01dec1b </Param >

</KS>
<KS Name=" femaleSpeech" Type=" IdentityKS">

<Param Type="char">femaleSpeech </Param >
<Param Type="char " >6687829 ce1a73694a1ce41c7c01dec1b </Param >

</KS>
<KS Name=" idDec" Type=" IdDecisionKS">

<Param Type="int">0</Param >
<Param Type="int">1</Param >

</KS>

<Connection Mode=" replaceOld" Event=" AgendaEmpty">
<source >scheduler </source >
<sink >dataConnect </sink >

</Connection >
<Connection Mode=" replaceOld">

<source >dataConnect </source >
<sink >baby </sink >
<sink >femaleSpeech </sink >

</Connection >
<Connection Mode=" replaceParallel">

<source >baby </source >
<source >femaleSpeech </source >
<sink >idDec </sink >

</Connection >
</blackboardsystem >

Figure 3.3: an example of an XML-configured blackboard system. Two identity knowledge
sources are connected to the AFE, and triggering an identity decision knowledge source.

Adding and instantiating knowledge sources can take place both before or while
running the system; it can be done from “outside” the system or from inside knowledge
sources. This enables the development of top-down controlling knowledge sources
from higher “cognitive” experts running in the system (addKS or createKS method).

• The start-up configuration of the system can completely be defined by an XML file;
the system is then constructed before running by loading this file. Of course this
configuration can be changed dynamically while executing the system. The XML
description needs at least a dataConnection node specifying the type of the AFE
module; then, it can also contain KS nodes with parameters to construct knowledge

13



3 Software architecture

sources, and Connection nodes that specify event bindings between knowledge sources.
See Figure 3.3 for an example (buildFromXml method).

• Starting the execution of the system. This triggers the blackboard system to request
data from the robot/binaural simulator connection, and subsequent action by the
AFE and all knowledge sources that are connected. The system will not stop execution
before the robot/binaural simulator sends an ending signal (run method).

3.2.3 Dynamic blackboard memory

The Blackboard class holds the central data repository of the platform. It stores the
knowledge sources and any shared data, in particular the output of the knowledge sources
(e.g., estimates of the location of a sound source). It is accessible to all knowledge sources;
and it not only stores current data, but keeps track of the history of this data in order to
enable knowledge sources to work on time series data.

Importantly, the Blackboard is flexible about data categories, which do not have to be
hard-coded into the system. Knowledge sources “decide” on their own and at runtime
what to add and what to request. Thus, the system does not need to be changed in
order to implement new knowledge sources that work with new data categories. Of course,
knowledge sources can only read data categories that are actually stored in the blackboard
by other knowledge sources (or themselves).

The following listing shows an excerpt of the Blackboard interface:

class Blackboard
KSs;
signals;
currentSoundTime;

methods
Blackboard ()
addData( dataLabel , data , append , time )
getData( dataLabel , reqSndTime )
getLastData( dataLabel , time )
getNextData( dataLabel , time )
getDataBlock( dataLabel , blockSize_s )

Prominently featured are methods to add and access data:

• addData lets knowledge sources add data to the blackboard storage. The data
category has to be named in dataLabel, data hands over the actual data to store.
append is an optional flag indicating whether to overwrite or append data at the
same time step (there might, for example, be several source identity hypotheses per
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3.2 Progress on development of the Two!Ears system

timestep, but only one source number hypothesis might be allowed). time specifies
the time point under which this data shall be stored. It is optional and, if not set,
defaults to the current time.

• getData lets knowledge sources read data from the blackboard storage. dataLabel in-
dicates the data category requested, reqSndTime the time point of interest. getLastData,
getNextData and getDataBlock are special cases of getData for retrieving the last
data, the next data after a particular point in time, or a whole data block of length
blockSize_s.

The following is an example from the implementation of the IdDecisionKS class:

idHyps = obj.blackboard.getData( ...
'identityHypotheses ', obj.trigger.tmIdx ).data;

%...
%find the most likely identity hypothesis -> maxProbHyp
%...
obj.blackboard.addData( ...

'identityDecision ', maxProbHyp , false , obj.trigger.tmIdx );

Additionally, the blackboard is used as a storage for pointers to signals from the auditory
front-end requested by knowledge sources inheriting from AuditoryFrontEndDepKS. The
actual memory in which these signals are stored for recall is implemented in the auditory
front-end through cyclic buffers (see Deliverable D2.2).

3.2.4 Dynamic blackboard interactions

Knowledge sources can communicate information through the flexible blackboard storage.
However, adding data to the blackboard does not trigger other knowledge sources to be
executed. Such interaction – triggering knowledge source execution – is done through
an event system. Specifically, knowledge sources do not actually trigger execution of
other knowledge sources (since they are decoupled and have no “knowledge” of each
other), but knowledge sources make a request to be triggered upon the firing of particular
events.

Each knowledge source has a standard event it can trigger, KsFiredEvent, inherited
from AbstractKS. Beyond that, every knowledge source class is free to define as many
additional events as reasonable for its task. Knowledge sources cause the events themselves
through a call to notify as in the following example, in which the knowledge source
induces an event and attaches a BlackboardEventData object holding the time that it was
triggered:

notify( 'KsFiredEvent ', BlackboardEventData(obj.trigger.tmIdx) );
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The blackboard system a priori is totally ignorant of which events exist (clear responsibilities
principle, open to extension). It also does not monitor any events by default, until knowledge
sources request to be triggered by an event. This request is done through the method
bind provided by the BlackboardMonitor class, whose interface is (partially) listed in the
following excerpt:

class BlackboardMonitor
properties

pastAgenda;
executing;
agenda;

methods
BlackboardMonitor ()
bind( sources , sinks , addMode , eventName )

The bind method connects the sinks knowledge sources to event eventName (optional,
defaults to KsFiredEvent) caused by the sources knowledge sources. addMode specifies
how the BlackboardMonitor shall handle adding the triggered knowledge sources into the
agenda. It understands the following modes, illustrated in Figure 3.4:

add Add the triggered knowledge source to the end of the agenda, regardless of whether or
not there is already a (not yet executed) knowledge source instantiation of this sink
in the agenda from a former triggering.

replaceOld Replace old knowledge source instantiations of this sink in the agenda with the
new one. Only instantiations of the sink triggered by the same source and same event
are replaced. This is an important mode for knowledge sources where processing
current data is more important than processing all data.

replaceParallel Replace knowledge source instantiations of this sink from the same time
point of “parallel” sources in the agenda with the new one. Only instantiations of
the sink triggered at the same time and by the same event are replaced. This mode
avoids sinks being unnecessarily executed several times with the same information.

replaceParallelOld Replace old or current knowledge source instantiations of this sink
triggered by “parallel” sources in the agenda with the new one. Only instantiations
of the sink triggered by the same event are replaced. This mode is a combination of
the replaceOld and replaceParallel modes.

It should be noted that the addMode only affects triggered knowledge source instanti-
ations in the agenda, i.e. those that are not executed yet. As soon as a knowledge
source is executed, it is removed from the agenda (first in executing, afterwards in
pastAgenda).
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Figure 3.4: The different possibilities of event binding between knowledge sources with the
blackboard system.
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3.2.5 Dynamic blackboard scheduler

The scheduler is the component of the blackboard system that actually executes the
knowledge sources – but first, it schedules them, that is, it decides the order in which
knowledges sources waiting in the agenda get executed. This order is rescheduled after
every execution of a knowledge source, since the conditions determining the order may
have changed, or new knowledge sources may be present in the agenda that are more
urgent.

The following factors influence the order of execution of knowledge sources:

• Knowledge sources have a property called attentional priority. Knowledge sources
with higher priority get executed before knowledge sources with lower priority. This
priority can be set by the knowledge source itself, by other knowledge sources or from
outside the system. The BlackboardMonitor provides a method for setting focus
on a knowledge source (increasing its priority), along with the option to propagate
this higher priority down along the dependency chain of this knowledge source. The
dependency chain is determined by the event bindings.

• Knowledge sources must implement a method canExecute, that returns whether or
not the knowledge source can execute at this moment, and which is called by the
scheduler if the knowledge source is first on the scheduling list. If it cannot execute,
the knowledge source can decide whether to remain in the agenda or be removed
from it.

• Knowledge sources define a maximum invocation frequency, that cannot be exceeded.
It is a maximum frequency, because knowledge sources get not necessarily executed
periodically, since they are triggered by events, but not by timers. The scheduler
checks whether the last execution time was long enough ago before considering the
knowledge source for execution. Until then, it remains in the agenda.

This listing shows the relevant parts of the interface with respect to influencing the
scheduling:

class BlackboardMonitor
methods

focusOn( ks, propagateDown )
resetFocus ()

class AbstractKS
properties

invocationMaxFrequency_Hz;
methods (Abstract)

canExecute ()
execute ()
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methods
focus()
unfocus ()

Relationship to attention Since we are trying to implement an active auditory sys-
tem in Two!Ears, attention is a concept of particular interest. Scheduling modules
by means of priorities seems could be viewed as one part of directing attention to spe-
cific tasks, since it means assigning more computing resources to preferred knowledge
sources.

3.2.6 Integration of work across work packages

The blackboard system currently integrates modules from different work packages, in partic-
ular the acoustical scene auralization environment, the auditory front-end, and functional
modules for auditory object formation. Since the acoustical scene auralization environment
is implemented and connected to the blackboard system through the robot interface,
instead it would be possible to connect the robot to the system, which then can – controlled
by knowledge sources – actively explore the environment. Furthermore, by providing a
modular system that is easy to configure, the blackboard can now be used for simulating
and testing many different auditory scenarios, modules and tasks.

3.2.7 Prolog interface

The current blackboard system is capable of representing problems and tasks via a flexible
probabilistic framework. This can be considered as a powerful extension of conventional
blackboard designs, which are restricted to a rule-based processing paradigm (e.g., Erman
et al., 1980). However, even though a probabilistic representation provides a great amount
of flexibility, specific problems can be more efficiently represented by a set of rules, applied
to a corresponding knowledge base. This is especially important if additional knowledge
provided by human experts should be integrated into the system.

Therefore, an integration of the Prolog (Programming in Logic) programming language
into the blackboard system is currently under development. Prolog is widely used in
several fields of artificial intelligence research and provides a flexible way to set-up and
query large knowledge bases by a set of prespecified rules.

As opposed to imperative or object-oriented languages like C or Python, Prolog is
considered a declarative programming language. This means that, instead of specifying
how a certain goal should be achieved, the Prolog interpreter derives a solution from a
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query, describing the goal itself as a hypothesis that should be confirmed. Therefore, it is
necessary to provide a knowledge base, containing a set of facts and rules which describe
the possible solution space. The Prolog interpreter then performs a depth-first-search
(Russell and Norvig, 2003, Ch. 3) within the solution space to either confirm or reject the
hypothesis that was described by the query.

The interface that is currently implemented is based on SWI-Prolog (Wielemaker et al.,
2012), an open-source Prolog programming environment and interpreter. Recent de-
velopments focus on the integration of this environment into Matlab, allowing direct
access to the interpreter from within the Two!Ears software architecture. For the next
reporting period it is planned to provide an easy to use wrapper class which encapsu-
lates all necessary SWI-Prolog functions and makes them available to the blackboard
system.

3.3 Progress on implementation of knowledge sources

In this section we describe progress on software implementation of individual knowledge
sources within the Two!Ears framework. The techniques employed by the knowledge
sources are discussed in more details in the following chapters.

3.3.1 Abstract knowledge source

The abstract knowledge source (AbstractKS class) is the base class for all knowledge
sources in the blackboard system. The listing below shows the parts most relevant to
development of new knowledge sources:

class AbstractKS
properties

blackboard;
blackboardSystem;
invocationMaxFrequency_Hz;
trigger;

events
KsFiredEvent

methods (Abstract)
canExecute ()
execute ()

methods
focus()
unfocus ()
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There are different aspects of functionality in this interface.

Data access Knowledge sources have a handle to the blackboard. Through this handle,
data can be placed on and retrieved from the blackboard.

System setup Through the handle blackboardSystem, knowledge sources get access to the
methods for adding and removing other knowledge sources, and also access to the
BlackboardMonitor.

Execution properties The property invocationMaxFrequency_Hz specifies how often this
knowledge source is allowed to be executed. The methods focus and unfocus give
access to the attentional priority of the knowledge source, which influences its relative
importance when competing for computing resources with other knowledge sources.
See Section 3.2.5 for a description of scheduling.

Execution conditional The abstract method canExecute must be implemented by the
inheriting knowledge source. It is called by the scheduler when the knowledge
source is next in the schedule before actually executing. If this method returns
false, execution will not be performed. The second output argument of this method
indicates whether the knowledge source should remain in the agenda or be removed.

Execution The main functionality of any knowledge source is implemented in the method
execute. A knowledge source gets executed by the scheduler if its maximum invoca-
tion frequency would not be exceeded and its canExecute method returns true. In
this method, a knowledge source gets access to its trigger, a structure that contains
information about the triggering event, the triggering source, and an argument the
trigger source placed for usage by sinks.

Events Knowledge sources can define their own individual events. However, each class
already inherits a standard event from AbstractKS, KsFiredEvent. Events can be
triggered by knowledge sources via obj.notify(eventname, attachedData).

3.3.2 Auditory front end (AFE) knowledge source

This knowledge source integrates the auditory front-end from WP2 into the blackboard sys-
tem. The AFE itself is a self-contained module (see Deliverable 2.2 for more details) and this
section focuses on its integration within the Two!Ears framework.

The AFE knowledge source is connected to the blackboard and the robot interface by reg-
istering itself in the system via BlackboardSystem.setDataConnect. Upon construction,
the AFE dataObject and managerObject are instantiated and connected to the robot in-
terface ear signals stream. The maximum invocation frequency of the AuditoryFrontEndKS
is set to infinity. Execution mainly consists of getting the latest chunk of ear signals data,
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processing it through the AFE, and notifying a KsFiredEvent.

Other knowledge sources can register requests with the AFE indirectly, through inheriting
from the AuditoryFrontEndDepKS class (see Section 3.3.3), and binding to it’s KsFiredE-
vent.

3.3.3 Auditory signal dependent knowledge source superclass

Whenever a knowledge source needs signals, cues or features from the auditory front-end,
it should subclass from the AuditoryFrontEndDepKS class. Any knowledge source added
to the blackboard through the BlackboardSystem addKS or createKS methods, register
these AFE signal requests automatically with the AFE.

Setting up the requests Inheriting knowledge sources need to put their requests in their
constructor, in particular in the call to the superconstructor:
obj@AuditoryFrontEndDepKS( requests ). requests is a structure with a field r
and p, standing for “request” and “parameters”, respectively. Each of these fields is a
cell array; request r{reqIdx} has to be accompanied by parameters p{reqIdx}.

Accessing signals These requested signals can then be accessed by the knowledge source via
the inherited getReqSignal( reqIdx ) method. reqIdx refers to the same indexes
used as in the request structure.

A more elaborate description of the request parameter structure and the signal objects can
be found in Deliverable 2.2. See Figure 3.5 below for an example of how to request signals
from the AFE.

3.3.4 Localisation knowledge sources

Four knowledge sources work together to generate hypotheses of sound source azimuths:
Location knowledge source, Confusion Detection knowledge source, Confusion Solving
knowledge source, and Head Rotation knowledge source. Section 5.1 provides more details
about the localisation models. In this section we focus on implementation of the knowledge
sources and their usage within the blackboard framework.

Location knowledge source

Class LocationKS implements knowledge about the statistical relationship between spatial
cues and azimuth locations. This knowledge source (KS) requires signals from the AFE
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classdef LocationKS < AuditoryFrontEndDepKS
%...

function obj = LocationKS ()
requests.r{1} = 'ild ';
requests.p{1} = genParStruct (...

'f_low ',80,'f_high ' ,8000 ,...
'nChannels ',32,...
'rm_decaySec ',0,...
'ild_wSizeSec ',20E-3 ,...
'ild_hSizeSec ',10E-3,'rm_wSizeSec ',20E-3 ,...
'rm_hSizeSec ',10E-3,'cc_wSizeSec ',20E-3 ,...
'cc_hSizeSec ',10E-3 );

requests.r{2} = 'itd_xcorr ';
requests.p{2} = requests.p{1};
obj = obj@AuditoryFrontEndDepKS( requests );
%...

end

function execute(obj)
ildsSObj = obj.getReqSignal( 1 );
itdsSObj = obj.getReqSignal( 2 );
% ...

end

Figure 3.5: An example of using inheritance from the AuditoryFrontEndDepKS to request
acoustic cues from the AFE.

and thus inherits from the AuditoryFrontEndDepKS (Section 3.3.3, Figure 3.5) and needs
to be bound to the AuditoryFrontEndKS’s KsFiredEvent. The canExecute precondition
checks the energy level of the current signal block and localisation takes place only if
there is an actual auditory event. After execution, a LocationHypothesis containing
a probability distribution of azimuth locations is placed on the blackboard (category
“locationHypotheses”) and the event KsFiredEvent is notified.

binds to AuditoryFrontEndKS.KsFiredEvent
writes data category locationHypotheses

triggers event KsFiredEvent

Confusion Detection knowledge source

The ConfusionDetectionKS checks new location hypotheses and decides whether there is
a confusion. A confusion emerges when there are more valid locations in the hypotheses
than assumed auditory sources in the scene. In case of a confusion, a ConfusedLocations

23



3 Software architecture

event is notified and the responsible location hypothesis is placed on the blackboard in
the confusionHypotheses category. Otherwise, a PerceivedLocation object is added
to the blackboard perceivedLocations data category, and the standard event is trig-
gered.

binds to LocationKS.KsFiredEvent
reads data category locationHyptheses
writes data category confusionHyptheses or perceivedLocations

triggers event ConfusedLocations or KsFiredEvent

Confusion Solving knowledge source

The ConfusionSolvingKS solves localisation confusions by predicting the location probabil-
ity distribution after head rotation, and comparing it with new location hypotheses received
after head rotation is completed. The canExecute method will wait for new location hy-
potheses; when there is one, it will check whether the head has been turned, otherwise it will
not execute. The confusion is then solved by using the old and the new location hypothesis,
and a PerceivedLocation object is placed on the blackboard.

binds to ConfusionDetectionKS.ConfusedLocations
reads data category confusionHypotheses, headOrientation and locationHypotheses
writes data category perceivedLocations

triggers event KsFiredEvent

Head Rotation knowledge source

The HeadRotationKS has knowledge on how to move the robotic head in order to solve
confusions in source localisation. If there is no other head rotation already scheduled, the
KS uses the robot interface to turn the head.

binds to ConfusionDetectionKS.ConfusedLocations
reads data category confusionHypotheses, headOrientation
writes data category headOrientation

3.3.5 Identification knowledge sources

This section focuses on implementation of sound identification knowledge sources within
the blackboard framework. See Section 5.2 for more details of the models used to estimate
the type of auditory events.
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Identity knowledge source

Objects of class IdentityKS implement source models, by incorporating an instance of a
model (IdModelInterface class) with knowledge about the connection of acoustical cues
and certain sound source types. Many Identity KSs can be used concurrently. Currently
for each sound class to be identified there exists an object of class IdentityKS. The model
object of IdentityKS can in theory employ any kind of models, such as a linear support
vector machine, or a Gaussian mixture model. The IdentityKS needs access to AFE
signals, thus it is a subclass of AuditoryFrontEndDepKS (see Section 3.3.3). The model
object holds the signal request structure.

The KS predicts, based on the incorporated source model, whether the currently received au-
ditory stream includes an auditory object of the sound type it represents.

binds to AuditoryFrontEndKS.KsFiredEvent
writes data category identityHypotheses

triggers event KsFiredEvent

Identity decision knowledge source

The identity knowledge source checks new identity hypotheses. It then decides which of
them are valid, by comparison and incorporating knowledge about the number of assumed
auditory objects in the scene.

binds to IdentityKS.KsFiredEvent
reads data category identityHypotheses
writes data category identityDecision

triggers event KsFiredEvent

3.4 Conclusion

In this chapter, we have presented the Two!Ears software architecture that was designed
and developed during the first year of the project. We have shown that the current
framework is capable of serving as a flexible computational model that allows testing
and evaluation of auditory perception and experience in a multi-modal context. The
core-component of the software framework, namely the blackboard system, was extended
in a way that allows the dynamic creation of task-related configurations. Furthermore,
we have presented the embedding of the blackboard system into the software architecture
across work packages, combining acoustic scene auralization, auditory processing, feature
extraction and possibilities for high level feedback through interactions with the robot
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interface. Additionally, we have introduced further extensions that are currently under
development, namely the audio-visual interface and logical rule learning via the Prolog
programming language.
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4 Pre-segmentation and tracking

The chapter reports progress in Task 3.2, which concerns pre-segmentation and tracking.
Techniques have been developed for foreground/background classification, onset/offset
detection and nonlinear tracking. Currently, these techniques are evaluated in isolation;
work in the next period will consider how they are best combined within the blackboard
architecture. We also report preliminary work on visual processing, which has been
enabled by the implementation of a visual simulator. Planned work on audio-visual speaker
identification is also briefly described.

4.1 Methods for audio segmentation

Sound perception studies of human listeners suggest that there are processes in the
auditory system which segregate the acoustic evidence into perceptual streams based on
their characteristics. This allows listeners to selectively attend to particular streams of
interest (Bregman, 1990). Inspired by perceptual studies, the pre-segmentation stage of the
Two!Ears architecture implements algorithms that pre-segment the auditory scene into
different auditory streams corresponding to foreground sound sources and noisy background.
We use the term fragments to refer to regions in the spectro-temporal domain where the
energy is dominated by a single acoustic source.

In this section we investigate several pre-segmentation methods based on various grouping
cues. Although most of the methods work on individual cues, they can be integrated to
provide more robust pre-segmentation. Cue integration will be investigated in the next
period of the Two!Ears project.

4.1.1 Grouping based on periodicity

It is believed that listeners’ ability of auditory scene analysis is underlain by many auditory
grouping cues. Among many, grouping by periodicity appears to be one of the most
robust grouping cues, and has been widely employed in machine-hearing systems (Wang
and Brown, 2006). In this section we investigate pre-segmentation models based on
periodicity.

27



4 Pre-segmentation and tracking

Autocorrelogram

The periodicity of sound is well represented by the autocorrelogram (ACG), or simply
correlogram. The correlogram is a three-dimensional volumetric function, mapping a
frequency channel of an auditory periphery model, temporal autocorrelation delay (or lag),
and time to the amount of periodic energy in that channel at that delay and time. If the
original sound contains a signal that is approximately periodic, such as voiced speech, then
each frequency channel excited by that signal will have a high similarity to itself delayed by
the period of repetition. This can be emphasised by summing the ACG over all frequency
channels, producing a ‘summary ACG’ (see bottom panels in Figure 4.1). The position
of the largest peak in the summary ACG corresponds to the pitch of the periodic sound
source. Primarily because it is well-suited to detecting signal periodicity, the correlogram is
widely considered as the preferred computational representation of early sound processing
in the auditory system (Slaney and Lyon, 1990, Meddis and Hewitt, 1991, Assmann and
Summerfield, 1990, Meddis and Hewitt, 1992).
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Figure 4.1: Correlograms computed at different times for a clean speech signal uttered by a
female speaker. Each correlogram has been normalised and plotted as an image. The corresponding
summary ACG is shown at the bottom of each correlogram. Dotted lines indicate the pitch period
of a sound source.

Simultaneous grouping

Simultaneous grouping involves organising time-frequency (T-F) components of acoustic
mixtures across frequency. For a periodic sound source all autocorrelation channels exhibit
large peaks corresponding to the fundamental frequency (F0), forming vertical stems in
the correlogram centred on the delays corresponding to multiple pitch periods. Meanwhile,
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because each filter channel also actively responds to the harmonic component that is
closest to its centre frequency (CF), each channel tends to repeat itself at an interval of
approximately 1/CF, giving a succession of peaks at approximately the period of the CF
in the correlogram. This produces symmetric tree-like structures appearing at intervals
of the pitch period in the correlogram. When only one harmonic source is present, the
stem extends across the entire frequency range (see the left panel in Figure 4.1). When a
competing sound source is also present, some ACG channels may be dominated by the
energy that has arisen from the competing source, causing a gap in the stem of the structure
corresponding to the target source’s pitch (see the right panel in Figure 4.1). Such ACG
structures can be extracted and used to form spectral groups from a simultaneous sound
mixture (Summerfield et al., 1990, Ma et al., 2007).

Sequential grouping

Fragments can be formed by sequentially linking spectral groups based on pitch continuity.
Spectral groups that are likely to belong to the same source tend to have pitch estimates
that form a smooth temporal pitch contour. A simple rule-based tracker is used to form
potentially overlapping pitch track segments that extend through time (Ma et al., 2007).
Each pitch track is then used to recruit a spectro-temporal fragment. In each time frame, the
frequency channels that have autocorrelogram peaks corresponding to the pitch track value
are recruited into that track’s fragment. When more than one pitch track is simultaneously
active, channels are assigned to tracks according to which pitch track best explains the
autocorrelogram peaks. This process is illustrated in Figure 4.2.
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Figure 4.2: Upper-left panel: different shades of grey represent different spectral groups in each
frame. Lower-left panel: dots are local pitch estimates for the spectral groups. Lower-right panel:
two pitch track segments are produced by linking the local pitch estimates. Upper-right panel:
two fragments are formed corresponding to the two pitch track segments.
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As an example of the described method, Figure 4.3 shows fragments generated for a mixture
of male/female speech signals. Here the male speaker and the female speaker are equally
loud and overlap in time. In panel (b) the ‘oracle’ (ground-truth) segmentation of the
two speakers is indicated by using different colours. Panels (c–d) show estimated pitch
tracks of the two overlapping speakers. Panel (e) shows the final fragments after sequential
grouping. It should be noted that in the pre-segmentation stage the fragments simply
correspond to acoustic events and their identities are not known.
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Figure 4.3: (a) Cochleagram of a male/female speech mixture (SNR=0dB). (b) The ‘oracle’
segmentation. Brown region: pixels where the value in the mixture is close to that of the female
speaker; green region: the mixture value is close to that of the male speaker; white: low energy
regions. (c) Pitch estimates of simultaneous sources. Dots represent pitch estimates of the stronger
source in each frame and crosses represent the weaker source. (d) Circles are pitch tracks produced
by the multipitch tracking algorithm; solid lines show pitch tracks estimated from pre-mixed signals.
(e) Fragments after sequential grouping.

Integration with other grouping cues

Grouping by periodicity has been shown to be a robust cue in the presence of multiple
sources and reverberation. Other cues, such as source location, are often severely degraded
in such adverse listening environments. Therefore fragments generated based on periodicity
provide a useful framework to integrate other cues. For example, Christensen et al. (2009)
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showed that integration of localisation cues within a fragment identified by periodicity
relations can improve localisation performance significantly in reverberant conditions. In
(Ma et al., 2013), location cues and pitch cues are integrated within a fragment-based model
to improve automatic speech recognition with reverberation and multiple sound sources.
We plan in the near future to further investigate integration of different grouping cues based
on the current fragments model within the Two!Ears framework.

4.1.2 Grouping based on amplitude modulation features

One of the most striking abilities of the human auditory system is the capability to focus
on a desired target source and to segregate it from interfering background noise. Despite
substantial progress in the field of computational auditory scene analysis (CASA) over the
past decades, machine-based approaches that attempt to replicate human speech recognition
abilities are still far away from being as robust as humans against the detrimental influence
of competing sources and interfering noise.

Assuming a priori knowledge about the energy of the target source and all interfering
sources in individual time-frequency (T-F) units, the concept of the Ideal binary mask (IBM)
has been introduced, where the time-frequency representation of noisy speech is classified
into either target-dominated or interference-dominated T-F units (Wang, 2005). This
classification is commonly derived by comparing the signal-to-noise ratio (SNR) in individual
T-F units to a local criterion (LC). T-F units with an SNR above the predefined LC
threshold are considered reliable and subsequently labeled as 1. All remaining T-F units
are assumed to be dominated by noise and therefore labeled as 0. The resulting IBM can
be interpreted as the ideal segregation and many studies have shown its potential for a wide
range of applications, including speech intelligibility in noise (Brungart et al., 2006, Li and
Loizou, 2008, Kjems et al., 2009, Wang et al., 2009), automatic speech recognition (Cooke
et al., 2001) and speaker identification (May et al., 2012a,b). However, the IBM is not
available in practice and, therefore, its estimation in realistic scenarios is one of the key
challenges of CASA, e.g. in connection to applications in hearing aids and communication
devices.

Several previous studies have employed amplitude modulation spectrogram (AMS) features
with linearly-scaled modulation filters (Kollmeier and Koch, 1994, Tchorz and Kollmeier,
2003, Kim et al., 2009, Han and Wang, 2012, Wang et al., 2013, Healy et al., 2013, May
and Dau, 2013, 2014), which is not consistent with psychoacoustic data on modulation
detection and masking in humans (Bacon and Grantham, 1989, Houtgast, 1989, Dau
et al., 1997a,b, Ewert and Dau, 2000). As demonstrated by Ewert and Dau (2000), the
processing of envelope fluctuations can be described effectively by a second-order band-pass
filterbank with logarithmically-spaced center frequencies. In the present study, the ideal
segregation of noisy speech, as represented by the IBM, was estimated by only exploiting
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AMS features. In contrast to previous studies that employed linearly-scaled modulation
filters, an auditory-inspired modulation filterbank with logarithmically-scaled modulation
filters was used here, and its influence on speech segregation performance was investigated.
Moreover, the influence of spectro-temporal integration on speech segregation was analyzed
by combining information present in neighboring T-F units. Specifically, the size and the
shape of the spectro-temporal integration window in the classification stage were varied
and analyzed in terms of their impact on speech segregation. The speech segregation
system was trained with AMS features that were extracted for a limited set of low SNRs,
but evaluated over a wide range of SNRs to analyze the ability of the system to generalize
to unseen SNRs.

The speech segregation system

The estimation of the IBM was accomplished in two stages: First, the amplitude modulation
spectrogram features were used to train a two-class Bayesian classifier, which estimated
the a posteriori probability of speech and noise presence in individual T-F units. Second,
these probabilities were considered across a spectro-temporal window of adjacent time and
frequency units and the final mask estimation was obtained by comparing the probability
of speech with the probability of noise presence. Both stages are described in more detail
below.

Amplitude modulation spectrogram features

The noisy speech signal was sampled at a rate of 16 kHz and normalized according to its
long-term root mean square (RMS) value. Two different representations of the AMS features
were compared: a “linear” representation based on linearly-scaled modulation filters and a
“logarithmic” representation where the center frequencies of the modulation filters were
spaced logarithmically, inspired by findings from auditory modeling.

Linearly-scaled AMS features

The linear AMS feature representation was similar to that described in earlier stud-
ies (Tchorz and Kollmeier, 2003, Kim et al., 2009, Han and Wang, 2012, Wang et al., 2013,
Healy et al., 2013, May and Dau, 2013, May and Gerkmann, 2014, May and Dau, 2014).
The noisy input was segmented into overlapping frames of 4ms duration with a shift of
0.25ms. Each frame was Hamming windowed and zero-padded to a length of 128 samples
and a 128-point fast Fourier transform (FFT) was computed. The FFT magnitudes were
multiplied by 25 bandpass filters, in the following referred to as “frequency channels”, with
center frequencies equally spaced on the mel-frequency scale between 80Hz and 8000Hz.
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The envelope in each frequency channel was then extracted by full-wave rectification,
resulting in an auditory spectrogram-like representation.

Each frequency channel of the auditory spectrogram was further divided into overlapping
segments of 32ms duration with a shift of 16ms. Each segment was Hamming windowed
and zero-padded to a length of 256 samples and a 256-point FFT was applied to compute a
modulation spectrogram for each frequency channel. Finally, the modulation spectrogram
magnitudes were multiplied with 15 triangular-shaped modulation filters that were linearly-
spaced between 15.6Hz and 400Hz. Because the modulation spectrogram had a frequency
resolution of 15.6Hz, each triangular filter contained modulation information derived from
3 adjacent FFT bins.

Logarithmically-scaled AMS features

Each frequency channel of the auditory spectrogram was processed by a second-order
low-pass filter with a cutoff frequency of 4Hz and 8 second-order band-pass filters with
center frequencies spaced logarithmically between 8 and 1024Hz, altogether representing a
modulation filterbank. The band-pass filters were assumed to have a constant-Q factor
of 1 inspired by auditory modeling and speech intelligibility prediction studies (Ewert
and Dau, 2000, Jørgensen and Dau, 2011, Jørgensen et al., 2013). The output of each
modulation filter was integrated within segments of 32ms duration with a shift of 16ms
to produce the final set of 9 logarithmically-scaled AMS features for each frequency
channel.

Normalization

Machine-learning based segregation systems are typically trained with features that are
extracted for a specific acoustic scenario, e.g. for a particular set of SNRs that were
included in the training stage. The problem with these systems is that performance rapidly
deteriorates as soon as a mismatch occurs between the acoustic conditions used for training
and those used for testing. To alleviate the influence of the overall signal level on the
AMS feature distribution, a normalization strategy was employed in the present study with
the aim of improving the robustness of the system to mismatches between the SNRs in
the training and the testing conditions. More specifically, the temporal envelope of the
output of each frequency channel was normalized by its median prior to extracting the
AMS features. The subband envelope signal is distributed between zero and an upper
limit, leading to an asymmetric and skewed distribution. Therefore, a median-based
normalization was chosen here.
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Segregation stage

The segregation stage consisted of a Gaussian mixture model (GMM) classifier that is
trained for each individual frequency channels, representing the AMS feature distributions
of speech- and noise-dominant T-F units (Kim et al., 2009, May and Dau, 2013). Given
the trained GMM models for speech and noise, denoted by λ1 and λ0, as well as the AMS
feature vector X (t, f) for a given time frame t and frequency channel f , the a posteriori
probabilities of speech and noise presence were given by:

P (λ1,f |X (t, f)) =
P (λ1,f )P (X (t, f) |λ1,f )

P (X (t, f))
(4.1)

P (λ0,f |X (t, f)) =
P (λ0,f )P (X (t, f) |λ0,f )

P (X (t, f))
, (4.2)

where the two a priori probabilities P (λ0,f ) and P (λ1,f ) were determined by counting
the number of feature vectors during training. Subsequently, the IBM was estimated by
comparing the a posteriori probabilities of speech and noise presence for each individual
T-F unit:

M (t, f) =

{
1 if P (λ1,f |X (t, f)) > P (λ0,f |X (t, f))
0 otherwise.

(4.3)

Information integration across time and frequency

Instead of using the output of the Bayesian classifier directly to estimate the IBM according
to Eq. 4.3, the a posteriori probability of speech presence P (λ1,f |X (t, f)) was considered
as a new feature spanning across the spectro-temporal integration window W (t, f) and
representing the centered T-F unit

X̄ (t, f) := {P (λ1,v|X (u, v)) : (u, v) ∈ W (t, f)} , (4.4)

with the window function W (t, f) defining the amount of spectro-temporal integration
with respect to adjacent time and frequency units. Similar to Healy et al. (2013), this
new feature vector X̄ (t, f) was learned by a second classifier for speech-dominant and
noise-dominant T-F units. Depending on the size of the integration window W (t, f), the
dimensionality of this new feature vector could be quite large. Therefore, a support vector
machine (SVM) classifier was employed here, capable of dealing with high-dimensional
data and requiring only little amount of training data.
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Model evaluation

The segregation system was evaluated with 60 randomly selected sentences from the Danish
Hearing in Noise Test (D-HINT; Nielsen and Dau, 2011) that were different from those used
during the training stage. Each sentence was mixed with the seven different background
noises listed in Tab. 4.1 at −5, 0, 5, 10, 15 and 20 dB SNR.

In order to evaluate the speech segregation performance, the percentage of correctly
identified T-F units was computed by comparing the estimated binary mask with the
IBM. Specifically, HIT -FA was reported (HIT; percentage of correctly classified speech-
dominant T-F units) minus the false alarm rate (FA; percentage of erroneously identified
noise-dominant T-F units) because this metric has been shown to correlate with human
speech intelligibility (Kim et al., 2009).

Table 4.1: Types of background noises.
Noise type Description Duration
ICRA1 Stationary speech-shaped noise 120 s
ICRA7 Non-stationary six persons babble 1200 s
PSAM 8Hz Sinusoidal amplitude-modulated pink noise ∞ s
Traffic Cars, trams, trucks and trains passing by 360 s
Music Classical music 570 s
Destroyer Destroyer operations room noise 235 s
Factory Factory floor noise inside a car factory 235 s

Effect of spectro-temporal integration

Figure 4.4 shows the speech segregation performance obtained with the linear (“linAMS”;
open symbols) and the logarithmically-scaled AMS features (“logAMS”; filled symbols),
respectively, as a function of the SNR (panel a), and for the different types of background
noises (panel b). The logarithmically-scaled AMS features produced a considerably higher
classification accuracy than the linear AMS features, although only 9 rather than 15
modulation filters were exploited. This performance difference was consistent across a wide
range of SNRs and was about 10%. The spectro-temporal integration stage was based on a
causal plus-shaped integration window that spans 3 adjacent time frames and 9 frequency
channels. A performance increase compared to the results without integration for both
the linear and logarithmic AMS feature representations was obtained. This improvement
in terms of speech segregation performance was close to 13% and most prominent at low
SNRs. Moreover, the integration stage seems particularly beneficial for non-stationary
background noises, e.g. for the ICRA7 and the factory noise, as shown in panel b of
Fig. 4.4.
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(b)

(a)

Figure 4.4: Classification results of individual T-F units for various segregation systems as a
function of (a) the SNR averaged across all background noises and frequency channels, (b) the
background noise averaged across all SNRs and frequency channels.

Visualization of modulation-based speech segregation

An illustration of the modulation-based speech segregation is shown in Fig. 4.5. The IBM
is presented in panel (a) for speech mixed with factory noise at 0 dB SNR. It can be seen
that the distribution of speech-dominant T-F units in the IBM is quite compact. Panels
(b) and (c) present the estimated IBMs using the linear and the logarithmically-scaled
AMS features, respectively, with the benefit of spectro-temporal integration represented
in panels d and c, respectively. In addition to the estimated IBM patterns, the average
HIT-FA rates for each frequency channel are provided in the right part of each panel. When
the IBM was estimated on the basis of individual T-F units (panels b and c), following
Eq. 4.3, some speech-dominated T-F units, particularly at higher-frequency channels,
were erroneously classified as background noise. In addition, several noise-dominated T-F
units were classified as being speech-dominated. In general, the logarithmic AMS features
achieved a higher classification accuracy compared to the linear AMS features, especially
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at higher frequencies. The spectro-temporal integration stage in panels (d) and (c) reduced
theses outliers, and, more importantly, recovered many target-dominant T-F units at
higher-frequency channels. Still, the linear AMS features missed many speech-dominant
T-F units at higher frequency channels, which cannot be recovered by the spectro-temporal
integration stage.

(b)

(a)

(c)

(d) (e)

Figure 4.5: Ideal binary mask estimation and the frequency-dependent HIT-FA rates for a
utterance mixed with factory noise at 0 dB SNR. (a) IBM, (b) Estimated IBM using linear AMS
features, (c) Estimated IBM using logarithmic AMS features, (d) Estimated IBM using linear AMS
features and spectro-temporal integration and (e) Estimated IBM using logarithmic AMS features
and spectro-temporal integration.

4.1.3 Grouping based on onsets and offsets

According to Bregman (1990), common onsets and offsets across frequency are important
grouping cues that are utilized by the human auditory system to organize and integrate
sounds originating from the same source. Onsets can be detected by measuring the
frame-based increase in energy of the ratemap representation. This detection is performed
based on the logarithmically-scaled energy, as suggested by Klapuri (1999). Similarly to
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onsets, the strength of offsets can be estimated by measuring the frame-based decrease in
logarithmically-scaled energy.

The information about sudden intensity changes, as represented by onsets and offsets, can
be combined in order to organize and group the acoustic input according to individual
auditory events (Hu and Wang, 2007). Based on the respective onset and offset strength,
a binary decision about onset and offset activity is formed, where only the most salient
information is retained. In order to achieve this, temporal and across-frequency constraints
are imposed for both the onset and offset information. Motivated by the observation that
two sounds are perceived as separate auditory events when the difference in terms of their
onset time is in the range of 20 − 40ms (Turgeon et al., 2002), onsets or offsets are fused
if they appear within a pre-defined time context. If two onsets or offsets appear within this
time context, only the stronger one will be considered. This time context can be adjusted
separately for onsets and offsets, respectively. Moreover, the minimum across-frequency
context can be controlled. To allow for this selection, individual onsets and offsets which
are connected across multiple time-frequency units are extracted using Matlab’s image
labeling tool bwlabel. The binary onsets and offset map will only retain those onsets
and offsets which consists of at least a pre-defined minimum of connected time-frequency
units.
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Figure 4.6: Detected onsets and offsets indicated by the black and white vertical bars. The left
panels shows all onset and offset events, whereas the right panel applies temporal and across-
frequency constraints in order to retain the most salient onset and offset events.

To illustrate the benefit of selecting onset and offset information, a ratemap representation
is shown in Fig. 4.6, where all detected onsets and offsets (without applying any temporal
or across-frequency constraints) are indicated by black and white vertical bars (left panel).
It can be seen that the onset and offset information is quite noisy. When only retaining the
most salient onsets and offsets by applying temporal and across-frequency constraints (right
panel), the remaining onsets and offsets can be used as temporal markers, which clearly
mark the beginning and the end of individual auditory events.
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As suggested by Hu and Wang (2007), a multi-scale analysis using multiple time constant
should be considered in the future to further improve the robustness of onset and offset
detection.

4.1.4 Progress on Bioinspired Methods: Spike Coding

We investigated the possible application of spike coding methods for the pre-segmentation
task. Using spike coding methods, a sound event is decomposed into discrete acoustic
elements using time-shiftable kernel functions (Smith and Lewicki, 2005). Due to the
discrete nature of the decomposition, the acoustic elements are called spikes, and methods
for extracting spikes are known as spike coding methods. Each spike is a three-dimensional
vector consisting of time, frequency and amplitude.

Spikes lie on a measurable feature space, and we can indeed define discrete measures for
them. For example, one of the common assumptions is that the time, frequency and
amplitude lie in the interval between 0 and 1. Let x = (xa, xt, xf )

> and y = (ya, yt, yf )
>

denote two spikes, where xa, xt, and xf are the amplitude, time and frequency features of the
spike x. Then we can define the distance between these two spikes as

d(x,y) = wa(xa − ya)2 + wt(xt − yt)2 + wf (xf − yf )2,

where 0 ≤ wa, wt, wf ≤ 1 and wa + wt + wf = 1. With this definition, the distance
between two sound events s1 = {s1n | 1 ≤ n ≤ N} and s2 = {s2n | 1 ≤ n ≤ N} is given
by the normalized sum of the distances between the corresponding spikes, s1n and s2n,
as:

D(s1, s2) =
1

N

N∑
n=1

d(s1, µ(s1)),

where µ is a mapping function between the spikes of s1 and s2 = µ(s1). The mapping
function can be determined by the Hungarian algorithm (Munkres, 1957), which assigns
spikes from one sound to spikes from the other sound such that the total distance between
both sounds is minimized.

Spike coding methods have been applied to the identification of sound events as described
in Adiloglu et al. (2012), and a similar approach will be employed in future work. However,
it is not clear that such methods can be used for pre-segmentation, and therefore their
application is not considered further here.
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4.1.5 Nonlinear tracking

The sound source localization framework introduced in Deliverable 3.1 is currently limited
to static scenarios. Localization in dynamic environments, including moving sound sources
and the movement of the robot itself, requires extensions of the current framework by
nonlinear tracking methods. These methods rely on a state-space representation of the
underlying problem, specified as a dynamical system

xk = f(xk−1,uk−1) + vk, (4.5)
yk = h(xk) +wk, (4.6)

where xk and yk are the hidden state and measurement vectors, uk is the control input to
the robots actuators, vk and wk are vectors describing the process and measurement noise,
f( · ) and h( · ) are linear or nonlinear mapping functions and k is the discrete time index.
Equations (4.5) and (4.6) can be represented as a graphical model, shown in Fig. 4.7,
allowing an efficient integration into the probabilistic framework of the blackboard system.
The graphical model representation of the dynamical system reveals that it fulfills the
Markov property. Thus, the current state only depends on its predecessor and the previous
input. An estimation of the state trajectory can be achieved by performing inference on
the graphical model. The current state can be inferred by marginalizing over all previous
observations and inputs:

p(xk|y1, . . . ,yk,u0, . . . ,uk−1) =∫
p(xk−1|y1, . . . ,yk−1,u0, . . . ,uk−2)p(xk|xk−1) dxk−1

(4.7)

Popular techniques for solving the inference problem (4.7), like the well known Kalman
Filter (KF) introduced in Kalman (1960), are usually restricted to linear dynamical systems.
However, the task of tracking one or multiple sound sources implies a nonlinear relationship
between the state and the measurement vector as will be derived later. Hence, a more
advanced state estimation framework that handles nonlinearities is needed in this case.
The current work in the field of nonlinear tracking within Two!Ears focuses on solving
the state estimation task by integrating an Unscented Kalman Filter (UKF) approach,
proposed by Julier and Uhlmann (2004), into the estimation framework. The UKF is an
extension of the linear KF by introducing a statistical estimation technique into the filtering
operation, thus realizing a computationally tractable inference procedure for nonlinear
dynamical systems. This allows the approximation of a nonlinear function that is dependent
on a random variable, by performing a linear regression between a specified number of
samples drawn from the prior distribution of this random variable.
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Figure 4.7: Graphical model representation of the general dynamical system described by Eq. (4.5)
and Eq. (4.6). Shaded nodes denote observable variables and all other nodes represent hidden
random variables. All random variables shown here are continous.

Process model describing source dynamics. By assuming a single, dynamic sound
source in the horizontal plane, the hidden state vector can be represented in Cartesian
coordinates

xk =
[
xk ẋk yk ẏk

]T
,

where x and y represent the source position in the x -y-plane with respect to the head at
time-instance k. ẋk and ẏk denote the first-derivatives of the corresponding state variables
and can thus be characterized as direction-specific velocities.

A challenge in tracking the position of a sound source is, that the source motion dynamics,
which are modeled via the function f( · ), are generally unknown. In particular, possible
source motion can be covered by a wide range of dynamics, ranging from completely static
sources (e.g. music from a radio, fan noise) to highly dynamic motion (e.g. driving cars).
To account for this, the underlying state-space model has to provide a flexible way to
model a variety of source dynamics.

A model that has been proven to work well in the field of speaker tracking is the Langevin
model introduced in Vermaak and Blake (2001):


xk
ẋk
yk
ẏk


︸ ︷︷ ︸
xk

=


1 Te−βxT 0 0
0 e−βxT 0 0
0 0 1 Te−βyT

0 0 0 e−βyT


︸ ︷︷ ︸

A


xk−1
ẋk−1
yk−1
ẏk−1


︸ ︷︷ ︸

xk−1

+


T 0
1 0
0 T
0 1


︸ ︷︷ ︸

B

[
vxk
√
(1− e−2βxT

vyk
√

(1− e−2βyT

]
︸ ︷︷ ︸

vk

(4.8)
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Here, T is the time interval between two consecutive measurements, βx and βy are friction
coefficients and vxk and vyk are zero-mean, Gaussian distributed random variables with
variances σ2x and σ2y , respectively. The matrix A is denoted as the transition matrix and
B is the noise input matrix. The model parameters that were suggested in Vermaak and
Blake (2001) for the application of tracking human speakers are βx = βy = 10 s−1 and
σ2x = σ2y = 5ms−1. As the Two!Ears framework is not restricted to localization and
tracking of human speakers, the model parameters have to be adapted online, depending
on the source type that is currently detected. This task can be considered as a bridge
between source identification described later in section 5.2 and source localization, which
will be a primary focus of further investigations within WP3.

Integration of head movements. A major advantage of using a Cartesian-coordinate
based process model like (4.8) is, that the motion dynamics of a source can be modelled as
a linear dynamical system with Gaussian process noise. However, a remaining aspect that
still has to be considered is the dynamics of head movements. As the current look direction
is best described as an angular value ψk, a head-centered coordinate transform of the
state-space is necessary each time a head movement is performed.

By restricting head movements to the horizontal plane, the necessary coordinate transform
reduces to a rotation of the cartesian coordinate system

[
x′

y′

]
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
x
y

]
, (4.9)

where x′ and y′ are the cartesian coordinates after a counter-clockwise rotation of the original
coordinates x and y by the angle ψ. The transformation (4.9) can be directly applied to the
previously introduced state-space model (4.8), by projecting the source coordinates xk and
yk onto a new head-centered coordinate system. However, it is also necessary to perform
the coordinate transform for the source velocities. By taking into account the velocity of
the source with respect to the x -axis, Eq. (4.8) yields the relations

ẋk−1 =
1

e−βxT
ẋk (4.10)

and

ẋk−1 =
1

e−βxT
(xk − xk−1). (4.11)

Using the coordinate transform (4.9) and substituting (4.10) into (4.11) yields the fol-
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lowing relationship between the original and projected source velocity along the x -
axis:

ẋk = Te−βxT cos(ψk−1)ẋk−1 − Te−βxT sin(ψk−1)ẏk−1

The relationship describing the projected velocity along the y-axis can be derived in
a similar way. The resulting projections can be described by the transformation ma-
trix

T (ψk−1) =


cos(ψk−1) 0 − sin(ψk−1) 0

0 cos(ψk−1) 0 − sin(ψk−1)
sin(ψk−1) 0 cos(ψk−1) 0

0 sin(ψk−1) 0 cos(ψk−1)

 . (4.12)

When defining the look direction ψk−1 as the control input uk−1 to the dynamical system,
the head rotation can be included into the state-space representation of the source dynamics
via the transformation matrix (4.12). Figure 4.8 shows an example of how this coordinate
transform works in a dynamic scenario. Assuming a matrix notation as introduced in (4.8),
this yields the modified process model

xk = T (uk−1)Axk−1 +Bvk. (4.13)

Measurement models. As can be seen so far, a linear process model can be derived
for describing the motion of a source with respect to the head. However, the derivation
of a proper measurement model (4.6) requires a mapping of the state vector xk onto
ITDs! (ITDs!), ILDs! (ILDs!) and probably additional features. This relationship is
nonlinear in nature, as ITDs! and ILDs! generally correspond to azimuth angles, which
implies a nonlinear mapping from cartesian to polar coordinates

dk =
√
x2k + y2k

ϕk = atan2(yk, xk),

where dk is the distance between the source and the center of the head, ϕk is the azimuth an-
gle and atan2(yk, xk) is the arctangent function with two arguments.

The derivation of a measurement model involves a selection of auditory cues, that are

43



4 Pre-segmentation and tracking

(a) Previous timestep (b) Current timestep after head rotation

Figure 4.8: Illustration of the coordinate transform, performed between two consecutive timesteps
if a head rotation by an angle of ψ degrees is conducted and the source is moving. The vector
vk|k−1 corresponds to the movement trajectory of the source between time instants k − 1 and k.

related to the distance and the azimuth angle of the source. Whereas ITDs! and ILDs!
imply a natural correspondence to the latter, they have been shown to be independent
of the source distance, at least if far-field conditions are assumed as described in Shinn-
Cunningham (2000). Further investigations within the upcoming reporting period will
focus on deriving appropriate measurement models, which link auditory cues to angular
positions and distances. This includes the selection of relevant auditory cues besides
ITDs! and ILDs!, especially for the estimation of source distances. Previous work in this
direction has already been conducted by Shinn-Cunningham (2000), Lu and Cooke (2010,
2011) and Georganti et al. (2013). Additionally, the probabilistic localization framework
introduced in the previous reporting period and its extensions described in section 5.1
will be integrated into the nonlinear tracking framework. This effort should lead to the
derivation of an accurate measurement model, capable of modeling both spatial cues within
one integrated framework.
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4.2 Methods for visual processing

4.2.1 Simulation environment

As the elements of the Two!Ears system that are concerned with feedback will be
developed over a time span of almost two years, many of these elements are not immediately
available for constructing and testing of feedback procedures. This is particularly true
for methods that deal with more abstract and/or more complex functions, like active
exploration and multi-modal feedback methods. Both of these feedback paths will require
the Two!Ears system to be endowed with sophisticated visual processing methods, e.g.,
for visual object detection/recognition, audio-visual speaker identification, or vision-based
collision avoidance.

To be able to perform early feedback experiments, and test techniques for visual process-
ing, we set up a virtual test environment (VTE) which mimics the feedback-relevant
parts of the Two!Ears system and enables the visualization of simulated environ-
ments.

This allows project partners to test their own feedback-related ideas in the virtual envi-
ronment, take advantage of the visual data provided by the VTE and set up cooperation
with WP4’s feedback routines early. By that strategy, potential issues might be de-
tected and eliminated long before final system assembly. While experimenting with the
feedback loops in the virtual environment, environmental variables and labels will be
identified that are definitely needed for reliable feedback, thus allowing for algorithmic
streamlining.

A first VTE realized in the Two!Ears context is the Bochum Experimental Feed-
back Testbed (BEFT) (?), on which we report in the following. For completeness,
note that 4.2.2 and 4.2.3 are directly correlated to excerpts from Deliverable 4.1, part
D.

4.2.2 BEFT

BEFT integrates a virtual 3D visualization environment based on the OGRE 3D rendering
engine (OGRE, 2014), and hosts a mobile front end - currently a CAD model of the PR2
robot with a KEMAR dummy head mounted on a rotational axis. The testbed allows further
scene components to be read in directly from XML files. This way, simulated entities such
as people, walls, terrain, and so on, can easily be added to a scenario.

The entities convey physical parameters, such as distance and azimuth (w.r.t. the robot),
or percentage of occlusion. Based on these parameters, BEFT simulates category labeling
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for each entity: “hand-crafted” degradation functions (?) weaken a-priori knowledge of the
entities’ true categories in order to emulate uncertainty in category estimation caused by
sensor noise or algorithmic issues.

According to the estimated parameters and the inferred category labels, the virtual mobile
front end can be actuated (e.g., via active exploration mechanisms, see Deliverable 4.1, part
D) in order to update and enhance the parameter/label estimates and refine the robot’s
internal world model.

Note that BEFT was intended to operate on the cognitive (rather than signal) level,
allowing for very early feedback testing and multi-modal analysis, by skipping Two!Ears’s
signal processing and pre-segmentation stages that were “under construction” at that time.
However, BEFT’s 3D display capabilities and its abilities to handle robot control based on
the Robot Operating System (ROS, 2014) middleware are clearly limited. The first issue
might hamper simulation of visually challenging scenarios; the latter problem, however,
would cause major re-work of algorithms tested in BEFT in order to port these methods
to physical robot devices operating in real-world scenarios.

Figure 4.9: MORSE simulation of a KEMAR head and torso

As this is clearly unacceptable, the MORSE robotics simulator (MORSE, 2014) will inherit
from BEFT and become the standard VTE for visual simulation in Two!Ears. Note
that MORSE is based on the BLENDER 3D modeling/simulation software (Blender
Foundation, 2014), using Bullet (2014) to enable physically plausible behavior of the
simulated environment.

46



4.2 Methods for visual processing

As MORSE has the ability to operate different robotic middlewares, e.g., ROS, porting
issues can be minimized by enabling the Two!Ears framework to control/read out the
virtual robotic front-end (motors, cameras, microphones, etc.) using exactly the same
methods that will be employed to control/read out the physical device in later project
stages. Further, MORSE comes with multiple pre-defined industrial components (sensors,
actuators, controllers, and robotic platforms) which can be assembled into complete robots
using straightforward Python™ scripting. For a more detailed overview of MORSE and its
integration into the Two!Ears framework, Deliverable 4.1, part D, and Deliverable 5.1
are recommended.

4.2.3 Progress on visual processing

BEFT, combined with the MORSE simulator, will allow the study of feedback mechanisms
in virtual scenarios. Several visual functions need be integrated into the Two!Ears
architecture, as shown in Figure 3.1, in order to label objects detected in the physical world.
The objective here is to integrate state-of-the-art methods that will provide visual knowledge
to be fused with acoustic knowledge. Several steps are considered:

• For visual acquisition, the KEMAR head must be equipped with a visual sensor in
order to acquire both appearance-based and 3D data.

• From acquired data, a pre-segmentation step allows the detection of visual targets, as
regions of interest (ROI) in images. Such a ROI is characterised from some a priori
knowledge provided to the system; an index k is assigned to every detected target X.
Depending on the segmentation method, the Xk target could be characterised by
histograms Hk, or could be associated with a semantic label Sk.

• A visual target is then tracked in the image sequence, potentially involving panning
motions of the KEMAR head. As multiple targets could be detected and tracked in
the same sequence, the tracking function must preserve the target indices by applying
semantic, temporal and spatial consistency constraints.

• At every step, all visual knowledge available for targets is propagated in the global
architecture towards the interpretation and fusion layer. The semantic interpretation
could be made here, involving more complex methods than in the lower layer.

• Depending on the context, the fusion results, and on the audio-visual target charac-
teristics, an active strategy could be decided and specific orders could be sent to the
lower layer. For example, if the detection comes from audio data, the robot and/or
the vision modules could be controlled to confirm the presence of the target in a
predicted area.
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To date, the visual modules have been analysed and the first specifications have been
provided for some functions. Ultimately, the implementation will depend on the scenarios
selected for the final demonstrations.

Visual acquisition

Several sensors could be selected for the visual acquisition with the following require-
ments:

• It must provide both appearance-based and 3D data. Appearance is required for the
target detection and labelling process, while 3D geometrical data (typically position,
velocity, and bounding box) will give observations required for the fusion process in
order to update the target vector state.

• The accuracy of the 3D measurements will determine the accuracy of the target
localisation. This must be consistent with the accuracy assumed for target localisation
using the robotic platform on which the KEMAR head will be mounted, typically
10cm.

• For the 3D range, targets will have to be detected in a domestic environment, e.g.
5-7m maximum range.

• Finally, the sensor resolution and the sensor field of view depend on the demonstration
scenarios, e.g. on the size of the objects to be detected, labelled and located.

The ideal sensor configuration would be bio-inspired, combining panoramic vision (from
a fish-eye or an omnidirectional camera) and focalised vision (from a camera equipped
with a long focal length or zoom). However, such a hybrid visual system is not available
within the consortium, so the selected camera will be equipped with a fixed focal length
lens, providing a horizontal field of view of approximately 60◦.

Monocular vision, combined with structure-from-motion functions, could give 3D informa-
tion assigned to every detected target, typically its position and velocity with respect to
the KEMAR head. Previously, LAAS-CNRS have worked on visual SLAM (simultaneous
localization and mapping) and MOT (mobile object tracking), using a contrario reasoning
in order to detect a mobile target with respect to a camera embedded on a potentially
mobile robot. But using only one camera is not sufficient to completely determine the
position of a mobile target (Sola, 2007).

Passive stereovision will allow estimation of the full 3D position of objects more robustly
than with only one camera. In the Two!Ears project, we can assume that an object to
be detected will always be in the stereo view field, so that a dense stereovision algorithm
could be executed in order to first build a disparity map from rectified images, and then a
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3D image. LAAS has used a standard correlation-based stereovision algorithm for robot
navigation for more than 20 years; additionally, many dense stereovision methods are made
available on the MiddleBury web site (Scharstein and Zeliski, 2012).

Regarding the stereo rig configuration, it is known that the depth resolution decreases with
the baseline (the distance between the optical centres) and with the horizontal focal length.
With a stereo rig integrated on the KEMAR head, the baseline could be around 9cm. In
Figure 4.10 it is shown that using a large field of view (96◦) and a standard resolution
camera (1 mega pixel), a 3D point could be reconstructed under 4-5m (disparity lower
than 5 pixels). Some tradeoffs must be done between the maximum depth range, the view
field volume and the accuracy of the depth, knowing that depth measurements have an
error proportional to the square depth, and also inversely proportional to the baseline and
to the horizontal focal length.

Figure 4.10: Disparity function of the depth, for a short baseline stereo rig.

A stereo rig with a shorter baseline will acquire very noisy measurements beyond 4-5m
if it has a large field of view. Moreover, because it is a passive method (no random
light projected on the scene), the disparity could be estimated only on textured re-
gions.

If it is required to provide 3D measurements even on untextured scenes, active vision
technologies such as RGB-D sensors (e.g. Kinect1 or a PrimeSense sensor) or 3D time-of-
flight (TOF) cameras (e.g. Kinect2, Swiss Ranger or PMDTec sensor) need to be used.
Nevertheless, for practical reasons related to the integration of the 3D sensor on the KEMAR
head, passive stereovision is preferred to RGB-D technology.
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4 Pre-segmentation and tracking

Pre-segmentation: target detection

This step must extract Regions of Interest from the current image(s), i.e. regions in which
the probability to detect a target is high. The detection could be confirmed (true positive)
or discarded (false positive) using subsequent images in order to update the detection
probability. In Two!Ears, sensors are embedded on a mobile robot, so methods based on
static background modelling are not pertinent.

A target must be segmented, i.e. the corresponding region must be recognised as a part or
a view point of an object. The detection could be based on:

• The clustering of local cues, according to some criteria, e.g. consistent optical flow
or apparent motions, with respect to the background. Many visual percepts could be
used, e.g. interest points SIFT or SURF as described in Appendix B.

• Deterministic or stochastic reasoning using a priori information such as the target
colour (e.g. chromatic segmentation based on the learnt skin colour in order to detect
the hands or the head of a person) or the target shape (e.g. elliptic).

• Region classification based on an a priori learning step in order to configure the
classifier (neural net, SVN, AdaBoost, decision trees) using histograms (colour, HOG)
or simpler features computed from the Haar basis functions. Histograms of oriented
gradients (HOG) are described in more detail in Appendix B.

Target detection from the clustering of local cues has been studied at LAAS-CNRS
(Almanza-Ojeda et al., 2011), using a contrario reasoning (Veit et al., 2007) to group
interest points according to their apparent motions. Gamez and Devy (2012) made this
method more robust with the integration of a labelling process of the bounding box defined
from the points cluster, using the standard OpenCV classification method based on a cascade
of classifiers (AdaBoost) and global descriptors (Haar wavelets).

These global region descriptors are more adapted to multi-class detection, while local
cues fit better with the detection of a given object. Nevertheless, considering local cues
(i.e. interest points), firstly points are matched from their descriptors, typically from a
nearest neighbour search in the descriptor space. Then different approaches could be
executed:

• Methods based on bags-of-words (BoW) allow detection of an object in an image
region, using the histogram of the “codeword” occurrences in this region, without
taking into account the positions of the matched points in the region. These codewords
are defined during a codebook generation step during learning.

• Spatial constraints between points detected on an object can be learnt, and then
exploited during the interpretation step by several methods (maximal cliques, ge-
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ometric hashing, generalised Hough Transform) in order to find sets of consistent
matches.

• Generative models allow a trade-off between these two approaches, i.e. spatial
relationships between codewords are added in the object model and taken into
account in the classifier.

The target localisation (position and attitude) can only be computed from matching
between local features detected from images and learnt on models. So detection methods
based on global region descriptors (i.e. histograms: HOG, colour, BoW) give only the
position and the size of an image region that corresponds to an object (e.g., the face of a
person, a human body, or a rigid object). Using stereo, a rough object position could be
computed.

We set up a first proof-of-concept application to demonstrate capabilities on visual detec-
tion in the MORSE environment. An emulated KEMAR-like head/torso combination is
embedded in a standard MORSE scenario (Figure 4.11). The artificial head is allowed to
rotate freely and has two virtual cameras attached. Videos of human speakers are projected
into the virtual environment using basic video texturing methods. Note that the videos are
currently chosen from the GRID audio-visual corpus (Cooke et al., 2006). One of the robot’s
cameras is connected to an external ROS node that was created using GenoM3 (Mallet
and Herrb, 2011). This external node is enabled to perform fast image processing based on
the OpenCV library (WillowGarage, 2014): images from the virtual camera are streamed
into the node and are then analysed with OpenCV’s face detection engine. Figure 4.11
shows the results of face detection in MORSE: found faces are marked by green rectangles
and the corresponding face regions could be propagated to higher system layers, e.g., to
perform audio-visual speaker identification as described below.

(a) (b)

Figure 4.11: Face detection in the MORSE simulator
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Note that there are still some issues to be solved with respect to synchronisation between
the audio and the video data stream, see D4.1 for a more detailed discussion. Also, the
above toy application is not yet fully integrated into Two!Ears; to eventually become
consistent with the framework’s architecture, the face detection mechanism will have to be
encapsulated in a knowledge source according to ideas found in D4.1.

Target tracking

This function updates the target state from successive observations in an image sequence.
It requires two main steps:

• The tracking itself identifies the target in image t given its state or where it was
observed at time t− 1.

• After obtaining this new measurement, the target state can be updated using an
estimation framework or an optimisation one.

The two steps are interleaved, typically through the use of a joint probabilistic approach,
both to predict the target observation at time t from its state at time t− 1 and to update
the target state from this observation. In the classical approach, the prediction step
looks for the target only in an image region determined from the known target state
in the operational space, or from the previous target observation in the image space.
More efficient methods called “tracking-by-detection” exploit the detection function and a
matching operation in order to associate detected targets at time t with tracks or tracklets
built from the previous images.

These tracking and update steps become more complex when the camera itself is mobile,
where it is required to estimate the sensor motion, using the same probabilistic approach.
When the environment is not known, this problematic is designated by the SLAMMOT
acronym, from SLAM (Simultaneous Localization and Mapping) and MOT (Mobile Object
Tracking). LAAS-CNRS has studied several methods for SLAMMOT based on extended
Kalman filtering (Sola, 2007, Gamez and Devy, 2012) or particle filtering (Zuriarrain et al.,
2013) which could be applied within Two!Ears.

Interpretation: target labelling

As shown in the previous sections, many detection methods in vision are model-based,
i.e. based on classification in order to label an image region as an object from a given
class. In such a case, target labelling is solved at the detection level, assigning a class
label to the detected object. Hence, the detection function also performs generic object
recognition.
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A unified probabilistic framework was proposed by Gate et al. (2009) to cope with SLAM,
detection, tracking and labelling, managing uncertainties both on the target states (variances
on the estimated positions) and on the target labels (confidences). Approaches based
on part-based models, first exploit matching between local features extracted from the
current image with the ones memorised for a given object model, and then, analysis of the
spatial relationships between the matched elements, using an exhaustive graph-based or
relaxation method. In this case, the interpretation function must be done in parallel with
the detection and tracking functions.

The more popular recognition methods are Robotearth (Di Marco et al., 2012) and
LINEMOD (Hinterstoisser et al., 2010). Several methods (LINEMOD, TOD) have al-
ready been integrated in the ROS framework, by the Object Recognition Kitchen project
initiated by Willow Garage (ORK, 2013). The LINEMOD package is currently be-
ing studied at LAAS-CNRS in order to be integrated later in the Two!Ears frame-
work.

Considering these visual knowledge sources, an adaptive approach for the fusion of audio
and visual modalities could be a loose coupling strategy, i.e. confidence levels about the
target labels could provide confirmation of the interpretation result.

4.2.4 Outlook: work on audio-visual speaker identification

In the following reporting period, work on audiovisual integration will play an important
part. One exemplary application is audiovisual speaker identification, which should
dynamically integrate both information sources, audio and video stream, according to their
respective reliability and information content.

For this purpose, we plan to use state-of-the art acoustic speaker identification and
visual speaker identification, together with mechanisms for dynamic stream weighting,
e.g. as described in (Abdelaziz and Kolossa, 2014). This method, or other related
approaches, dynamically estimates the reliability and information content of both the audio
and the video stream at each frame, and from this reliability, determines the optimum
weight that the streams should be given when making the decision about the speaker
identity.

Audiovisual speaker identification can thus become robust to variations in the environment,
focusing only on the audio stream in very poor lighting conditions with good audio quality,
and vice versa.
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This section describes progress on the second layer of the blackboard, which concerns
source models and predictors for assigning attributes to sound events. We present a system
for sound localisation that is robust to reverberation and uses human-like head movements
to resolve front-back confusions. Machine learning techniques have been applied to identify
different source types (e.g., ‘fire’, ‘baby crying’), using both discriminative classifiers
and probabilistic models. Finally, an i-vector based approach has been developed for
determining the identify of different speakers within the binaural setting of the Two!Ears
project.

5.1 Sound localisation

Human sound localisation performance is very robust, even in the presence of multiple
competing sounds and room reverberation (Hawley et al., 1999). The two main cues that are
used by the auditory system to determine the azimuth of a sound source are interaural time
differences (ITDs) and interaural level differences (ILDs) (Blauert, 1997). However, these
binaural cues are not sufficient to uniquely determine the location of a sound (Wightman
and Kistler, 1999). In particular, a given ITD value actually corresponds to a number of
possible locations that lie on the so-called cone of confusion. Hence, if listeners were only
to use these binaural cues, then front-back confusions would frequently occur in which a
source located in the front hemifield was mistaken for one located in the rear hemifield
(or vice versa). However, human listeners rarely make front-back confusions because they
often use information gleaned from head movements to resolve ambiguities (Wallach, 1940,
Wightman and Kistler, 1999, McAnally and Martin, 2014).

The long-term aim of this study is to incorporate human-like binaural sound localisation
in a mobile robot with an anthropomorphic dummy head. In particular, the use of head
movements is investigated in a machine hearing system, which allows the prospect of human-
like sound localisation performance in challenging acoustic conditions.

55



5 Formation of auditory objects

5.1.1 System

Machine hearing systems typically localise sounds by estimating the ITD and ILD in a
number of frequency bands, and then mapping these values to an azimuth estimate. In
order to increase the robustness of computational approaches in adverse acoustic conditions,
a multi-conditional training (MCT) of binaural cues can be performed, in which the
uncertainty of ITDs and ILDs in response to multiple sound sources and reverberation is
modelled (May et al., 2011, 2013, Woodruff and Wang, 2012).

The binaural signals were sampled at a rate of 16 kHz and subsequently analysed by a
bank of 32 Gammatone filters with centre frequencies equally spaced on the equivalent
rectangular bandwidth (ERB) scale between 80 and 5000Hz. The envelope in each frequency
channel was extracted by half-wave rectification. Afterwards, ITDs (based on cross-
correlation analysis) and ILDs were estimated independently for each frequency channel
using overlapping frames of 20ms duration with a shift of 10ms.

Sound source localisation was performed by a Gaussian mixture model (GMM) classifier
that was trained to capture the azimuth- and frequency-dependent distribution of the
binaural feature space (May et al., 2011, 2013). Given a set of K sound source directions
{ϕ1, . . . , ϕK}, that are modelled by frequency-dependent GMMs {λf,ϕ1 , . . . , λf,ϕK

}, a 3D
spatial likelihood map can be computed for the kth sound source direction being active at
time frame t and frequency channel f

L(t, f, k) = p (~xt,f |λf,ϕk
) . (5.1)

The normalised posterior for each frame t was computed by integrating the spatial likelihood
map

P(k) = 1

T

t+T−1∑
t

∏
f L(t, f, k)∑

k

∏
f L(t, f, k)

(5.2)

where T is the number of frames in each signal chunk. The most prominent peaks in the pos-
terior distribution P were assumed to correspond to active source positions.

5.1.2 Multi-conditional training

The purpose of MCT is to simulate the uncertainties of binaural cues in response to
complex acoustic scenes. This can be achieved by either simulating reverberant binaural
room impulse responses (BRIRs) or by combining head-related impulse responses (HRIRs)
with diffuse noise. In this study, binaural mixtures were created for the training stage
by mixing a target source at a specified azimuth with diffuse noise, which consisted of 72
uncorrelated, white Gaussian noise sources that were placed across the full azimuth range
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(360 ◦) in steps of 5 ◦.

The localisation model was trained with a set of 20 binaural mixtures for each of the 72
azimuth directions. For a given mixture, the target source was corrupted with diffuse
noise at three different signal-to-noise ratios (SNRs) (20, 10 and 0 dB SNR), and the
corresponding binaural feature space consisting of ITDs and ILDs was extracted. An
energy-based voice activity detector (VAD) was used to monitor the activity of the target
source. A frame was considered to be silent and excluded from training if the energy level
of the target source dropped by more than 40 dB below the global maximum. The resulting
binaural feature space was modelled by a GMM classifier with 16 Gaussian components and
diagonal covariance matrices for each azimuth and each subband.

5.1.3 Head movements

Previous computational approaches have typically been limited to locating sound sources in
the frontal hemifield. Hence, although MCT has been shown to provide robust localisation
performance, the learned distribution of binaural cues for sound sources positioned in the
front and rear hemifields will be quite similar. In order to reduce the number of front-back
confusions, the localisation model is equipped with a hypothesis-driven feedback stage
which can trigger a head movement in cases where the azimuth cannot be unambiguously
estimated. The first half of the signal chunk (i.e., frames in the range t = [1, T/2]) is used
to derive an initial posterior distribution of the sound source azimuth. If the number of local
peaks in the posterior distribution above a pre-defined threshold θ is larger than the number
of required source positions, the azimuth information is assumed to be ambiguous which
triggers a head movement. The second half of the signal chunk is re-computed with the new
head orientation, and a second posterior distribution is obtained.

azimuth re 20º10 130

true source azimuth
phantom

15030
0

1

P(k)
θ

0

1

P(k)

azimuth re 0º

true source azimuth phantoms

170

Figure 5.1: Head movement strategy. Top: Two candidate azimuths are identified above the
threshold θ. Bottom: After head rotation by 20 ◦, only the azimuth candidate at 10 ◦agrees with
the azimuth-shifted candidate from the first signal block (dotted line).

Assuming that sources are stationary over the duration of the signal chunk, the initial
source azimuth distribution before the head movement can be used to predict the azimuth
distribution after the head movement. This is done by circular shifting the azimuth indices
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of the initial azimuth distribution by the amount of the rotation angle. If a peak in the
initial posterior distribution corresponds to a true source position, then it should have
moved towards the opposite direction of the head rotation and will appear in the second
posterior distribution obtained for the second half of the signal chunk. On the other hand,
if a peak is due to a phantom source, it will not occur at the expected position in the
second posterior distribution. By exploiting this relationship, as illustrated in Figure 5.1,
potential phantom source peaks are eliminated from both posterior distributions. Finally,
the average of both posterior distributions is taken, producing a final posterior distribution
for the signal chunk.

Head rotation strategies

Literature shows that there is a limit to how much listeners move their heads when localising
sound sources and performance varies depending on head movement strategies (Perrett and
Noble, 1997, Kim et al., 2013). We investigated two strategies: (1) rotate head towards the
location of the most likely (ML) source with a fixed rotation angle; (2) random rotation
within limits. The ML source location is decided based on the initial azimuth posterior
distribution before head movement.

Multi-step head rotation

Head rotation can either be completed with one step, or with multiple small steps. If an
N -step strategy is used, then the signal is divided into N + 1 blocks in time and the first
block is used to choose the overall head rotation angle φ ◦. At each step, a head rotation of
a 1/N th of φ ◦ is used. This is illustrated in Figure 5.2. Such a rotate-stop-listen strategy
can be more practical for a robotic platform, as head rotation may produce self-noise which
makes the audio collected duration head rotation unusable.

5.1.4 Evaluation

Binaural simulation

We evaluated sound localisation in virtual listening environments by spatialising monaural
sounds with head related impulse responses (HRIRs) for anechoic conditions or binaural
room impulse responses (BRIRs) for reverberant conditions. Two listening configurations
were employed. In Figure 5.3a, head rotations were simulated by using corresponding
HRIRs or BRIRs for source azimuths relative to the new head orientation. Two sets of
BRIRs were used to investigate the influence of mismatched binaural recording conditions:
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Figure 5.2: Illustration of head rotation with small steps. The overall rotation angle (45 ◦) is
completed with 3 steps. The dotted thick line idealises human continues head rotation. Top:
azimuth posterior distribution computed for each block regarding a different head orientation. The
true source azimuth (solid peak) at 60 ◦ moves towards the opposite direction of head rotation
while the phantom (dotted peak) moves with the head.

i) an anechoic HRIR catalog based on the Knowles Electronic Manikin for Acoustic Research
(KEMAR) dummy head (Wierstorf et al., 2011); ii) the Surrey database (Hummersone
et al., 2010). The anechoic KEMAR HRIRs were also used to train the localisation models.
The Surrey database was captured using a head and torso simulator (HATS) from Cortex
Instruments, and includes an anechoic condition as well as four room conditions with
various amount of reverberation.

In Figure 5.3b, BRIRs measured for different head orientations ranging from -90 ◦ to 90 ◦

were used to simulate more realistic head rotations 1. The BRIRs were measured for two
rooms. The smaller spirit room has an estimated reverberation time T60 ∼ 0.5 s and the big-
ger auditorium 3 has an estimated reverberation time of T60 ∼ 0.7 s. Three source positions
provided by each BRIR set were tested, as shown in Figure 5.3b.

1 The BRIRs are freely available at https://gitlab.tubit.tu-berlin.de/twoears/data/tree/master/
impulse_responses/qu_kemar_rooms
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(b) Virtual listener configuration 2

Figure 5.3: Schematic diagrams of two virtual listener configurations. Left: BRIRs measured
with a fixed head orientation. Filled circles indicate azimuths used for testing. Black circles
indicate source azimuths in a typical three-talker mixture (in this example, at −50 ◦, −30 ◦ and
15 ◦). All azimuths were used for training. During testing, head movements were limited to the
range [−30 ◦, 30 ◦]. Right: BRIRs measured for different head orientations ranging from -90 ◦ to
90 ◦. Circles indicate azimuths and distances of sources used for testing.

Benefit of combining MCT and head movement

We used the virtual listener configuration 1 (Figure 5.3a) to investigate combined benefit
of MCT and head movement. All the localisation models were tested using a set of 20
one-talker, two-talker, and three-talker acoustic mixtures from the TIMIT corpus (Garofolo
et al., 1993). The testing source azimuth was varied in 5 ◦ steps within the range of
[−60 ◦, 60 ◦], as shown in Figure 5.3a. Source locations were limited to this range of
azimuths because the Surrey BRIR database only includes azimuths in the frontal hemifield.
However, the system was not provided with information that the azimuth of the source lay
within this range, and was free to report the azimuth within the full range of [−180 ◦, 180 ◦].
Hence, front-back confusions could occur if the system incorrectly reported that a source
originated from the rear hemifield.

Table 5.1 presents localisation accuracy of various systems. The MCT approach improves
performance substantially over the clean training system in multi-talker scenarios and in
the presence of room reverberation. Despite being trained with white Gaussian noise, the
model generalised to reverberant conditions recorded. This confirms that MCT can account
for the distortions of ITDs and ILDs caused by real reverberation.

The head movement strategy improved the performance for all localisation systems. This
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Table 5.1: Gross accuracy in % for various sets of BRIRs when localising one, two and three
competing speakers. HR – system with head rotation.

KEMAR Surrey Database
Anechoic Anechoic Room C Room D

# competing speakers
1 2 3 1 2 3 1 2 3 1 2 3

Clean 91.3 52.2 28.4 65.9 33.9 19.4 26.7 13.0 8.0 13.0 7.6 5.7
Clean+HR 99.2 59.3 32.4 69.2 38.8 22.6 64.9 19.7 10.5 64.1 18.9 10.0
MCT 100 95.5 86.3 100 92.2 82.0 99.7 87.7 76.6 90.6 76.3 68.2
MCT+HR 100 96.4 87.7 100 94.8 84.9 99.8 92.5 82.1 97.5 86.3 74.3

benefit was particularly pronounced for the single-talker mixtures in the presence of strong
reverberation (room C and D), where confusions are likely to occur due to the impact of
reflections. Although the model based on clean ITDs and ILDs did not generalise well to
the HATS artificial head, the head rotation strategy helped to improve performance in
room C and D by more than 40% for the single-talker scenario. Similarly, head movements
were beneficial for the best MCT-based localisation model, for which performance increased
from 90.6% to 97.5% for the most reverberant single-talker scenario.

Effect of head movement strategies

We used the virtual listener configuration 2 (Figure 5.3b) to investigate the effect of different
head movement strategies. A set of 100 one-talker, two-talker, and three-talker mixtures
was used. Each talker was simulated by randomly selecting a sentence from the TIMIT
corpus, excluding the ones used for training. Binaural mixtures of multiple talkers were
created by convolving each talker signal with the BRIRs separately before adding them
together in each of the two binaural channels. Both rooms contain 3 source positions. For
the one-talker and two-talker mixtures, the azimuth directions were randomly selected for
a given mixture.

The localisation performance was evaluated by calculating the RMS errors in degrees
for each sentence, averaged across all source positions for each room. The MCT-based
localisation system described in Section 5.1.2 was selected as a baseline. The proposed
localisation system employed the same statistical front-end but adopted various head
rotation strategies as described in Section 5.1.3.

Figure 5.4 compares the results produced by the three systems. All systems exploiting
head rotation improved the localisation accuracy over the ‘No Rotation’ baseline in both
rooms. Rotating towards the ML source position produced better performance than random
rotation. Localisation with access to longer signals (2-s over 0.5-s) did not have a strong
effect for the baseline. However, both head rotation systems benefitted greatly from having
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longer signals for localisation. This is consistent with findings in (Perrett and Noble, 1997)
where longer signal duration has a large benefit on listener’s localisation performance in
head rotation conditions, but little effect in motionless conditions.
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Figure 5.4: RMS errors in degrees of three localisation systems that exploit either no rotation, a
random rotation or a rotation towards the ML source position by 60 ◦. Results are shown for two
different signal durations (0.5-s and 2-s).

Table 5.2 shows the localisation performance of systems employing head rotation with
multiple steps. This experiment investigated the trade-off between the number of steps of
head rotation that is employed and the time that the system has to integrate binaural cues
in between each head movement. The signal length was fixed at 2-s. In room spirit, only
the 12-step head rotation system provides a benefit. This could be due to the fact that
‘ML-60 ◦’ was the best performing strategy for room spirit with a single head movement,
and the localisation performance is already good. The 12-step head rotation system also
produced the best performance in room auditorium 3.

Table 5.2: RMS errors (◦) of systems that use a strategy in which the head is rotated towards
the ML source position in multiple steps. The overall rotation angle for all conditions was fixed at
60 ◦. The length of all stimuli was 2-s.

Rotation Angle Block spirit auditorium 3
strategy per step (ms) 1-spkr 2-spkr 3-spkr 1-spkr 2-spkr 3-spkr
No rotation 0 ◦ 2000 59◦ 89◦ 91◦ 62◦ 63◦ 62◦

1-step 60 ◦ 1000 1◦ 14◦ 24◦ 4◦ 21◦ 46◦

2-step 30 ◦ 667 1◦ 25◦ 41◦ 4◦ 34◦ 39◦

3-step 20 ◦ 500 2◦ 21◦ 29◦ 4◦ 20◦ 36◦

6-step 10 ◦ 286 2◦ 17◦ 27◦ 4◦ 21◦ 31◦

12-step 5 ◦ 154 2◦ 6◦ 18◦ 4◦ 13◦ 31◦
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5.2 Source Type

Human listeners build auditory objects from perceived sound streams based on their internal
models, incorporating gestalt principles like harmonicity, common onset, or common
modulation (Bregman, 1990). In Section 5.1, one important attribute of auditory objects,
source location, is discussed. Another important attribute of auditory objects is source
type. Source types usually refer to the physical cause of sounds, such as ‘baby crying’ or
‘woman speaking’. This section describes aspects and approaches of building models for
determining the auditory object type in the Two!Ears framework.

5.2.1 Source type classification

To allow source type classification in the Two!Ears system, we train models for each
source type. Training is currently carried out in an offline fashion (extension to online-
trainable models is planned for the future). However, once trained, the models can be used
in an online fashion in the IdentityKS within the blackboard system (see Section 3.3.5).
Figure 5.5 shows a diagram of the source type classification system.

AFE

RobotInterface

Blackboard 

BlackboardSystem

Audio Scene

IdentityKS
type model

{identityHypotheses} 

...

...

Figure 5.5: Two!Ears source type classification system. This diagram shows that the continuous
stream gets cut into blocks for type identification.

The online nature of the classification system allows for two different modes of classifica-
tion:

Block-based classification In the block-based mode, audio data are packed in blocks of a
certain length before being evaluated by the models, which should usually be trained
using the same block size. This is the working mode for statistical models that do
not explicitly model temporal characteristics of a sound type.
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Continuous classification In this mode, continuous data are streamed to the model. How-
ever, because of the aforementioned need for information of a longer time span, these
model need to then have some form of a memory to store context.

At the moment, we employ models of the first mode as they are easier to train. However,
models including time and context through their architecture like hidden Markov models
or LSTM (Hochreiter and Schmidhuber, 1997) may produce better results (Graves et al.,
2013) and are more plausible from a human perspective. Therefore we plan to investigate
such models in the future.

5.2.2 Features

We select a set of features (extracted using the auditory front-end in the Two!Ears system,
described in Deliverable 2.2) that may contain information about the auditory object type.
The feature set is likely to be ‘over-complete’ and contain redundant information. However,
it serves as the basis for later stages of feature selection:

• Frequency domain low-level statistics, such as spectral centroid, flatness

• Ratemap magnitudes (variable number of frequency channels, for instance 16 or
32). Ratemaps are biologically inspired spectrogram-like maps supposed to represent
auditory nerve firing rate

• Amplitude modulation maps

• Onset strengths

• Gabor features

These features are calculated using frames with a length of 20 ms and a shift of 10 ms. We
then apply the following operations to these features:

• Deltas of the features over time, corresponding to the first (discrete) derivative.

• For blocks of particular length (for instance, 500 ms), compute L-statistics2 (L-mean,
L-scale, L-skewness, L-kurtosis) over time.

Since Two!Ears is using binaural auditory processing, all these features are available for
the left and right ear respectively. At the moment, we simply average both channels, since

2 L-statistics are given by L-moments, a sequence of statistics used to summarise the shape of a probability
distribution (Hosking, 1990). L-statistics are shown to be more robust than conventional statistics, in
particular with respect to the higher moments and when a small amount of data is available (David
and Nagaraja, 2003, Ch. 9).
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binaural information is not deemed important for the task of type classification. However,
in the future we might change this in the process of integrating sound classification with
localisation – it could, for example, be helpful to assign a higher weight to the ear closer to
the source during classification, or simply use the ‘better’ ear.

In summary, a combination of low-level features, ratemap magnitudes, amplitude modula-
tion maps, onset strengths and Gabor features, their deltas and block-statistics comprise
our feature list.

Feature selection

We have defined a set of features that may contain redundant information. Thus, a subset
of features is selected in order to improve the models (for example by reducing overfitting or
increasing class separability), to shorten training time and to lower computational demands
in the online usage of the models.

Feature selection methods are categorised into three main groups: wrapper methods, filter
methods and embedded methods (Guyon and Elisseeff, 2003). Currently we have only
considered embedded methods. Embedded methods perform feature selection as a part
of the model learning. Specifically, we will work with the Lasso (least absolute shrinkage
and selection operator) method, a regularised version of least squares with a L1-norm
constraint. Further in Section 5.2.7, we study the application of mixture of factor analysers
as an embedded approach towards feature selection.

5.2.3 Source type model training

To facilitate training of new models with different feature sets and different model techniques,
we have implemented a highly flexible training pipeline tailored to the needs of offline
training for source type classification. This pipeline among others has the following
features:

Multi-conditional auditory scene simulation. Ear signals are produced using the WP1 au-
ditory scene simulation tool (see Deliverable 6.1.1) from audio files. This can be
done under various conditions (for instance with or without reverb, with or without
interfering sources). An arbitrary number of such conditions can be specified and
will be simulated to produce multi-conditional training data. The motivation to do
so instead of training on ‘clean’ data is to include invariance to different conditions
into the model by using data that enforces this while learning already, instead of
artificially engineering the invariance after model training.

Auditory front-end (AFE). From the ear signals, the features are produced by the AFE in
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exactly the same manner as in the blackboard system (refer Section 3.3.2). This is to
ensure that training and application of the models is done under the same conditions.

Intermediate results. All products from intermediate stages, such as the ear signals or
features produced by the AFE, are saved together with their configurations, since
these stages can be very time-consuming. They are saved in such a way that they
can be recombined whenever parts of a configuration have already been computed
before.

Interface for feature creators. The whole pipeline is constructed in an object-oriented way,
and with flexibility in mind. In particular, it is easily possible to create new feature
sets that can be plugged into the pipeline by just implementing a class that inherits
from a feature creator superclass.

Interface for model trainers. The same as with the feature creators, there are interfaces for
model trainers. Any class inheriting from them can implement its own technique (like
GMM or SVM), and can be plugged into the pipeline without modification. Wrapper
trainer classes for conducting cross validation e.g. for hyper-parameter search are
provided.

Plug and play. Models created by the training pipeline implement a model interface, and
can be plugged directly into the IdentityKS to be used in the blackboard system
(see Section 3.3.5).

5.2.4 Discriminative modelling using support vector machines

Support vector machines (SVM) are one of the most widely used supervised learning models
for classification because of its solid performance and ability to efficiently model non-linear
data through different kernels (Schölkopf and Smola, 2002). We use it as a well-proven
baseline model to compare with more advanced techniques. We employ the excellent, very
mature and broadly used toolbox, LIBSVM (Chang and Lin, 2011).

A support vector machine (SVM) is a binary classifier in nature, discriminating between
two classes. Since we want to build models for each source type that decide whether or not
this respective type is present in the current data block, we split the training data into two
parts for each model: the pool of positive instances where the event is present, and the
pool of negative instances where the respective event is not present. This would result in
our pool of negative examples being much larger than the pool of positive examples. To
be able to effectively train the model, it is necessary to set the importance of the positive
examples to a higher value3, which is possible through class-specific C-values with the

3 We set this to the ratio of the number of negative to positive examples.
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SVM.

In the process of training an SVM model, hyper-parameter optimisation is usually done
by a grid search over the parameter space, evaluated with cross validation. The choice
of performance measure for this optimization is therefore of substantial importance, as it
influences the model. We choose a variant of the balanced accuracy that prefers to have
equally many false positives and negatives over having few mistakes of one category and
many of the other:

BAC2 = 1−

√(
(1− sensitivity)2 + (1− specificity)2

2

)
(5.3)

The trained model implements a decision boundary in the feature space: instances on
either side then get labeled +1 or −1 by the model, corresponding to ‘source type present
in the block’ or ‘source type not present in the block’. However, for further processing and
reasoning in higher stages of the Two!Ears system, it would be favourable to provide
a score instead of a binary decision. Hence we train, on top of the native SVM model, a
model that maps the distance of the instance to the decision boundary to a probability;
this functionality is provided by LIBSVM. The final output of the model applied to a
data instance is the probability that the source type is present in the respective data
block.

Test on NIGENS4 We trained SVM models using training data compiled from our
general sound events database for the following source types: ‘baby crying’, ‘female human
speaking’, ‘fire burning’, and ‘piano playing’. Training and testing data were ‘clean’,
without interfering sources or noise, in an anechoic environment. Apart from sound events
of the four mentioned classes, examples from six other classes and a ‘general’ class were
used. 631 respectively 205 files were used to create training and testing data (stratified, i.e.
the same percentage from each class). Two different feature sets were used: a) 16-channel
ratemaps plus deltas, mean and standard deviation over time for blocks of 500 ms, resulting
in 64-dimensional feature vectors, and b) the first two L-moments applied to a combination
of 16-channel ratemaps (without deltas), low-level spectral features, amplitude modulation
maps and onset strength maps on blocks of 500 ms, resulting in 182-dimensional feature
vectors. SVMs with a linear kernel were used. First a subset of 10,000 feature vectors was
used for hyper-parameter optimisation, after which the full set of about 75,000 feature
vectors was used to train the final model which was then applied to the test data to evaluate
their performance using the above explained variant of balanced accuracy. The following
table shows the results:

4 The NIGENS database includes general sound events recorded in isolation (see Deliverable 1.1).
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model feature set a feature set b
‘baby crying’ 0.942 0.947
‘female human speaking’ 0.956 0.991
‘fire burning’ 0.824 0.877
‘piano playing’ 0.929 0.899

5.2.5 Probabilistic modeling using Gaussian mixture models

In this deliverable, we consider mixture of Gaussian distributions, commonly known as
Gaussian mixture models (GMMs) (Bishop, 2006), for modelling underlying distribution of
the training data.

Training models using GMM Let X denote our training data which is assumed to be
a set of d-dimensional independent and identically distributed (i.i.d.) observations, that
is X = {xn ∈ Rd, ∀ 1 ≤ n ≤ N}. The underlying distribution of X is modelled using a
mixture of multivariate Gaussian distributions

f(X ) =
N∏
n=1

K∑
k=1

τk N (xn | µk, Σk),

where τk is the mixture weight, µk is the mean vector, and Σk is the covariance matrix of
the k-th mixture component. There are two main learning methods, namely maximum
likelihood (ML) inference and Bayesian inference. In this deliverable, we focus on ML
inference as described in (Bishop, 2006, Ch. 8).

The training is done using the binary ‘one-vs.-all’ strategy, as described in the section
about SVM modelling, hence we train a ‘positive’ and a ‘negative’ model for each source
type.

Classification of live streams using GMMs. From the stream of data, blocks with length
of 500 ms and a shift of 10 ms are selected. The goal is to determine the identity of
each block. For this purpose, we first extract the features for each block as described in
Section 5.2.2. Next, this data instance is evaluated against all trained GMM models by
computing and comparing the log-likelihood values.

LetM = {Mi | 1 ≤ i ≤ I} denote the trained models for I sound event classes, whereMi

is the trained model for the i-th class. Further let X̂ denote the feature set observed at
the current block of the live stream. We then evaluate log-likelihood values for X̂ against
all the trained modelsM. The identity of the unknown feature set X̂ is set to the identity
of the model which produces the largest log-likelihood value among all the trained models.
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Mathematically speaking,

i = argmax
i′

log f(X̂ | Mi′), ∀ 1 ≤ i′ ≤ I.

5.2.6 Adapting models to improve discrimination

In this section we discuss how we can improve the discrimination performance of GMMs
by increasing class separability and adapting the trained models to noise overlaying the
auditory events. Specifically, we briefly study application of linear discriminant analysis and
a recently proposed noise adaptive variant of it (Kolossa et al., 2013).

GMM + LDA

A linear discriminant analysis (LDA) finds a linear projection of the feature-space which
maximises the class separability. LetΣb denote the between-class scatter-matrix (covariance-
matrix) and Σw denote the within-class scatter-matrix. Then W LDA is given by com-
puting the p-largest generalised eigenvectors W LDA = {wLDA

i | 1 ≤ i ≤ p} from solv-
ing

ΣbwLDA
i = λiΣ

wwLDA
i , (5.4)

where λi is the i-th eigenvalue associated with the i-th eigenvectorwLDA
i .

We use LDA in order to improve the separability between the positive and negative model
for each class. Application of LDA is achieved by multiplying the feature vectors with the
projection matrix W LDA, as

x̂ =W LDAx, (5.5)

where x is the feature vector extracted from the data block, and x̂ is the transformed
feature vector. Subsequently, the already trained models have to also be modified to
account for the transformation.

Experiment on NIGENS database. In the following, we show how LDA could serve as a
post-processing block for improving the class-separability of an existing GMM classifier.
We consider three different types of sound events, namely: ‘BabyCrying’, ‘FemaleSpeech’,
and ‘Fire’. We extract ratemap magnitudes with 32 frequency channels for each frame; the
means along the time dimension result in the feature vector. We next train the classifiers
for each type using only one component (a single Gaussian distribution) as described before.
The resulting model parameters for each type are the covariance matrix and mean vector,
i.e., Σc and µc where c ∈ {BabyCrying,FemaleSpeech,Fire}.
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5 Formation of auditory objects

In the testing phase, we process a scene 50 s in duration. The following methods are
compared:

• ML, standard maximum likelihood decoder using the trained model parameters, Σc
and µc, and full dimensional feature vectors x.

• LDA+ML, computing the ML after mapping the feature vectors to the projection
space using Eq. (5.5) and modifying the model parameters as µ̂c =W

LDAµc,
Σ̂c =W

LDAΣcW
LDA.

Figure 5.6-(a) and Figure 5.6-(b) show the result of the experiment using ML and LDA+ML,
respectively. It can be seen that there are considerably less class overlaps when using
LDA as a post-processing step. Although the overall accuracy seems to be similar, the
predictions are more confident with LDA. This shows that LDA can be used to improve
the source type classification with GMMs.
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Figure 5.6: Evaluation of the scene. The models are standard GMM with one component. Dotted
lines represent ground truth and solid lines are predictions. Notably, the predictions with LDA+ML
are more confident compared to the ones not using LDA.

GMM + NALDA

While LDA proves useful as a post-processing block, it does not help with the models’
sensitivity to noise. Thus, we now discuss noise adaptive LDA (NALDA) (Kolossa et al.,
2013), that can handle observation uncertainty in a noisy environment under certain
conditions.

Let X = (x1, . . . ,xN ) denote the training data for our models, assumed to be obtained
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Figure 5.7: Evaluation of the scene. The models are standard GMMs with one component.
White noise is added to the feature space during processing of the scene, with an SNR of about
−18 dB. Dotted lines represent ground truth and solid lines are predictions. NALDA+ML leads to
considerably less noisy predictions.

from data recorded in a noise-free environment. Now in application of these models, for
example in a search-and-rescue scenario, observations will be noisy and thus the trained
models are suboptimal. One possible solution is to adapt the models to account for the
uncertainties in the observations.

With NALDA, noise is assumed as class-independent, additive with zero mean and with
a time-varying covariance matrix (Kolossa et al., 2013). Let yc(τ) denote the noisy
observation at time frame τ so that

yc(τ) = xc(τ) + n(τ),

where we have introduced the subscript c to emphasize that the noise is assumed to be the
same across all classes.

In (Kolossa et al., 2013) it is shown that, given the covariance of the noise Σn, the within-
class covariance of the noisy data is approximately given by Σwn ≈ Σw +Σn. Further, it
is shown that using the adapted covariance Σwn, the noise optimal LDA projection matrix
WNALDA can be computed in a similar way as in LDA using Eq. (5.4) where wLDA

i is
replaced by wNALDA

i .

Experiment on NIGENS database. The setting is the same as in the previous experi-
ment, but superimposing the feature vectors with a known white noise (SNR of about
-18 dB) in the testing phase. We have considered the following methods for evalua-
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tion:

• LDA+ML, as described before.

• NALDA+ML: mapping the feature vectors to the projection space using ŷ =
WNALDAy, and modifying the model parameters as µ̂c = WNALDAµc, Σ̂c =
WNALDAΣcW

NALDA, then computing the maximum likelihood.

Figure 5.7-(a) and Figure 5.7-(b) show the result of this experiment using ML+LDA and
NALDA+ML, respectively. It can be seen that the predictions using NALDA+ML are
considerably less noisy. This experiment shows that given a good estimation of the noise
statistics, it is possible to adapt the models to account for these uncertainties using NALDA.
Although in this experiment the noise statistics were assumed known, the experiment
proves the overall validity of this theoretical approach. Future work includes integrating a
noise estimator in the Two!Ears framework.

5.2.7 Modelling and feature selection using mixture of factor analysers

As more features are extracted, it is important for the Two!Ears sound-event classification
system to be able to handle high dimensionality. In this section, we look into a family of
statistical methods known as mixture of factor analysers (MoFA) (Ghahramani and Hinton,
1997, Ghahramani and Beal, 2000). MoFA performs modeling and local dimensionality
reduction in a single step.

Mixture of Factor Analysers (MoFA). A MoFA can in fact be considered as a GMM
(see Section 5.2.5) with reduced parameterisations. Let X = (x1, . . . ,xN ) denote our
training data. In MoFA, each d-dimensional real-valued data vector x is modelled using
using p-dimensional vectors of factor s, and a d-dimensional observation noise u. Since in
general p < d, MoFA performs the modelling in a reduced dimensionality space (Everitt,
1984). Ghahramani and Hinton (1997) show that the likelihood of X for a K-component
MoFA can be expressed as

f(X ) =
N∏
n=1

K∑
k=1

τkN (µ, ΛkΛ
>
k + Ψk),

where µ denotes the mean vector, Λk is a d × p matrix known as the factor loading
matrix, and Ψk denotes the covariance of the noise. We employ Bayesian inference as
described by Ghahramani and Beal (2000) in order to learn the model parameters of the
MoFA.

In the Two!Ears project, MoFA can play a useful role in particular when there is only a
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small amount of training data available (for example, in future stages of Two!Ears within
the concept of active learning), and when modelling high-dimensional data without specific
prior knowledge about the features. Since MoFA performs local feature selection and
modelling in a single step, the resulting models can be used directly for the identification
task.

In the following experiment, we compare the performance of a GMM classifier to MoFA.
The experiment is designed to show the advantage of MoFA over GMM in handling small
amounts of training data.

Experiment on the NIGENS Database. Consider our previous experiment setting with
the selected sound classes from NIGENS. The performance of the following methods are
compared:

• GMMfullset: training models using GMM and all available training data;

• GMMsubset: training models using GMM and 10% of the available training data;

• MoFAsubset: training models using MoFA and 10% of the available training data.

A separate test set is evaluated against the trained models. The experiment is repeated 5
times and the average results, in terms of the balanced accuracy 5, are reported in Table 5.3.
The classifiers are trained on the same data. We notice that MoFAsubset is considerably
more robust when only few training instances are available.

In this example, we have considered a GMM with a single component. Increasing the
number of components in this case leads to overfitting and reduces the performance; this is
because the features are quite simple. With increasing the complexity of the feature vectors,
we might require larger number of components for the GMM.

Feature Selection using MoFA. So far we have used MoFA as a modelling tool with
the property of local dimensionality reduction. In the following we discuss how we can
use MoFA as an efficient tool for feature subset selection. This is important, since we are
interested in knowing how much a particular feature contributes to the model’s performance.
If the influence is negligible, we can disregard it in future model training, and thus reduce
the training time.

Each feature has its own weight for each mixture component of a MoFA, due to the local
dimensionality reduction of MoFA. In the following we derive a criterion that can be used

5 The balanced accuracy is computed using: BAC = sensitivity+specificity
2

.
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Sound Class MoFAsubset GMMsubset GMMfullset

‘FemaleSpeech’ 90.2% 79.5% 93.2%
‘BabyCrying’ 90.1% 84.0% 92.8%
‘Fire’ 79.6% 72.2% 81.3%

Table 5.3: Performance comparison of MoFA and GMM with respect to the amount of training
data in terms of the balanced accuracy.

to obtain a global dimensionality reduction using MoFA. The proposed method is validated
with empirical evaluations.

Let Λ̂k = (λ̂ik | 1 ≤ i ≤ d), where λ̂ik = (λ̂ik1, . . . , λ̂ikp)
> denotes the estimated loading

matrix of the k-th mixture component and Ψ̂k = (ψ̂ik | 1 ≤ i ≤ d) is the estimated covariance
matrix of the noise at the k-th MoFA component. Then we define:

Σ̂k = (σ̂ik | 1 ≤ i ≤ d) , σ̂ik =
(
λ̂ikλ̂

>
ik + ψ̂ik | 1 ≤ i ≤ d

)
,

where σ̂ik is a p × p covariance matrix at the i-th dimension and for the k-th mixture
component, where i ∈ {1, . . . , d} and k ∈ {1, . . . ,K}. Note that the number of necessary
mixture components, K, is determined automatically during learning.

Next, the contribution of each feature vector to the k-th mixture component is shown by a d-
dimensional vector wk = (wik | 1 ≤ i ≤ d), where wik is computed as:

wik =
τ̂k tr(σ̂ik)∑
p τ̂k tr(σ̂ik)

, ∀ 1 ≤ i ≤ d, 1 ≤ k ≤ K. (5.6)

Here, τ̂k is the estimated mixture weight and tr( · ) denotes the mathematical trace operation.
Note that

∑d
i=1wik = 1 and 0 ≤ wik ≤ 1 for all k ∈ {1, . . . ,K}.

Those features which have negligible weights can be disregarded by assigning a suitable
threshold. Let Ik ⊆ {1, . . . , d} be a set which includes indices of all feature vectors with
significant contribution to the k-th mixture component as

Ik = arg
i
wik >

t

d
∀ 1 ≤ i ≤ d (5.7)

where t
d is a threshold (in the experiments t = 0.5, which means 50% of the average

contribution). Then indices of all feature vectors with significant contribution across all
mixture components can be included in a set I defined as

I = I1 ∪ . . . ∪ Ik ∪ . . . ∪ IK ,
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where I ⊆ {1, . . . , d}.
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Experiment on the NIGENS database. Consider the previous experiment. The goal
now is to evaluate the change in performance as the result of using the proposed global
dimension reduction scheme. The following methods are compared:

• MoFAD: MoFA with full dimension feature vector D = {1, . . . , d};

• MoFAI : MoFA after global dimension reduction using I ⊆ {1, . . . , d} computed by
Eq. (5.7).

Table 5.4 shows results of this experiment. Although the classification performance is
slightly reduced when using MoFAI compared to that of MoFAD, the result is still of
interest given a considerable speed-up: for our data, the training time using MoFAI was
on average three to four times faster compared to that of MoFAD. Figure 5.8 shows the
contribution of each feature to the overall performance, i.e., wk, computed using (5.6), for
the three sound classes.

Sound Class MoFAD MoFAI
‘FemaleSpeech’ 91.2% 89.1%
‘BabyCrying’ 90.3% 88.60%
‘Fire’ 80.4% 77.2%

Table 5.4: Performance comparison (BAC) of MoFA with full dimension feature vector, MoFAD,
and with reduced dimensionality, MoFAI , on the same training and test data. Only 10% of the
available data has been used for training.
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Figure 5.8: Contribution of each feature to the prediction. Weights are between 0 and 1. Higher
weights imply higher contribution. The dotted line is the chosen threshold, here 50% of the average
contribution. The necessary number of mixture components are determined automatically during
learning; each colour represents the behaviour of a certain mixture component in its respective
class. Note that the weight plots for different mixture components are almost identical.
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5.3 Speaker identity

The previous section has presented progress on classification of general sounds. In this
section we investigate a more specific sound classification problem — speaker identification.
Speaker identification, including gender identification, has a particular relevance within the
Two!Ears project and is itself a well-studied field. This section focuses on the state-of-the-
art in speaker identification and presents initial results in the context of the binaural setting
of the Two!Ears project. The most suitable techniques will be identified and employed by
the SpeakerID knowledge source within the blackboard framework.

5.3.1 Models

GMM-UBM

Many widely used speaker identification methods are based on GMMs, which model feature
vectors from each speaker with a GMM as a weighted sum of Gaussian distributions. The
basic approach is realised by the log-likelihood ratio test from signal detection theory.
GMMs are used for both target and background models. The target model is trained using
speech signals from the target speaker. The background model, often referred to as the
universal background model (UBM), is trained using speech signals from as many speakers
as possible. Given a test signal ~x, the log-likelihood ratio between the target model and
the UBM is computed as

Λ = log
p(~x|λs)
p(~x|λubm)

(5.8)

where p(~x|λ) is the likelihood of ~x given model λ. The log-likelihood ratio is compared to
a pre-defined threshold for acceptance of the target speaker.

The parameters of universal background model (UBM) are estimated by maximising the
likelihood of a set of training feature vectors using expectation-maximisation (EM). The
target model, however, is often trained by adapting from the background model, particularly
when there is limited amount of training speech from the target speaker. We employ a
popular adaptation method, relevance maximum a posterioi (MAP) adaptation, which
is a linear interpolation of all mixture components of the UBM that increase likelihood
of speech from the target speaker. It is found empirically better to only adapt the mean
vectors from the UBM.
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5.3 Speaker identity

i-vectors

One of the problems of relevance maximum a posteriori (MAP) is that it adapts not
only to speaker-specific information but also to channel and other undesired factors. This
problem is addressed by the joint factor analysis (JFA) model proposed for the GMM
framework (Kenny et al., 2008). joint factor analysis (JFA) has become the basis for the
state-of-the-art in speaker identification, and has the following two properties. First, a
speech recording of a variable length is represented by a fixed-length supervector. Secondly,
and more importantly, such a supervector representation allows explicit modelling of the
undesired variability in the speech signal. The speaker supervector can be decomposed
into speaker-dependent factors and channel-dependent factors. The values of the speaker
factors are assumed to be the same for all recordings of the speaker but the channel factors
are assumed to vary from one recording to another. The supervector is constructed by
concatenating mean vectors from each GMM component. As a result, the JFA model has
to estimate hyper-parameters with a huge dimensionality. Therefore principle component
analysis (PCA) is typically applied with JFA.

Dehak et al. (2011) showed that the channel factors in the JFA model also contain some
speaker information. They proposed the i-vector model based on JFA, which makes no
distinction between speaker effects and channel effects in the GMM supervector space.
Instead, a total variability space that contains both speaker and channel variabilities is
defined. The hyperparameters of the i-vector model can be extracted by using the EM
algorithm and have a much lower dimensionality than JFA. Channel compensation can be
further applied in the i-vector space using probabilistic linear discriminant analysis (PDLA)
(Prince and Elder, 2007).

Given a test speech signal, the test i-vector w is extracted and compared to speaker model
i-vectors ws. Let H1 indicate the hypothesis that the two i-vectors are from the same
speaker, and H0 be the hypothesis that the two i-vectors are from different speakers. The
verification score is computed as the log-likelihood ratio of the same versus different speaker
models hypotheses:

Λ = log
p(w,ws|H1)

p(w|H0)p(ws|H0)
(5.9)

Similar to the GMM-UBM approach, the log-likelihood ratio is compared to a pre-defined
threshold to make a decision on the target speaker.

5.3.2 Features

The auditory front-end in the Two!Ears system produces ratemaps from a bank of 32
gammatone filters with centre frequencies equally spaced on the equivalent rectangular
bandwidth (ERB) scale between 80 and 8000Hz (Wang and Brown, 2006). Ratemaps are
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spectral features that represent a map of auditory nerve firing rate (Brown and Cooke,
1994). In the binaural setting of Two!Ears, ratemaps can be computed from both ears.
The average ratemaps are constructed by taking the average ratemap value of each pair
of time-frequency cells between the two ears. The binaural ratemaps are constructed by
concatenating the left ear and right ear ratemaps.

Most the state-of-the-art speaker identification systems employ mel-frequency cepstral
coefficient (MFCC) features. To make the ratemap features more orthogonal, we also apply
a discrete cosine transform (DCT) to ratemaps from individual ears to produce binaural
gammatone filter cepstral coefficients (GFCC).

5.3.3 Evaluation

We used speech materials from the GRID corpus (Cooke et al., 2006) for initial evaluation.
The corpus consists of 1000 simple command-like sentences spoken by each of 34 speakers.
The monaural speech signals were spatialised by convolution with an anechoic HRIR
measured with a KEMAR dummy head (Wierstorf et al., 2011). 72 azimuth angles between
0 ◦ and 359 ◦ (with an angular resolution of 5 ◦) were used. For each speaker, training
was done using 6 different sentences from each azimuth angle, totalling 432 sentences per
speaker. For testing, we used 288 sentences per speaker (4 sentences for each azimuth
angle) that were not used for training.

The UBM was trained on training features from all the 34 speakers using 128-component
GMMs. For the GMM-UBM model, each speaker model was adapted from the UBM using
mean-only MAP relevance adaptation. For the i-vector model, the same UBM was used to
train the total variability subspace and extract the sentence i-vectors. Final model i-vectors
were obtained by taking the average of the extracted i-vectors. A Gaussian PLDA model
was trained with the extracted i-vectors to score the testing trials.

The equal error rate (EER) performance of both models is shown in Table 5.5. Both models
produced very similar results as all the sentences from the GRID corpus were recorded
in a very similar setup and there was little channel variability. We plan next to evaluate
the models in more adverse conditions such as in the presence of overlapping sources and
reverberation.

Table 5.5: Equal error rate performance (%) of two speaker identification models using various
type of features.

Average Ratemap Binaural Ratemap Binaural GFCC
GMM-UBM 0.8 1 0.5
i-vector 0.2 1.3 0.8
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6 Conclusions

In the first year of the Two!Ears project, the software architecture has been defined,
spanning all modules from signal generation or acquisition, via pre-segmentation and
feature extraction to the cognitive stage and the feedback loops. The architecture has
been defined in a flexible manner, allowing the composition of a world model on the
system’s blackboard and the planning and feedback processes required for active exploratory
listening. With the presented architecture, already, many of the envisaged tasks have been
solved.

For example, feedback to head-position control allows improved source tracking, inter-
nal adaptation processes allow robust operation in high environmental noise levels, the
pre-segmentation stage can distinguish sources of interest from sources of noise, and the
implemented machine learning strategies allow the systems to quickly learn tasks such
as the identification of speakers and auditory objects based on state-of-the-art meth-
ods.

In the next two years, this presented framework will form the basis for both fundamental and
applied research on active, model-based listening. Statistical methods can be combined with
logical reasoning, and an understanding of the environment can be attained by composing
models of the sources and the environment with those of position and movement possibilities
of the robotic system itself, to arrive at an active and exploratory behaviour directed
towards an optimal understanding of auditory and audiovisual scenes. This, it is envisaged,
will help to comprehend, describe and ultimately emulate the impressive performance that
humans achieve in understanding their environment even from few, and unreliable stimuli,
which is, as yet, unmatched in machine listening systems.
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Appendices

A. Publications during this period

Published

• Käsbach, J, May, T., Oskarsdottir, G., Jeong, C.-H. and Chang, J. (2014) “ The
effect of interaural-time-difference fluctuations on apparent source width”, FORUM
ACUSTICUM, Krakow.

• May, T. and Dau, T. (2015) “Computational speech segregation based on an auditory-
inspired modulation analysis”, Journal of the Acoustical Society of America, in press.

• May, T. and Dau, T. (2014) “Requirements for the evaluation of computational
speech segregation systems”, Journal of the Acoustical Society of America, 136(6),
pp.EL398-EL404.

• May, T. and Gerkmann, T. (2014) “Generalization of supervised learning for binary
mask estimation”, Proceedings of IEEE IWAENC, Juan le pins, France.

• Schymura, C., Ma, N., Brown, G., Walther, T., and Kolossa, D. (2014) “Binaural
sound source localisation using a Bayesian-network-based blackboard system and
hypothesis-driven feedback”, FORUM ACUSTICUM, Krakow.

Submitted and in preparation

• Blauert, J., Kolossa, D., and Danès, P. (2015), “Feedback loops in engineering models
of binaural listening”, submitted to JASA Express Letters.

• Ma, N., May, T., Wierstorf, H., and Brown, G. (2015), “A machine-hearing system
exploiting head movements for binaural sound localisation in reverberant conditions”,
submitted to ICASSP 2015.

• May, T., Ma, N., and Brown, G. (2015), “Robust localisation of multiple speakers
exploiting head movements and multi-conditional training of binaural cues”, submitted
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to ICASSP 2015.

B. Candidate visual features

Below, we define a list of visual features that could become of interest in the course of
the Two!Ears project. The listed cues extend from basic features (like skin color) to
complex descriptors (SIFT, HOG,...). The main purpose of the following enumeration
is to give an overview of contemporary techniques in computer vision that relate to
feature-based scene analysis. We emphasize the pros and cons of each feature, as learned
from the literature or experimental evaluation. Attached literature hints provide a first
idea of the ‘architecture’ of each proposed feature and give some examples of its likely
application:

• Haar-like wavelets (used, e.g., in the ‘Viola-Jones’ face detector, cf. Viola and Jones
(2001)) – advantages: very fast and good true positive rate with adequate training
data; disadvantages: non-negligible false positive detection rate, cascade training
might be expensive.

• Discrete cosine transforms – advantages: compact feature representation, fast calcu-
lation, nearly uncorrelated; disadvantages: depend on scale, rotation, illumination.

• Histograms of oriented gradients (HOG), used, e.g., for pedestrian detection, cf.
Dalal and Triggs (2005) – advantages: once trained, detection of the ‘target object’
seems reliable. Potentially, training on real-world data sets has a certain chance of
becoming useful in a simulated environment. Disadvantages: require quite a lot of
training data, however, data sets for pedestrians seem available.

• Scale invariant feature transforms (SIFT) represent a state-of-the-art method for
object detection in cluttered environments with partial occlusion, cf. Lowe (1999) –
advantages: ‘invariant to image scaling, translation, and rotation, and partially invari-
ant to illumination changes and affine or 3D projection’ (Lowe, 1999); disadvantages:
non-rigid deformations could hamper visual analysis.

• Speeded up robust features (SURF) can basically be seen as a faster variant of
the SIFT scheme, see Bay et al. (2008) – advantages: similar to SIFT, but faster;
disadvantages: cf. SIFT.

• Shape Context: a descriptor that encodes the silhouette of an object, storing a
‘signature’ histogram of the silhouette, for details, please refer to Belongie et al.
(2002) – advantages: somewhat invariant to small deformations, shows potential for
generalization; disadvantages: non-negligible matching costs.
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• Gabor features: a biologically motivated image descriptor that tries to mimic the
‘oriented edge’ analysis capabilities of the human visual cortex, cf. Daugman (1985)
– advantages: biological motivation, well-established theory (Gabor features are
widespread in face recognition); disadvantages: generally requires combination of
Gabor filters with different orientations/scales to achieve acceptable analysis results,
dense calculation for larger images might be computationally expensive. On the
other hand, a dense calculation is rarely required.

• Skin color: this nearly self-explanatory feature helps to focus on regions of interest
(ROI) in an image when it comes to face detection/recognition – advantages: fast
calculation, good ROI ‘pre-selector’; disadvantages: without cue fusion, skin color is
a weak cue and can easily give numerous false positives.

• Silhouette: being also quite basic with respect to information content, silhouettes
show potential for inter-subject generalization. For Two!Ears, this descriptor could
become extremely helpful for person detection: silhouette features should behave
in an invariant manner in simulated and real environments – advantages: putative
invariance, needs testing. Fast calculation. Can possibly be trained with synthetic
data and then directly be applied to real world scenarios (also requires testing).

C. Example of BEFT

A video showing a typical scenario rendered with the BEFT virtual 3D visualisation
environment can be seen by following this link:

http://twoears.aipa.tu-berlin.de/2014/11/beft-demonstration/

85

http://twoears.aipa.tu-berlin.de/2014/11/beft-demonstration/




Acronyms

ACG autocorrelogram

AFE auditory front-end

AMS amplitude modulation spectrogram

ASA auditory scene analysis

BRIR binaural room impulse response

BEFT Bochum Experimental Feedback Testbed

CF centre frequency

CASA computational auditory scene analysis

EM expectation-maximisation

ERB equivalent rectangular bandwidth

F0 fundamental frequency

GMM Gaussian mixture model

GMM-UBM Gaussian mixture models with a universal background model

HRIR head-related impulse response

IBM Ideal binary mask

JFA joint factor analysis

KF Kalman Filter

KS knowledge source

LC local criterion

LDA linear discriminant analysis
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MAP maximum a posterioi

MCT multi-condition training

MFCC mel-frequency cepstral coefficient

ML maximum likelihood

MoFA mixture of factor analysers

NALDA noise-adaptive linear discriminant analysis

PDLA probabilistic linear discriminant analysis

RMS root mean square

ROS robot operating system

SNR signal-to-noise ratio

SVM support vector machine

T-F time-frequency

UBM universal background model

UKF Unscented Kalman Filter

VTE virtual test environment

WP1 work package one

WP2 work package two

WP3 work package three

WP4 work package four

WP5 work package five

XML extensible markup language
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