On the Effectiveness of Manual and Automatic Unit

Test Generation:

Ten Years Later

Domenico Serral, Giovanni Grano,? Fabio Palomba,? Filomena Ferrucci,' Harald C. Gall,2 Alberto Bacchelli?
University of Salerno, Italy — 2University of Zurich, Switzerland
dserra@studenti.unisa.it, grano@ifi.uzh.ch, palomba@ifi.uzh.ch, fferrucci@unisa.it, gall@ifi.uzh.ch, bacchelli @ifi.uzh.ch

Abstract—Good unit tests play a paramount role when it
comes to foster and evaluate software quality. However, writing
effective tests is an extremely costly and time consuming practice.
To reduce such a burden for developers, researchers devised
ingenious techniques to automatically generate test suite for
existing code bases. Nevertheless, how automatically generated
test cases fare against manually written ones is an open research
question. In 2008, Bacchelli et al. conducted an initial case study
comparing automatic and manually generated test suites. Since
in the last ten years we have witnessed a huge amount of work on
novel approaches and tools for automatic test generation, in this
paper we revise their study using current tools as well as comple-
menting their research method by evaluating these tools’ ability
in finding regressions. Preprint [https://doi.org/10.5281/zenodo!
2595232], dataset [https://doi.org/10.6084/m9.figshare.7628642].

Index Terms—Software Testing; Automatic Test Case Genera-
tion; Empirical Studies.

I. INTRODUCTION

Software testing is widely recognized as a crucial part of
any software development process especially in the context
of Continuous Integration (CI), where developers run both
unit and integration tests against new changes to promptly
discover the presence of software faults [1]]. Unfortunately,
writing good tests—particularly unit tests [2]—represents one
of the most difficult and time consuming testing activities.
Therefore, an increasingly large amount of effort has been
devoted to implement approaches and tools to automatically
generate unit test suites [3|.

The limited industrial adoption of tools for automatic test
generation raises some questions about the actual effectiveness
of these tools in reducing the burden of testing tasks for
developers [4]. In fact, while it has been shown that tests
automatically generated often reach a higher code coverage
compared to their manual counterparts [4]], the practical
advantages of using automatically generated test suites versus
manual ones are still unclear, as well as the to what extent
these tests suites can complement each other.

In 2008, Bacchelli et al. [5]] conducted a first exploratory
study with the goal of empirically understanding the differences
between manual and automatic unit test generation. The
authors considered test effectiveness in terms of code coverage,
mutation score, as well as error finding. In particular, Bacchelli
et al. [5]] investigated the FREENET project [6] as the subject
of their study.

Since FREENET used to lack of a significant test suite, the
authors first manually created tests for a subset of 15 classes.

Through this process, 14 distinct defects were discovered and
fixed. Afterwards, the authors applied automatic test generation
tools to the same defective classes and compared the automati-
cally generated tests against the manually created ones. They
selected three tools available at that time, namely RANDOOP [7]
and JUNIT FACTORY [{], designed for regression testing, and
JCRASHER [9]], designed for defect revelation. The study
reported that automatically generated tests could achieve a
higher code and mutation coverage than the manually generated
ones, and the former could also generate unexpected scenarios
that lead to the identification of faults, partially overlapping
with those found manually.

The amount of research done in the last ten years in this
field [3]] calls for a re-assessment of the aforementioned
findings: As an example, a tool like EVOSUITE [10]—which is
widely recognized as the current state-of-the-art with respect
to the generation of test suites [[11], [12]—could not yet be
considered by Bacchelli et al. [5]]. Therefore, in this paper we
report a replication of the reference study that compares (i)
code coverage, (ii) mutation score, and (iii) fault detection
ability of test cases generated automatically using current
techniques. In doing so, we first manually reconstruct the
scenario exploited by Bacchelli et al. S]], by digging into the
source code repository of FREENET, and make the resulting
dataset publicly available for further studies. Then, we compare
the tests that were manually created in 2007 against those
automatically generated by top three testing tools, namely
EvoSUITE [10]], RANDOOP [7], and JTEXPERT [13]]. On top
of the replication study, we also compare manually generated
tests to automatically generated ones with respect to their
abilities in finding regression faults. The key findings of our
study confirm that the automatic tools can achieve very high
line coverage and mutation score; however most of the actual
defects cannot be identified.

II. RELATED WORK

This work presented in this paper is a partial replication of
the study of Bacchelli et al. [5]], with the goal of evaluating the
results of tools that are available nowadays, i.e., ten years after
the initial study. The reference paper [5] aimed at comparing the
manually and automatically generated tests considering code
coverage, mutation score, and fault detection ability. Other
authors have proposed a similar comparison. Fraser et al. [4]]
conducted a human study aimed at understanding the practical
value of automated testing tools. The experiment was organized

https://doi.org/10.5281/zenodo.2595232
https://doi.org/10.5281/zenodo.2595232
https://doi.org/10.6084/m9.figshare.7628642

in two studies: In the first one, they asked the participants to
manually write tests for 4 different Java classes; in the second
one, they asked them to generate test suites using EVOSUITE for
the same subjects. The authors showed that test case generation
tools can achieve higher code coverage compared to manually
created tests, while automatically generated tests resulted
as less effective in detecting faults. Similarly, Shamshiri et
al. [14] investigated the fault detection ability of automatically
generated tests compared to the manually written ones. The
study involved 3 testing tools ran over the Defects4j [15]
dataset. In particular, they exercised the tools in a regression
testing scenario, where the test suites were generated on the
fixed versions of the code and then executed against the buggy
versions. Their findings were in line with the ones of Fraser et
al. [4]: The tools were only able to find about half of the bugs.
Grano et al. [16] compared the readability of manually and
generated tests, finding the latter as less readable. Finally, a
comparison between manually and automatically generated tests
has also been proposed in the context of the Java Unit Testing
Tool Competition of the IEEE/ACM International Workshop
on Search-Based Software Testing. The closest work has been
proposed in the round four of the competition [17]: in particular,
researchers compared four automatic tools against human made
tests in terms of statement, branch, mutation coverage, and real-
fault detection. Our study shares a similar experimental setup,
but has a different goal: We strive to measure the improvement
achieved by automated test generation techniques over the
course of the last ten years. For this reason, differently from
the competition [17]], we consider another set of data (the
same classes, tests, and defects of the reference paper, which
we reconstruct and make publicly available) and add another
metric (how able are the techniques to find defects not through
regression).

III. METHODOLOGY

The goal of the study is to understand how automatically
generated test cases compare to manually written ones, with the
purpose of assessing whether and to what extent automatically
generated tests can actually complement manual ones and
increase the overall effectiveness of test suites. The perspective
is of both researchers and practitioners: the former are interested
in understanding how automatic test case generation can be
improved, while the latter aims at evaluating the feasibility of
using automatic testing tools in practice. To reach our goal,
we set up a replication of the work done by Bacchelli et
al. [5]], performed with the new tools resulting from a decade of
research. More specifically, our study is driven by the following
research questions:

¢ RQ; - Coverage: What is the code coverage of manual

tests versus automatically generated ones?

¢ RQ> - Mutation: What is the mutation score of manual

tests versus automatically generated ones?

¢ RQ3 - Fault Detection: What is the fault detection ability

of manual tests versus automatically generated ones?

By addressing the aforementioned questions, we want to
provide an updated view of the capabilities of automatically

generated test suites when compared to manually created ones.
We following detail the context of the study, as well as the
methodological steps we perform in our empirical investigation.

A. Dataset Construction

To replicate the original study [5]], we first re-construct the
dataset that was originally exploited, which was unfortunately
not publicly available. More specifically, such a dataset comes
from the FREENET project [6] where Bacchelli et al. 5] spent
about dozens of hours to create a set of manual regression
tests for 15 classes that also detected 14 different bugs. To do
that, we proceeded as follows.

Detecting manually-written regression tests. For each class
tested in the original paper, we detect the commit introducing
the test suite for such a class (i.e., the one created by Bacchelli
et al. [5])). The process is done by scanning each commit of the
version history of FREENET and looking for 7;, namely the
commit ¢ that firstly introduced the test suite 7 for the class
c. Since the test suite followed the naming convention that
dictates that each test has the suffix Test after the name of
the tested production class, we could do an accurate mapping
between tests and the corresponding production classes. The
tests identified in this step represent the manually-written
regression tests. At the same time, the corresponding production
classes available in the commit 7, represent the versions where
the observed defective behavior is fixed: In fact, the tests were
only committed affer the corresponding production class was
fixed of any bug found during the testing.

Detecting defective classes. In the original dataset, one
manually tested class could have zero or more defects. Thus,
we need to identify, for each defect, the exact version of the
production class with the defective behavior. In so doing, we
execute a test suite introduced at 7, over the previous commits
of ¢: if T fails on the production class in a certain commit c¢;,
we assume that one defect is found. The procedure is repeated
until all the defects declared in the reference paper are found.
At the end of this process, for each defect we have a triple
composed of (1) the defective version of the production class,
(2) the corresponding manually written regression test, and (3)
the fixed version of the class.

Generating automatic regression tests. Once identified the
set of defective classes and their fixes, we can generate
regression tests automatically. To have an overview of the
performance of different existing tools, we consider three state-
of-the-art testing tools, namely EVOSUITE [10]], RANDOOP [7],
and JTEXPERT [13]. We run these tools on both defective and
fixed versions of such classes, setting 180 seconds as search
budget and leaving the remaining parameters to their default
values, following the same methodology of previous work [12]],
[18]], [[19]. According to the experimentation done by Arcuri
and Fraser [[20], parameter tuning represents an expensive task
that does not automatically imply better performance; as such,
the choice of using the default settings is reasonable and often
does not influence the overall results [20].

RANDOOP generates two kind of suites: a regression suite
that record the current behavior and an error-revealing suite,

that checks for specific specifications or contract violations. In
the fault-detection analysis we treated those two suites sepa-
rately. Finally, to cope with the randomness of automatic test
case generation due to the search-based techniques exploited,
we repeat the generation 10 times for each production class.
We run the process on a Linux server running Ubuntu 18.04,
having 16 cores and 64GB of RAM.

Dataset validation. While the re-construction of the dataset is
done following the description provided by Bacchelli et al. [3],
we conduct an additional validation to ensure its reliability. To
this aim, we ask the first author of the reference paper (who
was developer at FREENET) to validate the re-constructed
dataset. We provide him with a directory containing, for each
defect, a separate sub-directory containing the triples previously
generated: or each defect the author could peruse (i) the
defective version of the production class, (ii) the corresponding
regression tests (manually written), and (iii) the fixed version of
the class. Furthermore, we provide the author with an additional
file reporting the meta-information (e.g., message and author)
of the commits referring to the files he can analyze. As a result
of this validation, the author confirms that the operations done
in the re-construction phase are correct: this makes us confident
of the reliability of the dataset.

Dataset availability. The re-constructed dataset is publicly
available [21]].

B. Data Analysis

To address our research questions, we first compute line
coverage (RQ;) and mutation score (RQ3) for both manually
and automatically written test suites. To compute the mutation
score we rely on PIT [22], which is currently the most mature
tool available for mutation testing [23]]. Since we perform
multiple test generation runs for the automatic testing tools, in
Section [[V| we report and discuss the mean values of coverage
and mutation score achieved by the tests generated with the
three experimented tools. To answer RQs, we compute the
number of times manually and automatically generated tests are
able to correctly identify a failure: for the automated tests, we
consider a failure to be detected if the tools identify it in at least
one of the runs. It is important to note that the three employed
automatic testing tools share the common goal of generating
regression tests, while RANDOOP can be also employed to
generate error-revealing suites. For this reason, in RQs we
perform two complementary analyses. First, we generate tests
for a fixed version and we check whether the generated tests can
detect a failure in the defective versions. Second, we investigate
the ability of the exploited tools to directly detect faults by
generating tests for the defective versions of the classes.

IV. ANALYSIS OF THE RESULTS
In the following, we discuss the results of each RQ,
summarized in Table [I] for space reasons.
A. RQ1 — On Code Coverage of Manual vs Automatic Tests

Looking at the results achieved when considering this
perspective, the first observation is related to the coverage

achieved by the automatic testing tools: All of them have a
line coverage comparable or even higher than the one achieved
by the manual tests. This result likely reflects the way in which
the generation process actually works. In fact, the primary goal
of all the tools is optimizing the coverage of the test on the
production code; as such, we confirm that they seem to reach
their target of overcoming manual tests under this aspect.

Among the tools, EVOSUITE reaches the highest coverage
(88% on average); this is generally true also looking at the
individual classes, with a very few exceptions. On the contrary,
RANDOOP reaches the lowest coverage, thus indicating that
a random-based approach can, at times, be less performing
than others—a finding that corroborates previous work in the
field [24]]. Compared to the results achieved in the study by
Bacchelli et al. (Table 2[]_-] in [5]]), we see that the results achieved
by RANDOOP ten years later are 3 points percentage higher
on average, but no tool is able to reach the coverage achieved
by JUNIT FACTORY ten years ago, thus indicating that this
industrial tool is still the best performer along this dimension.
Our results indicate that automatic test case generation tools can
support developers in ensuring a high code coverage (compared
to manual tests), yet the improvement with respect to the
original study is limited.

B. RQ> — On Mutation Score of Manual vs Automatic Tests

Mutation testing allows to measure the ability of test cases
to cover the so-called mutants, i.e., variation of the production
code that make it defective and that the test is supposed
to identify [25]. The discussion of our results is similar to
what reported for code coverage. Indeed, the automated tools
reach mutation score values superior to the one of manually
written tests. Also in this case, EVOSUITE is the best tool
among the experimented ones, while RANDOOP and JTEXPERT
achieve a similar score. Interestingly, we observe cases where
it seems to exist some complementarity between manual and
automatic tests. This is, for instance, the case for the class
HTMLEncoder: while the mutation score of the manual test
in this case is fairly low (28%), the automatic ones are much
higher. In other cases, like with the class URLDecoder, not
all the automated tools reach a high mutation score while the
manual one can capture more generated mutants. This seems
to highlight that manual and automatic tests can sometimes
work in a complementary manner and interchangeably: we see
this finding as a possible input for further research on the topic.
Compared to the results achieved in the study by Bacchelli et
al. (Table 3 in [5])), we still see that JUNIT FACTORY remains
the best performer after ten years (77% on average), yet the
difference with EVOSUITE is small (five point percentage less)
and the improvement achieved by RANDOOP is very significant
(18 points percentage higher now). Overall, our results indicate
that automatic test case generation tools can support developers
in ensuring a high mutation score (even though manual tests are
sometimes better) and there has been a significant improvement
in the last years along this dimension of effectiveness.

IGiven the limited space, we refer to the tables in the original paper [5].

Table I: Performance of manually versus automatically generated test suites. The column ‘Direct’ is the fault detection ability of
the tests when trying to directly identify faults in production code, while the column ‘Regr.’ is the ability to detect regressions.

Line Coverage (RQ1) Mutation Score (RQ2) Fault Detection (RQ3)

Class Name Manual Evosuite Randoop JTExpert | Manual Evosuite Randoop JTExpert | Manual Dirivlmm;{eegr. I Il}ii;:;lf)op RR:§1 I Sii:g:mp lfel;r Dirix—:l;ETp el;legr.
Base64 80 93 78 84 73 64 81 71 0 0 0 0 0 0 0 0 0
BitArray 71 100 95 94 46 69 84 77 0 0 0 ‘ 0 0 ‘ 1 0 0 ‘ 0
HTMLDecoder 56 99 84 87 37 52 17 45 1 0 0 0 0 0 0 1 1
HTMLEncoder 71 100 83 100 28 85 88 91 0 0 [0 [© 0 0] ©
HTMLNode 97 75 91 99 94 79 96 92 4 1 2 (D) 0 0 0 0 3 402
HexUtil 74 73 83 82 59 58 68 66 2 0 1 (1) ‘ 0 1 (1) ‘ 0 0 0 ‘ 1(1)
LRUHashtabl 83 100 88 31 91 88 88 35 1 0 0 0 0 0 0 1 0
LRUQueue 83 100 92 60 58 61 96 46 0 0 [[0 I 1T 0
MultiValueTable 85 92 85 70 75 93 76 70 0 0 0 0 0 0 0 2 0
SimpleFieldSet 54 51 85 5 49 35 69 4 2 2 (1) 0 ‘ 0 1 (1) ‘ 2 (1) 2 (1) 2 ‘ 2
SizeUtil 83 95 0 100 57 87 0 87 0 0 0 1 0 0 0 1 0
TimeUtil 95 96 56 100 93 93 41 88 3 0 [I] © 0 0 130
URIPreEncoder 9 79 42 84 19 75 50 66 0 0 0 0 0 0 0 0 0
URLDecoder 68 80 36 86 71 65 38 75 1 0 0 [0© 0 [© 0 0 [T 1(
URLEncoder 86 80 85 83 67 83 79 72 0 0 0 0 0 0 0 0 0
Overall 4 1 1

C. RQs — On Fault Detection of Manual vs Automatic Tests

As for the fault detection ability, Table [I] reports the number
of defects identified by manual tests and by the three exploited
tools. For RANDOOP, we report the results for the regression
and for the error revealing configurations separately (indicated
by the columns ‘“Randoop Reg” and “Randoop E.R.”). The
number in parenthesis represents the defects that were also
found by the manual tests (e.g., EVOSUITE found two defects
in SimpleFieldSet, one of which was also discovered
with the manual testing). We observe that manually written
tests have much high fault detection capabilities, while the
automatic ones create unexpected scenarios that lead to a defect
identification in a small number of real defects. Surprisingly,
EVOSUITE and RANDOOP capture only a few of the real
faults, when introduced as regressions. All in all, our findings
suggest that all the automated tools can support developers with
keeping coverage and mutation score high, but their ability in
detecting real defects is not as good. Interestingly, we observe
that the defects identified by automated tools are generally
different from those captured by manually written tests, thus
bringing evidence that developers can employ automatically
and manually written in a complementary fashion to find more
defects in production code.

V. THREATS TO VALIDITY

To conduct the study, we re-constructed the original dataset
used by Bacchelli et al. [5]], following the exact procedure
of the reference paper to identify manually written test cases,
defective, and fixed versions of the production classes involved
in each defect. As a further validation of our activities, we
involved the first author of the reference paper, who confirmed
the correctness of the re-constructed dataset.

To investigate the capabilities of automatically generated
tests, we ran the considered tools using a search budget of 180
seconds, which allowed the tools to extensively optimize the
generated test suites [26]—[28]]. At the same time, we left the
other parameters to their default configuration: according to
the findings of Arcuri and Fraser, it is not easy to find settings
that significantly outperform the default suggested values [20].

The selected tools explicitly aim at finding regression faults
rather than defects already present in production code. However,

as shown by both Bacchelli et al. [5]] and Pacheco et al. [[7], such
tools can also be configured to generate unexpected scenarios
that may lead to discovering existing defects. Therefore, our
study aimed at assessing to what extent newer testing tools can
(1) help developers in finding existing defects, and (ii) actually
identify regressions. This preliminary investigation took into
account real defects from the FREENET project: Our findings
are likely to differ when considering other environments and
projects.

VI. CONCLUSION

We empirically compared the performance of manually
versus automatically created test suites, considering three
perspectives: code coverage, mutation score, and fault detection
ability. To this aim, we first re-constructed and made publicly
available a dataset originally used by Bacchelli et al. [5]]. Our
findings revealed that current automatic test case generation
tools are able to optimize coverage and mutation score more
than manually written tests; nevertheless, the improvement in
the last ten years has not been dramatic. In terms of defect
finding, while there has been little improvement over the last
years, it has not reached the same level of quality as the
other dimensions. This is expected, as the goal of the current
tools is creating regression tests that are able to capture the
current behavior, rather than exposing problems. Nevertheless,
in some cases, the automatically generated tests were indeed
able to expose unexpected scenarios that were defective, thus
indicating that this could be a potentially viable path for our
future research focus.

Our future research agenda includes the comparison of
manually and automatically written test code in the context
of a larger set of projects and defects (e.g., by exploiting the
DEFECT4J dataset [15]) as well as the definition of strategies
that can make automatic tests more effective. By publishing
this work in the main mining software repositories venue, it is
our hope that it can contribute to bring the mining community
closer to that of automated software testing.

ACKNOWLEDGMENTS

A. Bacchelli and F. Palomba gratefully acknowledge the
support of the Swiss National Science Foundation through the
SNF Project No. PPO0P2_170529.

[1]

[3]

[4

=

[5

=

[6]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

P. M. Duvall, S. Matyas, and A. Glover, Continuous integration:
improving software quality and reducing risk. Pearson Education,
2007.

P. Runeson, “A survey of unit testing practices,” IEEE software, vol. 23,
no. 4, pp. 22-29, 2006.

P. McMinn, “Search-based software test data generation: a survey,’
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105—
156, 2004.

G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated unit test generation really help software testers? a controlled
empirical study,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 24, no. 4, p. 23, 2015.

A. Bacchelli, P. Ciancarini, and D. Rossi, “On the effectiveness of manual
and automatic unit test generation,” in The Third International Conference
on Software Engineering Advances. 1EEE, 2008, pp. 252-257.

The Freenet Project: a peer-to-peer software platform for censorship-
resitant communication. [Online]. Available: https://freenetproject.org
C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proceedings of the 29th international
conference on Software Engineering. 1EEE Computer Society, 2007,
pp. 75-84.

JUnitFactory webiste. [Online]. Available: http://www.junitfactory.com,
C. Csallner and Y. Smaragdakis, “Jcrasher: an automatic robustness
tester for java,” Software: Practice and Experience, vol. 34, no. 11, pp.
1025-1050, 2004.

G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering. ACM, 2011, pp. 416-419.

F. Gross, G. Fraser, and A. Zeller, “Search-based system testing: high
coverage, no false alarms,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis. ACM, 2012, pp. 67-77.
F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia,
“Automatic test case generation: What if test code quality matters?” in
Proceedings of the 25th International Symposium on Software Testing
and Analysis. ACM, 2016, pp. 130-141.

A. Sakti, G. Pesant, and Y.-G. Guéhéneuc, “Instance generator and
problem representation to improve object oriented code coverage,” IEEE
Transactions on Software Engineering, vol. 41, no. 3, pp. 294-313, 2015.
S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri,
“Do automatically generated unit tests find real faults? an empirical study
of effectiveness and challenges (t),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 1EEE, 2015,
pp. 201-211.

R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis. ACM, 2014, pp. 437-440.

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

G. Grano, S. Scalabrino, H. C. Gall, and R. Oliveto, “An empirical
investigation on the readability of manual and generated test cases,” in
Proceedings of the 26th Conference on Program Comprehension, ser.
ICPC ’18. New York, NY, USA: ACM, 2018, pp. 348-351. [Online].
Available: http://doi.acm.org/10.1145/3196321.3196363

U. Rueda, R. Just, J. P. Galeotti, and T. E. Vos, “Unit testing tool com-
petition—round four,” in 2016 IEEE/ACM 9th International Workshop
on Search-Based Software Testing (SBST). 1EEE, 2016, pp. 19-28.

G. Fraser and A. Arcuri, “A large-scale evaluation of automated unit test
generation using evosuite,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 24, no. 2, p. 8, 2014.

A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets,” IEEE Transactions on Software Engineering,
vol. 44, no. 2, pp. 122-158, 2018.

A. Arcuri and G. Fraser, “Parameter tuning or default values? an empirical
investigation in search-based software engineering,” Empirical Software
Engineering, vol. 18, no. 3, pp. 594-623, 2013.

D. Serra, G. Grano, F. Palomba, F. Ferrucci, H. Gall, and
A. Bacchelli, “Replication Package - On the Effectiveness of Manual
and Automatic Unit Test Generation: Ten Years Later,” 3 2019. [Online].
Available: https://figshare.com/articles/On_the_Effectiveness_of Manual_|
and_Automatic_Unit_Test_Generation_Ten_Years_Later/7628642

H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “Pit:
a practical mutation testing tool for java,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM, 2016,
pp. 449-452.

M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, N. Malevris, and
Y. Le Traon, “How effective are mutation testing tools? an empirical
analysis of java mutation testing tools with manual analysis and real
faults,” Empirical Software Engineering, vol. 23, no. 4, pp. 2426-2463,
2018.

S. Bauersfeld, T. E. Vos, and K. Lakhotia, “Unit testing tool competitions—
lessons learned,” in International Workshop on Future Internet Testing.
Springer, 2013, pp. 75-94.

R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 654-665.

A. Arcuri and G. Fraser, “On parameter tuning in search based software
engineering,” in International Symposium on Search Based Software
Engineering. Springer, 2011, pp. 33-47.

G. Fraser and A. Arcuri, “The seed is strong: Seeding strategies in search-
based software testing,” in 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation. 1EEE, 2012, pp. 121-130.
S. Shamshiri, J. M. Rojas, G. Fraser, and P. McMinn, “Random or
genetic algorithm search for object-oriented test suite generation?”” in
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation. ACM, 2015, pp. 1367-1374.

https://freenetproject.org
http://www.junitfactory.com
http://doi.acm.org/10.1145/3196321.3196363
https://figshare.com/articles/On_the_Effectiveness_of_Manual_and_Automatic_Unit_Test_Generation_Ten_Years_Later/7628642
https://figshare.com/articles/On_the_Effectiveness_of_Manual_and_Automatic_Unit_Test_Generation_Ten_Years_Later/7628642

	Introduction
	Related Work
	Methodology
	Dataset Construction
	Data Analysis

	Analysis of the Results
	RQ1 — On Code Coverage of Manual vs Automatic Tests
	RQ2 — On Mutation Score of Manual vs Automatic Tests
	RQ3 — On Fault Detection of Manual vs Automatic Tests

	Threats to Validity
	Conclusion
	References

