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Abstract - The acoustic ray method rests upon specular reflection, an intuition that gives access 

only to an approximation of the solution by not taking into account the parts of the field called 

diffusion and diffraction. In trying to understand rationally the roots of the approximation, it has

appeared that the image source could be generalized and also that errors may be partially due to 

missing generalized sources, already in elementary geometries such as obtuse angles. Indeed, it

is shown that the exact integral solution of a 2D acoustic problem, expressed as a series of terms,

could be seen as the contribution of the different image sources, via a partial use of the Huygens’ 

Principle. With the correspondence between the terms and the image sources shown, the missing

sources would appear and the method would thereby be refined. 

PACS numbers: 43.20.Dk



I – INTRODUCTION 

In acoustic cavities such as concert halls or passengers’ spaces in vehicles, the numerical

description of classical sound fields – those satisfying the Helmholtz equation in space-frequency 

domain with local boundary conditions – stems from various methods, the choice of which 

depends first of all on the ratio of the wavelength to a linear dimension of the considered cavity. 

The reasons for this choice are either of conceptual or practical nature and each method has its 

own advantages and drawbacks. For example, the boundary finite element method, developed 

from the exact integral representation of the Helmholtz operator solution, is impractical for high

frequencies, as the necessary fine discretization of the boundaries would then lead to large and 

full matrices, taking a long time to build and inverse. In the adequate frequency range, the 

method cannot be extended to non-linear problems (at least not directly). It needs knowledge of 

the acoustic field everywhere on the boundaries before giving access to the field at the points of 

interest inside the domain.

The finite element method (finite elements of volume), resting on the variational form 

stemming from the weak form of the equation under study, is also confined to sufficiently long 

wavelengths for the same practical reasons of discretization, this time of the domain, even if the

matrices are more quickly built and inversed as they can be made with a large number of null 

terms. As an indication, it is not easy to describe sound fields in the audible medium frequency

range (1kHz - 5kHz) in passengers’ space in aircrafts, helicopters, cars, etc... The method is 

appropriate for non-linear problems. It necessarily describes the field everywhere within the

domain and on the boundaries (substructuration could lead directly to the boundary values but at 

the expense of supplementary calculation time).
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As for the ray method, it is restricted to the description of fields arising from specular 

reflections and does not take diffraction into account. Diffusion effects can be inserted but 

require great precaution. However, it gives access to the medium frequency range mentioned

above. Specular reflection – originating from geometrical optics concepts – applied to sound 

waves in air is quoted as early as the 1940s [1] if not before, with experimental validation.  The 

principle of specular reflection on perfectly rigid walls is compatible with the modal theory in 

waveguides and in rectangular cavities [2]. It is also with specular reflection that it has been 

possible to obtain an understanding of some causality problems in the field of active acoustic

control [3], as long as the geometrical configuration is very simple. In architectural acoustics, it

is commonly accepted that the ray method is able to describe sound fields above 100Hz in large

auditoriums [4]. Here, the calculation of the field at some particular point within the domain does

not require that of the entire domain (contrarily to the finite element method) nor on all the 

boundaries (contrarily to the boundary element method). However, one has to remember that the

method is not rigorous and that the reaction taken only at the impact point of reflection is an 

approximation of the more global reaction properly described by the integral representation; this 

is probably the reason why calculation on all the boundaries is not needed.

The ray method, so widely known for room acoustics in the years around 1960/90 [5], has 

been revisited over the last ten years or so for its use in vehicle passengers’ space, with the sound 

field descriptions in the audible medium frequency range in view [6, 7]. Concerning the 

algorithmic procedure, improvements carried out by previous authors in two different directions 

are helpful [4, 8, 9]: one is called ray-tracing, the other virtual image sources, and their history 

shows that they were developed quite simultaneously.
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In a ray-tracing algorithm, rays “leave” a point source emitting an impulse (in theory an 

infinity of rays) and, for each of them, the first point of impact on a wall is sought and from there

on the next impact point on another wall, etc … Nothing prevents this method from being used 

within non convex cavities. A priori, the procedure goes on indefinitely for each ray. Given a

receiver point R, rays originating from the source that, after a certain number of reflections, go 

through R, make up the sound history – called impulse response or histogram or echogram – at 

point R. In practice, the number of rays leaving the source is finite and the rays propagate in a 

divergent way with the consequence that the weaker the probability for the rays to go through the 

receiver R, the smaller the number of permitted reflections.  This is the reason why the histogram

is made for a neighbourhood of R rather than the point alone. In these conditions the procedure

can be quite short but at the price of uncertainty.  Nevertheless, this ray-tracing version has the 

great advantage of being able to insert diffusive walls (because of their geometry and not of their 

behaviour).

The virtual image sources algorithm identifies the images of the real source by a mirror

effect on each wall, then the images of the images are sought, etc …, a priori indefinitely. 

However all these images are only potentially useful for calculating the acoustic field (except for 

rectangular enclosures) and only a small number of them actually “light” the domain, while still 

less are “seen” by the given receiver point. Validity (for “lighting” the domain) and visibility (of 

the receiver point) tests reduce hugely the number of images and a proximity test restricts their 

number by limiting the acceptable distance between the images and the receiver point.  Non-

convex domains need an obstruction test [9] or call for another approach [7, 10]. The algorithm

is precise in giving the rays leaving the source and propagating to the receiver, but distinguishing 

the useful sources from the potential ones is a heavy task and moreover it is difficult here to take 
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diffusion into account. However, this procedure is chosen in this paper for its precision.  It has to 

be mentioned that the virtual sources procedure can also be understood as that of virtual

receivers. Indeed, by determining the receiver images it is possible to retro-propagate rays issued 

from R until the real source is reached [9]. At this stage, it must be noted that the definition of 

image sources makes the problem independent of the type of signal emitted by the primary

source and of the usage of the signal at the reception point. For example, in [4, 8, 9], rays are 

energy carriers and are used to assess sound intensity (under consideration of the form of the 

sound field). Here, phased (therefore in terms of complex amplitudes) sound fields in the 

frequency domain are considered, so as to observe systems of standing waves forming

resonances and anti-resonances. 

In that sense, comparison between acoustic fields calculated by the finite element method

and the ray method (with the image source algorithm) has shown differences which constitute a 

handicap for going further in small enclosures with the latter method [7]. What ought then to be

done in order to reduce the differences? It is known qualitatively that the ray method does not 

take into account diffraction and/or diffusion and that the solution obtained cannot in general be

exact. But even by dealing only with the part of the acoustic field made up of specular

reflections, what do we know quantitatively about the ability of the image sources to reveal the 

field?  In trying to answer this question, it would first be necessary to sustain the intuitive notion 

of image sources by a rational formulation and, in doing so, to have a tool to master their 

contribution to the sound field. Looking in that direction in the framework of a very elementary

geometrical configuration, it has been found that sources said to be invalid by the current source-

choosing algorithm could improve the description of the acoustic field. This being said, it has not 

yet been possible to know if this improvement resulted from a better description of diffraction, or 
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of the reflected field, or of both. Thus, the work presented here has the form of a theoretical 

investigation in a simple configuration, an investigation not yet found in the acoustic literature.

The beginning of this paper is a recall of one of the algorithms of the ray method that 

defines the image sources, and also emphasizes two figures of an angular sector in the plane

which motivate the study. After a first premiss that sets out a particular presentation of the 

acoustic field in presence of a reflective wall in a 2D half-space, the exact solution of the angular 

sector arises from the integral representation. The solution thus obtained on the walls is liable to 

be developed in series, and arguments associated with the Huygens’ Principle lead us to think 

that each term of the series could reveal the contribution of an image source. The same 

formalism is then extended to the case of walls with damping material. Then, the transformation

of the pressure on the walls into the pressure inside the sector shows the possible contribution of 

image sources inside the domain. Numerical experiments in the third section of this paper 

support broadly the hypothesis of a correspondence between terms of the series and image source 

contributions, opening a door towards an improvement of the current algorithms for identifying 

the useful virtual sources.

At this point it is necessary to cite in more detail the work of Mechel [10], presenting a

comprehensive overview of the image sources method. The reassembling of sources in a 2D 

angular sector and the development of the exact solution into a modal series (different from the

series development presented in this paper) are of particular interest here. The reassembling of 

sources leads to the definition and the insertion of a “corner source”, along with a particular 

directivity, and to an algorithm to compute the validity of images. The modal series suggests the 

idea of inserting the exact solution into the image sources method, thereby resulting in a mixed

analytical-image source method. Although the approach presented here has not been inspired by 

6

https://www.researchgate.net/publication/253114949_Improved_Mirror_Source_Method_in_Roomacoustics?el=1_x_8&enrichId=rgreq-c111705a-4dd9-45d7-b818-5caba5ef3d48&enrichSource=Y292ZXJQYWdlOzI1OTMyMzYwNDtBUzoyMjMyNTIzOTI3NDcwMDhAMTQzMDIzODkyNjQxNA==


Mechel’s work and follows a different path, a certain relation between the objectives of both 

approaches must be assessed. In fact, these two approaches could converge by extrapolation of 

the fact that the elementary solution classically associated with each image source could be 

replaced by a more complete solution (including diffraction) associated with a certain set of

images.

The present text develops, extends and explores in greater depth the subject of a relatively 

short communication given recently at a congress [11].

II – FORMALISM ON THE BOUNDARIES AND IN THE DOMAIN 

A. Preamble, configurations and premisses 

Any comparison between acoustic fields obtained by the image source method and by the 

boundary integral method needs, as a preliminary, to speak of the algorithm which usually 

chooses the image sources. The image from a wall numbered n  originates by a mirror effect on 

that wall from a source, that could itself be the image from wall numbered . It is convenient to 

write it  as  to signify that it will give rise to l reflections from the actual source, the last

one on wall n , the previous one on wall , etc... For example, the source denoted is the

image of the real source through wall 5, and source  is the image of source  through wall 3. 

Its presence will show two reflections. This can happen only if the last reflection is able to reach

a point inside the domain. To clarify, Figure 1 presents a 2D domain made up of an angular 

sector defined by two semi-infinite straight lines, in fact two segments (of finite length). Six 

image sources are liable to reveal reflections. However to reach point , only four image-sources

k

.......kn

 indices

S

l

k 5S

53S 5S

P
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are useful; only source  would give a reflected ray reaching point ; for , three image

sources intervene. In Figure 1, it appears that an image source with last index n plays a role, for 

point  for instance, if the ray from that source

212S Q R

P goes through wall  to reach . In these

conditions, source  is of no use for point Q  as the ray from  does not go through wall 

 to reach Q .

n P

212S 212S

2

Having thus in mind the algorithm for determining the sources, the motivation of the 

present work arises from both diagrams in Figure 2. The sector is now defined by the semi-

infinite straight lines 1  and . The configuration on the left leads to four sources (three 

images and the real source). However, the validity of the field obtained at point  is not

guaranteed. On the contrary, to the right, the only image source available definitively instills a

doubt regarding the field obtained, as it is not expected that wall 

2

1Q

2  plays no role at all (source 

 reveals the presence of wall  only). Nevertheless, it is possible to enlighten the degree of 

precision of the field obtained by rays by comparing it to the exact solution given by the integral

representation. To begin with, the particularly simple situation of a single reflecting plane is 

observed to gain access to the definition of the first order image source, the wall pressure (in a 

discretized form) and an iterative access to it. Notations will be defined in the course of

development. In Figure 3, a point source  radiates an acoustic pressure. In particular at point Q 

on the perfectly reflecting wall , the elementary solution of the Helmholtz operator is shown to

be

1S 1

0S

 (1) 0 0

S )

p(Q) = G (Q,S ) + G (Q,S )

where  is the elementary solution of the Helmholtz operator in an open domain (the

source flow amplitude is chosen so that the right hand side of the Helmholtz wave equation is

0G (Q,
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unity); here, in 2D, it has the form -

0

i
- H (k Q-S )

4
0  with  the Hankel function of the 2-

0H
nd

 kind 

of 0
th

 order. In fact, for any point R in the domain, the integral representation (also called

Green’s third formula) leads to 

 (2) 
M0 np(R) = G (R,S ) + G (R,M) p(M) dM

where  is the result of the operation  taking into account the

excitation on the right hand side of the wave equation.

0G (R,S ) 0 G (R,S) (S - S ) dS

When point R in the domain tends toward point Q on , the principal part of the double 

layer potential leads to 

0

1
p(Q) = G (Q,S ) + p(Q)

2
 (3) 

which can also be written 

0p(Q) = 2G (Q,S ) Q  (4) 

and  will now be a shorthand representation for  when the

observation points Q are on the boundary .  The subscript 0 is linked to the source (the index 

 of G has been removed when indication of the source occurs). The image source  can be 

made apparent by noting 

0p( ) = 2G ( ) 0p(Q) = 2G (Q,S )

0S

1S

0

1

0

coming from S
coming from S

1
p( ) = G ( )  + p( )

2
 (5) 

In fact, the term
1

p( )
2

 in (5) is equal to  by identification in (3) and (4). It indeed 

represents the free-field pressure on the geometrical locus

0G (Q,S )

 due to  but also the pressure on 0S
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the same locus due to , since  is the mirror image of  relative to 1S 1S 0S .

Now, out of the continuous form

 (6) 
M0 np(Q) = G (Q,S ) +  p(M) G (Q,M) dM

a discrete form can be deduced. By decomposing the wall  (which is a straight line in this bi-

dimensional space) into elementary facets  such as j j    with   j = 1,

j

, equation (6) can 

be approximated by 

M

j

0 j n j

j=1

p(Q) = G (Q,S ) + p(M ) G (Q,M) dM    where     M  (7) 

provided the pressure can be considered constant on each facet. For a particular point , the 

pressure can be written 

iQ

 (8) i i 0

j=1

p  = G (Q ,S ) + a pij j

or, for a set of points on the wall, by the matrix equation 

0( ) = ( ) + . ( )p g A p  (9) 

where the vertical (columns) dimension of matrix A is infinite. Following the usual convention, 

bold lowercase letters represent vectors and bold uppercase ones represent matrices ; accordingly

 becomes . For the resolution of the problem, A will be made square and (3) 

provides that 

i 0G (Q ,S ) 0( )g

1
=

2
A I (10)

in that case.

At this stage, a side remark will be useful for the later developments. In (9), the wall 

pressure  is the final solution sought, which will be written  (E for “end”). The term( )p Ep
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0( )g  comes from the free-field pressure on the geometrical locus on the wall and will be thus 

written  (F for “free”). In these conditions, (9) becomesFp

 (11) -1

E = [ - ]p I A .pF

which describes the effect of the wall on the free-field emitted by the source . This

formulation can also be differently interpreted if one considers equation (11) with the matrix

term formally developed as a series: 

0S

 (12) 

0 1

E F F

contribution from S contribution from S  taking the wall into account

 =   + [ + + + ... ]2 3p p A A A .p

In fact, with no absorption where (10) is valid, the second term of the right hand side of (12)

leads to 

F

1 1 1
( + + + ... )  = 

2 4 8
p pF  (13) 

which is the contribution of the image source . The existence of this source takes the wall into

account and its contribution with 

1S

F 1 2 Ep p  reveals that the wall reflects perfectly.

 Furthermore, if A  is seen as revealing the radiation of a pressure source upon itself, the 

modified pressure value becomes the new pressure source, which is again modified by  etc…, 

and the pressure at the source converges towards the pressure value 

A

E1 2p pF  in vector 

notation. This interpretation would then be a special case of what will be discussed later on. It 

should also be noted that the development of  is legitimate as long as the series 

converges. It is evidently the case here, but in a more general case, the convergence of the series

should be assessed. 

-1[ - ]I A
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B. A possible origin of the image sources and of their relative importance

Were the ray method exact, the pressure on point  on wall 1Q
1  in Figure 2(a) would be, with 

the notations mentioned before 

 (14) 
ray 1 0 1 1 1 2 1 21 1p (Q ) = G (Q ) + G (Q ) + G (Q ) + G (Q )

As previously stated, (14) is more precisely written in 2D as 

- - - -

ray 1 0 1 0 0 1 1 0 1 2 0 1 21

i
p (Q ) = - H (k Q  - S ) + H (k Q  - S ) +H (k Q  - S ) +H (k Q  - S )

4
(15)

What would be the outcome of a computation from integral representation, which is known to be 

exact? To start with, the development is done with non-absorbing walls. 

Green’s third formula leads to 

 (16) 
M M

1 2

1

1 0 1 n 1 n 1

= 1/2 p(Q )

p(Q ) = G (S ,Q ) + p(M) G (Q ,M) dM  + p(M) G (Q ,M) dM

or, in matrix form, with still further obvious shorthand representation 

1 1 0 1 11 1 12( ) = = ( ) + .  + .p p 2g A p A p  (17) 

with

11

1
=

2
A I  (18) 

in the case of a perfectly reflecting wall 1 . In a similar way, 

2 0 2 21 1 22= ( ) + .  + .p 2g A p A p  (19) 

with

22

1
=

2
A I  (20) 
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with a perfectly reflecting wall . It is to be noted that (18) and (20) reveal infinite and 

perfectly reflecting walls. The matrices  and  therefore contain information about the 

finiteness of the walls (they are of semi-infinite dimensions) and border effects.

2

12A 21A

Equations (17) and (19) lead to 

12

0 1 1

0 1 1 1

-1 -1

1 11 0 1 11 12

 = 2  when =0 = 2  noted 2 

  contributions of S and S  on
respectively noted ( ) and ( )

-1

2 22 0 2

  co

= [ - ] . ( )  + [ - ] . .

= [ - ] . ( )

I A

g g

p I A 2

C

g I A A p

p I A g

210 2 2

0 2 2 2

-1

22 21 1

= 2  noted 2ntributions of S and S on
respectively noted ( ) and ( )

+ [ - ] . .

A B
g g

I A A p

 (21) 

where equation (10) with reflecting walls (admittance ) has been used and where matrices B

and C  are a notation used for brevity’s sake. Solving this system provides 

=0

1 1

1 1 2

1 1

2 2 1

[ 2 2 ] ( ) ( ) [ 2 2 ] 2 ( ) ( )

[ 2 2 ] ( ) ( ) [ 2 2 ] 2 ( ) ( )

1 0 1 0

2 0 2 0

p I C B g g I C B C g g

p I B C g g I B C B g g

2

1

2

1

(22)

Formally, developing in series would result in the expressions 

1 1 2 2

1 1 2 2

2 2 2 1 1

2 2

( ) ( ) 2 ( ) ( )

2 2 ( ) ( ) 2 2 2 ( ) ( ) ...

( ) ( ) 2 ( ) ( )

2 2 ( ) ( ) 2 2

1 0 1 0 2

0 1 0 2

0 2 0 1

0 2

p g g C g g

C B g g C B C g g

p g g B g g

B C g g B C 1 12 ( ) ( ) ...0 1B g g

(23)

Now, Huygens’ Principle posits that the field emitted from a source to a reception point

can be regarded as the contribution of fictitious sources located on the wavefront between the 

source and the reception point [12]. This assertion, qualitative at this stage, argues in favour of 

establishing a correlation between the terms of the series and the image sources. Indeed, keeping 

an eye on in (23), it should be noted that 1p 22 ( )0C g  is the pressure radiated by toward0S 2
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transferred to  through the multiplication by  (cf. Figure 4). It is also the pressure

originating from  on  transferred to , i.e. pressure from  radiated to  denoted 

. This last deduction lacks rigour for the time being. In fact, it would be necessary to 

know the pressure radiated by  on the whole (infinite) wall  for the pressure transferred to 

points of  to be comparable with that radiated by . To this first reasoning, another is added. 

Term  represents the pressure due to  on  transferred to  i.e. pressure from

 on . It is also the pressure from  to  or , with the same lack of rigour as 

written above (the notation  for source  is clear, see section II-1 for the definition of ).

With both reasonings, it appears from (23) (terms of the same order are in brackets) 

1 2C

2S 2 1 2S 1

1( )2g

2S 2

1 2S

22 ( )2C g 2S 2 1

2S 1 21S 1 1( )21g

21g 21S 21S

th st nd

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2

0  order terms 1 order terms 2  order terms

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ...

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 0 1 2 21 12 121 212 2121

2 0 2 1 12 21 212 121

p g g g g g g g g

p g g g g g g g
rd

2

3  order terms

( ) ...1212g  (24) 

To put the above formalism in relation with the diagrams of motivation in Figure 2, we 

ought to conclude that the sources , , etc… are missing on the left configuration (see 

Figure 2a), and sources , , etc… for the configuration on the right (Figure 2b). Moreover, 

taking into account the natural order of terms in the series for , the first source that ought to be 

added to the configuration on the left would be , which is not suitable since it is inside the 

domain. On the right configuration, source  ought to be considered next. The algorithm for 

determining the sources would take it into account, were wall 2 lengthened towards the left.   Let 

us also note that the order of sources for  is not the same as for .

12S 121S

2S 21S

1p

12S

2S

1p 2p

Studying the same problem with an admittance  on  and  on  enables us on the 

one hand, to refine the transfer terms towards walls  and  and, on the other hand, to take the 

1 1 2 2

1 2
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admittance of the reflections associated with the image sources into account. The development

resembles the one presented at the start of this section, but with a further degree of generalization 

along with some refinements in the possible understanding of the image sources origin. 

In this case also, some preliminary remarks are necessary and one returns to Figure 3,

where the wall  now has an admittance  (the inverse of the reduced impedance ).

Equation (6) is now to be written 

Z

 (25) 
M0 n

(*)

p(R) = G (R,S ) + G (R,M) + ik  G (R,M)   p(M) dM

So the wall itself takes on the role of a source with pressure , transmitted to point R while

considering the wall admittance  and the radiation via 

p(M)

Mn G  and  G  applied to the distance

R-M . From a physical viewpoint, the so-called source pressure  must act on the internal

source impedance  combined with the load impedance coming from the medium in which the 

acoustical pressure is propagating. The resulting pressure must then be propagated to point R. All

these roles are described by part (*) of equation (25). In terms of discrete operators, making point 

R tend toward point Q on wall  leads to 

p(M)

Z

 (26) 
Mn 0p(Q) - G (Q,M) + ik  G (Q,M)   p(M) dM = G (Q,S )

or, by using the same notations as in  (11) 

 (27) -1

E F( ) = [ - ] ( )p I A p

where the matrix  (a generalization of the form  in (11), representing the influence of the

wall facets on observation points on the wall) stems from a discretized form of the expression 

A A

 (28) 
Mn G (Q,M) + ik  G (Q,M)   p(M) dM
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In the whole domain, with  noting the vector containing pressure values on points 

inside the domain and with  noting the matrix originating from the discretization of 

E ( )p

A

Mn G (R,M) + ik  G (R,M)  p(M) dM  (29) 

the components of which represent the influence on the facets on the reception point in the

domain, equation (25) becomes

-1

E F 0( ) = [ - ] ( ) ( )p A I A p g  (30) 

This can be interpreted as follows:  is the pressure coming from source radiated

on the geometrical locus defined by the wall 

F( )p 0S

, loaded by both its internal impedance

and the radiating impedance . This pressure is therefore more precisely written 

0S
0SZ

radZ

 (31) 
0

geom

F 0 S rad( ) = (Z Z , )p g

The operator  applied to this quantity does consider the wall impedance (in fact the

combination of the wall and propagation medium impedances) and one writes 

-1[ - ]I A

0

1 S rad0

-1

E F 0 S rad

(Z Z , (Z ))

( ) = [ - ] ( ) = (Z Z , (Z ))

g

p I A p g  (32) 

where it has been emphasized that  is now no longer only a geometrical locus but also an actual 

wall with some kind of internal impedance if this wall is to be seen as a source. Furthermore, as 

for equation (5), it appears that the pressure emitted by  on the wall is also the pressure

emitted by image .

0S

1S

Finally, the right side of equation (30), except the direct contribution, is interpreted as the 

pressure coming from the image source on a geometrical locus of the domain and will be written

 (33) 
0

-1 geom

F 1 S rad rad[ - ] ( ) = (Z Z , Z Z , )A I A p g
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This rich notation reveals that the image source  emits a pressure towards a point inside the 

domain , taking into account the fact that it is the image of source  (together with its

internal impedance  and load ) relatively to wall

1S

0S

0SZ radZ  (with internal impedance Z  and

load ).radZ

The notion of a wall seen as a source with its own pressure and having an internal 

impedance that must be combined with the load impedance in order to radiate into the domain – 

or toward the geometrical locus of another wall – is the key to interpreting the terms of the series

development of the solution obtained by the integral equations method.

Going back to the situations in Figure 2, the continuous form of the coupled problem on 

both walls is now the extended form of (16) 

 (34) 

M

1

M

2

M

1

1 1 0 n 1 1 1

n 1 2 1

2 2 0 n 2 1 2

p(Q ) = G (Q ,S ) + p(M) G (Q ,M) + ik  G (Q ,M) dM

                                          + p(M) G (Q ,M) + ik  G (Q ,M) dM

p(Q ) = G (Q ,S ) + p(M) G (Q ,M) + ik  G (Q ,M) dM

M

2

n 2 2 2                                  + p(M) G (Q ,M) + ik  G (Q ,M) dM

or in discrete form (this time, unlike (21), without simplification)

-1 -1

1 11 0 1 11 12

-1 -1

2 22 0 2 22 21

= [ - ] ( ) + [ - ]

= [ - ] ( ) + [ - ]

2

1

p I A g I A A p

p I A g I A A p
 (35) 

out of which one obtains for example the extended form of (22) 

-1
-1 -1

1 11 12 22 21

-1 -1 -1

11 0 1 11 12 22 0 2

=  - [ - ] [ - ]

[ - ] ( ) + [ - ]  [ - ] ( )

p I I A A I A A

I A g I A A I A g
 (36) 
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Using the notations  the terms responsible 

for the pressure transfer from  to 

-1 -1

21 22 21 12 11 12= [ - ]    and = [ - ]D I A A D I A A

1 2  and inversely appear; they generalize matrices 2B and 

2C in (21). The order of the indices comes from the matrix equations and must be read from 

right to left to reveal the direction of transfer from one wall to the other. The analysis of , for

example, shows that , which originates from

21D

21A

 (37) 
M

1

n 2 1 2G (Q ,M) + ik  G (Q ,M)  p(M) dM

applied to  makes wall  (with pressure  and internal impedance ) radiate

towards the locus defined by wall . Moreover, according to equation (27), the operator

 modifies the pressure radiated at  so as to consider the absorption described by .

Figure 5 illustrates the action of the operators  and . At this stage, the pressure at equation

(36) is now 

1p( ) 1 1p( ) 1Z

2

-1

22[ - ]I A 2 2

21D 12D

-1 -1 -1

1 12 21 11 0 1 12 22 0=  - [ - ] ( ) +  [ - ] ( )p I D D I A g D I A g 2  (38) 

and, using Eq. (12) as well as the remarks in Eq. (21), it can be written 

-1

1 12 21 0 1 1 1 1 12 0 2 2 2 2=  - ( ) + ( , )  + ( ) + ( , )p I D D g g D g g  (39) 

where the expression  stipulates that  radiates on , taking the wall admittance

into account, and similarly for . By developing the inverse term in (35) we obtain

1 1 1( , )g 1S 1 1

2 2 2( , )g

1 0 1 1 1 1 12 0 2 2 2 2

12 21 0 1 1 1 1 12 21 12 0 2 2 2 2

= ( ) + ( , )  + ( ) + ( , )

                   + ( ) + ( , )  + ( ) + ( , )  + ...

p g g D g g

D D g g D D D g g
(40)

which is a generalization of (23). 
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The terms in equation (40) should be analysed as follows. The symbol  is the

pressure radiated at geometrical locus  coming from source (with its own pressure and 

impedance). The radiation uses a combination of source and radiation impedances and one notes 

more precisely as in (31)

0 1( )g

1 0S

 (41) 
0

geom

0 1 0 S rad 1( ) = (Z Z , )g g

and accordingly

 (42) 
0

geom

0 2 0 S rad 2( ) = (Z Z , )g g

Similarly to the case with reflecting walls, it is supposed that the term  is at the origin

of term , but now for absorbing walls a more precise interpretation is sought. With the 

notations introduced before, this term is 

12 0 2. ( )D g

2 1( )g

 (43) -1

12 0 2 11 12 0 2. ( ) = [ - ] . . ( )D g I A A g

The operator  applied to  (the precise form of which is written as (42)) arises from the 

continuous term

12A 0 2( )g

M 0

2

geom

n 1 2 1 0 S rad 2

(*)

G (Q ,M) + ik  G (Q ,M)  G (Z Z , (M)) dM  (44) 

( is the Green function corresponding to vector 0G 0g ) where some conjectures had to be 

accepted in order to go further in the interpretation. In equation (44), the term

 could have the role of the pressure coming from  seen as a source 

radiating toward geometrical locus . To this end, it should have a source impedance and a 

radiation impedance. This source would then be revealed by the existence of the image source 

. The term (*) in equation (44) could have this role of combining both source and radiation 

impedances. In these conditions,

0

geom

0 S rad 2G (Z Z , (M))
2

geom

1

2S
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0 0 2

geom geom

12 0 S rad 2 2 S rad 2 rad 1 (Z Z , ) Z Z , Z Z ,A g g  (45) 

and, following the interpretation of (37),

0 0 2

-1 geom

12 0 2 11 12 0 S rad 2 2 S rad 2 rad 1 1( ) = [ - ] (Z Z , ) (Z Z ),(Z Z ), (Z )D g I A A g g  (46) 

thus confirming the first supposition. Encouraged by this understanding of the term 12 0 2( )D g ,

a similar interpretation of term 21 12 0 2( )D D g  is sought. It is expected that expression (46) 

allows for

 (47) 
0 2 1

21 12 0 2 21 S rad 2 rad 1 rad 2 2( ) Z Z , Z Z , Z Z , (Z )D D g g

Indeed,  multiplied by equation (46) can be understood as the pressure coming from 21A 1

radiating towards  with the needed impedances. Particularly, the “internal” impedance of 2 1

and the pressure on  are united in the existence of source , so the right-hand term of 

equation (46) can now be understood as the source pressure 

1 21S

 (48) 
0 2

21 S rad 2 rad 1 1Z Z , Z Z , (Z )g

Upon multiplication by , (48) becomes12A

0 2 1

geom

21 S rad 2 rad 1 rad 2Z Z , Z Z , Z Z ,g  (49) 

and finally via -1

22[ - ]I A

 (50) 
0 2 1

21 S rad 2 rad 1 rad 2 2Z Z , Z Z , Z Z , (Z )g

Each impedance grouping is linked to a particular propagation path, so there are as many

reflections as groupings. The interpretation of all other terms follows the same procedure. But 

even if these conclusions give meaning to the image sources and to the number of reflections that

are associated with them, they still remain to be formally demonstrated. For it is at first sight
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surprising that an incident pressure wave on a wall would lead to a source pressure as soon as the 

wall impedance is considered and that this very impedance would be considered a second time

when this source radiates (again, part (*) of equation (44) shows a combination of this wall 

impedance and the radiation impedance).

C. Integral representation inside the domain and series development

The investigation proposed in this paper of the rational origins of the notion of image sources 

associated with the acoustical ray method rests entirely on the series development of the exact 

solution of the wall pressure. This development could not have been directly applied to the exact

solution within the domain. Whereas, now that the wall pressure can be developed as a series, an 

extension toward an expression of the pressure inside the domain is possible. Only the case of 

perfectly reflecting walls is considered here. Again, some preliminary remarks are needed. 

In the elementary configuration of Figure 6a, pressure at point R is expressed by 

Mn

contribution from S', or G (R,S')

p(R) = G (R,S) + p(M) G (M,R)dM  (51) 

with (according to (4))

p(M) = G (M,S) + G (M,S') = 2G (M,S')  (52) 

thus leading to the following matrix equation (with our notation conventions) 

 (53) ( ) ( ) ( ) 2 '( )p g E p g E g

For the two-walled configuration under study here (Figure 6b), we write similarly

( )0 1 1 2p 2g E p E p  (54) 

During the analysis of the series development to obtain the source contribution, it appears that 

the terms are counted by pairs. Indeed, the formulation is also 
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(55)

1 11

1

1 1 1 1 1 1

2 ( ) 2 ( )2 ( )

1 1 1

2 ( )

 = ( )   + .( ( ) + ( )  + ( ) + ( )  + ( ) + ( )  +...)

+ .( ( ) + ( )  + ( ) + (

121 121211

21

0 1 0 1 12 121 1212 12121

g gg

1 2 21 212 2121

g

p g E g g g g g g

E g g g g

1 1

2 22

1 1

2 ( ) 2 ( )

2 2 2 2 2 2

2 ( ) 2 ( )2 ( )

)  + ( ) +...  + ...)

+ .( ( ) + ( )  + ( ) + ( )  + ( ) + ( )  + ..

2121 21212

212 2121212

21212

g g

2 0 2 21 212 21212 212121

g gg

g

E g g g g g g

2 2 2

2 2 2 2 2 2

2 ( ) 2 ( ) 2 ( )

.)

+ .( ( ) + ( )  + ( ) + ( )  + ( ) + ( )  + ...)

12 1212 121212

2 1 12 121 1212 12121 121212

g g g

E g g g g g g

Transferring the pressures from the walls towards the domain  through  leads to 1  andE 2E

(56)0 1 2 12 21 121 212 1212 = ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) +... p g g g g g g g g

where assembling terms by pairs always takes into account terms of the same order in the series 

revealing the pressures on the walls . It must be noted that this particular order of terms is of no 

significance, and it would have been quite possible to write, for example,

 (57) 0 2 1 12 21 212 121 = ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) +... p g g g g g g g

However, in the present case, the relative order of the terms series stemming from S1 and S2

remains. This question about the order of terms radiating toward the domain will appear in the

conclusion.

III - NUMERICAL EXPERIMENTS 

The reasoning correlating the terms of the series development and the image sources may lack 

rigor and an analysis of this reasoning will sooner or later prove necessary, but as a first step,

numerical experiments can yield results faster and provide a factual confirmation of the 

interpretation presented here. 

All the experiments presented here were done in the situation depicted in Figure 7,

composed of two perfectly reflecting walls 1  and 2 , at an angle . The present study is 
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concerned with the justification of a possible term-by-term relation between the series

development of the integral solution and the series of image sources. Therefore, work has been 

concentrated on the case of perfectly reflecting walls (except for Situation B presented in Figure 

10, see below), deliberately setting aside the case of absorbing walls. Only after this term-by-

term correspondence has been assessed will it be possible to compare a series term with wall 

impedance and an image source contribution with specular absorption. In this second step, the 

difference between a local specular reaction and the non-local reaction present in the integral

equations (diffusion) could then be verified. Both walls, theoretically of infinite length, are in 

fact 5m long for numerical reasons; the source is located at the coordinates . The values

of ,  and  used in the different situations referred to in this section are summed up in

Table I. The walls are discretized into 250 facets of a length of 0.02m each (the wavelength is ca. 

0.7m). The pressure is computed on both walls at 500 Hz. In the following tests, the solution 

obtained by the image sources method is compared with the corresponding series development.

The reference solution in all cases is computed with the integral method. This solution is 

assumed to be exact, but with an approximation brought by the discretization and the finite 

length of the walls. 

S S(x , y )

Sx Sy

Seeking a way to observe if there is a correspondence between the terms of the series 

development and the image sources for the computation of the wall pressure, the first test comes

from an intuitive consideration. For an acute angle , a great number of reflections can occur

between the walls, so a great number of image sources is expected; it is noticeable that the image

choice algorithm shows that all image sources are visible for the wall pressure. For > 2

(obtuse), a small number of sources should intervene. It could be that the number of image

sources is a monotonous function of the angle, so the convergence speed of the series should 
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increase from acute to obtuse angles. To verify this assertion, a distance between the exact

solution (actually the expression “exact” is incorrect since the solution is only numerically

approached) and the solution obtained with a number  of terms of the series development or 

obtained with a number  of image sources is defined as 

tN

sN

1 1

2 2

t series t exact s sources s exactd(N )= p (N ,x)-p (x) dx    and    d(N )= p (N ,x)-p (x) dx  (58) 

Figure 8 shows that the convergence curves of both the ray method and series development

solutions are closely related and verify the fact that the convergence is faster for wider angles.

For acute angles, the extra terms of the series development (those without an image source

equivalent) appear to be of weak or even negligible contribution compared to the first terms.

From a more physical point of view, the development series and its interpretation via Huygens’ 

Principle lead to the same conclusion, since the specular part of the sound field (located in the 

first terms of the series) is of greater importance than the diffracted part (in the higher order

terms). Therefore the correspondence between the terms of the series development and the image

sources can be further explored.  Let us remark that in the case of an open sector, no resonances 

with infinite amplitudes at some frequencies are expected, which has indeed been observed.

A special situation is the so-called quarter-infinite space (in 2D), where = 2  (situation 

A). It has been previously observed that the image source method is in very good agreement with

the reference solution in the case of perfectly rigid walls and also of those with a local

impedance [13]. This also means that the visible sources (of which there are 4: the real source 

plus 3 images) contain the majority if not all of the needed information. Figure 8 shows that the 

reference solution is reached in four terms both by the series development and by the

corresponding image sources. However, a closer observation (induced by the strong 
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convergence, as we shall see) shows a very slight difference between the two convergence 

curves: the terms of the series development converge a little more slowly than the sum of the

image sources contributions. This could be due to the numerical approximation of the exact 

(reference) solution, and will be further examined. This situation where the first four terms are

sufficient to obtain a good solution ought to be revealed in equation (23) if the product of the

matrices  were null for C B = 2  without  being zero. In practice, this would be 

highlighted by a norm of the product. Figure 9 shows the maximum singular value of the product 

 along with the convergence (according to (58)) of the 5

orB C

C B th
 term of the series development on 

, i.e. . Both values are seen to decrease from acute angles toward 1 12 2 (0C B g ) 2 . The 

convergence stabilizes at zero from there on, signifying that the 5
th

 term is superfluous for obtuse

angles. On the other hand, the fact that the maximum singular value of  is not null atC B

= 2  could hint that this norm is perhaps not appropriate to treat the expected vanishing of 

 at C B = 2 .

Despite the fact that the numerical experiments presented in this paper focus on the case 

, to gain confidence in the well-founded base of the work, a comparison is proposed in 

Figure 10 between the pressure field on the boundaries of a quart-infinite space (situation B) 

with an arbitrary impedance (reduced impedance

 = 0

9rZ , which characterises an absorption of

about 36% at normal impedance) calculated with the integral method and the pressure calculated 

with the four images. The very good agreement between both fields lead us to believe that the 

first four terms of the series still correspond to the four sources, probably resulting therefore in 

product  in equation (39) null without both of the matrices being zero, but this still 

remains to be demonstrated.

12 21D D
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The weak convergence in Figure 8 for an acute angle  shows that  the interpretation of the 

series development proves coherent at first sight and hints at a formal justification of the image

sources method, but offers no improvement of this method, since the extra terms (not 

corresponding to visible sources) are of negligible contribution. On the contrary, for obtuse 

angles one can show the effects of adding the “supplementary” sources, coming from the terms

of the series development without a “real” corresponding image source (“invisible” source as 

mentioned in Figure 2b). To show the impact of this extra source, two situations, showing

characteristic features of the method, are displayed here. The situations considered are as defined 

in Table I. Figure 11a (situation C) shows an increase in precision when an extra source (in this

case ) is added. For another situation, however, Figure 11b (situation D) seems to show that

adding a source can indeed weaken the solution. This puts the distance as defined above into 

question and leads to the observation of the strong convergence, i.e. the comparison between the 

actual pressure levels obtained by each method. The horizontal lines in Figure 11 occur when no 

additional sources are considered. 

2S

Instead of observing a mean value between the reference solution and the computed one, 

the actual pressure level on each point of the wall is observed. Figure 12a shows the strong

convergence in the case of acute  (situation F). The terms of the series development can be 

seen to converge toward the exact solution. In Figure 12b, a more detailed view shows the first 6 

terms and their corresponding image sources. An almost perfect coherence between the terms

and the sources can be observed. This is expected for the first two terms, since they are 

conceptually identical, but the coherence of the higher terms is significant for the validity of the

interpretation.
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As said earlier for = 2 , the series development converges more slowly than the sum of 

the image sources contributions. Figure 13 shows the strong convergence for situation A, which

has = 2  and confirms this remark, for only 4 image sources are necessary to converge toward 

the reference solution, whereas 6 series development terms are needed (although 4 terms already 

lead to a very acceptable result). 

Observing the pressure level on the walls (strong convergence) for cases with an obtuse 

angle  (situation C in Figure 14a, D in Figure 14b and E in Figure 14c) reveals the 

enhancement brought about by adding an extra invisible source (in this case ). The oscillatory

behaviour of the wall pressure is not taken into account if only the visible sources are used. This

valuable information is added when an extra source is used (but was not accessible when only

observing the weak convergence, as in Figure 11b).

2S

IV – CONCLUSION 

The acoustic ray method rests upon specular reflection – combined with the notion of associated 

image sources in one version of the method – that has been intuitively accepted following 

geometrical optics. Sound fields in cavities have thus been computed and the results compared

with finite element method results, shedding light on differences between the two methods,

which we seek to reduce. Acoustic rays, not taking diffraction into account, will always show 

different results. Nevertheless, and having a possible improvement of the ray method in mind,

the primary goal of this research was to identify the analytical origin of image sources and so

tackle the problem in a rational way.

For this purpose, the analysis of the exact solution of the harmonic wall pressure in an 

elementary domain (angular sector in 2 dimensions, bounded by two “walls”, totally reflective to
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start with, and then absorbent) has brought interesting results. Of particular interest was the 

generalization of the notion of image sources, of which some that are normally not considered in

the classical image source method could lead to better results, were they used. In fact, the exact 

solution (obtained by an integral representation of the problem) can be developed into a series 

after being discretized and written in matrix form. Thanks to Huygens’ Principle, the first terms

of this series could represent the contributions of the image sources that are given by the method

currently used. The other terms in the series would then be represented by generalized image

sources. Such sources are actually missing in the classical ray method and could be used to refine 

the sound field computation results. To assert that a particular solution comes closer to a 

reference solution, a distance has to be defined, in this case an euclydian norm in .2L

The numerical experiments – where no absorption has been considered at this stage of the 

investigation, except for a short illustration – have greatly confirmed the correspondence

between the contributions of the first terms of the series development and the corresponding 

image sources. Moreover, it has been shown that in certain cases, a “missing” image source 

brings significant extra information (either directly visible with the chosen distance, or visually

observable on the graph but not revealed by the chosen distance).

At this level, mentioning the “first” missing source again implies having defined a distance 

to establish a relation that enables a classification of the image sources’ importance. In the 

configuration proposed in this paper, the euclydian norm used calls “first missing source” the 

first term of the series that does not correspond to an image source visible at the reception point. 

As long as this point is located on a wall and at a certain distance from the corners, an idea for 

the algorithm to make this first missing source appear is envisaged. But the problem requires 

further investigation for cases where the reception point is near the wall limits.
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In the same vein, it has been shown that the acoustic pressure in the domain can also be 

developed in series, but not immediately. Contrary to the wall pressure case, the order of the 

terms is in this case still unknown and further research is necessary to identify it. This problem is

directly linked to the classification of the influences of walls on the solution at a particular point 

in the domain. As soon as a rational way to identify these influences is found, physical

information on the role of the different walls will be available. This role is for the moment only 

derived intuitively from simple cases. 

Finally, this paper has shown that a solution obtained by current ray methods is an 

approximation taking into account the first terms of an exact solution obtained via integral 

representation. But a weak point still remains: ideally the contribution of each source should

have been shown to be concentrated in a single series development term, and not spread in 

multiple terms instead. Nevertheless, this point has been observed in numerical results, although 

it has not been demonstrated mathematically.
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Table I - Considered situations 

Label ( , )S Sx y  in m rZ Corresponds to Figure 

A 2 (3.0, 3.0) 13

B 2 (0.5, 0.5)  9 10

C 5 8 (0.5, 2.0) 11a, 14a 

D 5 8 (-0.5, 2.0) 11b, 14b 

E 7 8 (0.1, 0.3) 14c

F 6 (3.0, 3.0 tan( 2) ) 12a, 12b 
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Figure 1 (color online) – Set of image-sources liable to give rise to reflected rays for points in the

angular sector; set of rays (i.e., of sources) contributing to the calculation of the acoustic field at 

point P. 

Figure 2  – The implementation of the algorithm for determining the useful image-sources for

point  Q1 results in three images in (a) and only one in (b). 

Figure 3 – Reflection of an acoustic wave on a totally reflecting plane in the half-infinite space

Figure 4 – Matrices 2B and 2C transfer respectively pressure from wall 1  toward wall 2  and 

inversely.

Figure 5 – Operators D21 et D12 transfer respectively pressure from wall 1  toward wall 2  and

inversely (the order of the indices comes from the matrix representation and is to be read from 

right to left)

Figure 6 – (a) elementary configuration with a reflection on the wall; (b) transfer of pressures

from the wall toward the inside of the domain.

Figure 7 – Geometrical configuration for the numerical tests 

Figure 8 (color online) – Convergence speed as function of aperture angle .

Figure 9 (color online) – The contribution of C B decreases when going from acute to obtuse 

angles.

Figure 10 (color online) – Pressure levels on wall 1  in situation B, with absorbing walls

( )9rZ

Figure 11 (color online) – Weak convergence on wall 1 : (a) Situation C, (b) Situation D

Figure 12 (color online) - Strong convergence in situation F: (a) convergence of the series 

development terms toward the exact solution (for clarity, only the first 10 terms are shown); (b) 

contribution of the first 6 terms of the series development and corresponding image sources. 
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Figure 13 (color online) - Strong convergence in Situation A 

Figure 14 (color online) - Effect of an "invisible" source (a) Situation C, (b) Situation D, (c)

Situation E 

35



S

S1

S2S12

S121

S21

S212
P

Q

R

1

2

O

A

B



S

1

2

S1

S2

S21

Q1



1

2

Q1 S

S1



Q
S0

S1



1

2

2C
2B



1

2

D12
D21



����������������
����������������
����������������
����������������

M

R
S

S’



1

2

R
E2

E1



2Γ

1Γ

Sx

yS

5m * sin(  )θ

θ

5m

S



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  2  3  4  5  6  7  8  9  10  11  12

D
is

ta
nc

e 
d(

N
s)

 o
r 

d(
N

t)

Number of sources/terms

π/8

π/5

π/3

π/2

5π/8

Image sources
Series development



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

3π/4π/2π/4
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6
D

is
ta

nc
e 

d(
N

5)
 fo

r 
th

e 
5th

 te
rm

V
al

ue
 o

f t
he

 e
le

m
en

t i
n 

m
at

rix
 C

B

Wall aperture angle (θ)

5th series term
Maximum singular element



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  1  2  3  4  5

A
co

us
tic

 P
re

ss
ur

e 
[P

a]

Observation on wall Γ1 [m] starting at origin

Image sources
Exact solution



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 4 3 2 1

D
is

ta
nc

e 
d(

N
s)

 o
r 

d(
N

t)

Number of sources/terms

Image sources
Image sources with extra source

Series development



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 4 3 2 1

D
is

ta
nc

e 
d(

N
s)

 o
r 

d(
N

t)

Number of sources/terms

Image sources
Image sources with extra source

Series development



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2

A
co

us
tic

 P
re

ss
ur

e 
[P

a]

Observation on wall Γ1 [m]

Series development terms
Exact solution



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2

A
co

us
tic

 P
re

ss
ur

e 
[P

a]

Observation on wall Γ1 [m]

Series development terms
Image sources
Exact solution



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 2  2.2  2.4  2.6  2.8  3  3.2  3.4  3.6  3.8  4

A
co

us
tic

 P
re

ss
ur

e 
[P

a]

Observation on wall Γ1 [m]

Series development terms
Image sources
Exact solution



 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

A
co

us
tic

 P
re

ss
ur

e 
[P

a]

Observation on wall Γ1 [m]

Image sources
Image sources with extra source

Exact solution



 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

A
co

us
tic

 P
re

ss
ur

e 
[P

a]

Observation on wall Γ1 [m]

Image sources
Image sources with extra source

Exact solution



 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

A
co

us
tic

 P
re

ss
ur

e 
[P

a]

Observation on wall Γ1 [m]

Image sources
Image sources with extra source

Exact solution


