
Low Cost Constant Round MPC
Combining BMR and Oblivious Transfer

Carmit Hazay∗ Peter Scholl† Eduardo Soria-Vazquez‡

July 14, 2017

Abstract

In this work, we present two new universally composable, actively secure, constant round multi-party
protocols for generating BMR garbled circuits with free-XOR and reduced costs.

1. Our first protocol takes a generic approach using any secret-sharing based MPC protocol for binary
circuits, and a correlated oblivious transfer functionality.

2. Our specialized protocol uses secret-sharing based MPC with information-theoretic MACs. This
approach is less general, but requires no additional correlated OTs to compute the garbled circuit.

In both approaches, the underlying secret-sharing based protocol is only used for one secure F2 multipli-
cation per AND gate. An interesting consequence of this is that, with current techniques, constant round
MPC for binary circuits is not much more expensive than practical, non-constant round protocols.

We demonstrate the practicality of our second protocol with an implementation, and perform ex-
periments with up to 9 parties securely computing the AES and SHA-256 circuits. Our running times
improve upon the best possible performance with previous BMR-based protocols by 60 times.

∗Bar-Ilan University, Israel. Email: carmit.hazay@biu.ac.il
†Aarhus University, Denmark. Work done whilst at University of Bristol, UK. Email: peter.scholl@cs.au.dk
‡University of Bristol, UK. Email: eduardo.soria-vazquez@bristol.ac.uk

1

Contents

1 Introduction 3
1.1 Our Contributions . 3
1.2 Technical Overview . 6

2 Preliminaries 7
2.1 Pseudorandom Functions . 8
2.2 Circular 2-Correlation Robust PRF . 8
2.3 Almost-1-Universal Linear Hashing . 9
2.4 Security Model . 9
2.5 Commitment Functionality . 10
2.6 Coin-Tossing Functionality . 11
2.7 Correlated Oblivious Transfer . 11
2.8 Functionality for Secret-Sharing-Based MPC . 11
2.9 BMR Garbling . 12

3 Generic Protocol for Multi-Party Garbling 12
3.1 The Preprocessing Functionality . 12
3.2 Protocol Overview . 14
3.3 Bit/String Multiplications . 16
3.4 Consistency Check . 18
3.5 Security Proof . 20

4 More Efficient Garbling with Multi-Party TinyOT 24
4.1 Secret-Shared MAC Representation . 24
4.2 MAC-Based MPC Functionality . 25
4.3 Garbling with Fn-TinyOT . 25

5 The Online Phase 28
5.1 The Online Phase with FKQ

Prepocessing . 34

6 Performance 36
6.1 Implementation . 36
6.2 Communication Complexity Analysis . 38

A Protocol for GMW-Style MPC for Binary Circuits 43
A.1 Why the Need for Key Queries? . 44
A.2 Security . 47
A.3 Parameters . 49
A.4 Communication Complexity . 49
A.5 Round Complexity . 50
A.6 Realizing General Secure Computation . 50

2

1 Introduction

Secure multi-party computation (MPC) protocols allow a group of n parties to compute some function f on
the parties’ private inputs, while preserving a number of security properties such as privacy and correctness.
The former property implies data confidentiality, namely, nothing leaks from the protocol execution but the
computed output. The latter requirement implies that the protocol enforces the integrity of the computations
made by the parties, namely, honest parties learn the correct output. Modern, practical MPC protocols
typically fall into two main categories: those based on secret-sharing [GMW87, RBO89, BOGW88, DN07,
IPS09, DPSZ12], and those based on garbled circuits [Yao86, BMR90, LP07, KS08, LP09, LP11, CKMZ14,
MRZ15]. When it comes to choosing a protocol, many different factors need to be taken into account, such
as the function being evaluated, the latency and bandwidth of the network and the adversary model.

Secret-sharing based protocols such as [GMW87, BOGW88, DPSZ12] tend to have lower communica-
tion requirements in terms of bandwidth, but require a large number of rounds of communication, which
increases with the complexity of the function. In this approach the parties first secret-share their inputs and
then evaluate the circuit gate by gate while preserving privacy and correctness. In low-latency networks,
they can have an extremely fast online evaluation stage, but the round complexity makes them much less
suited to high-latency networks, when the parties may be far apart.

Garbled circuits, introduced in Yao’s protocol [Yao86], are the core behind all practical, constant round
protocols for secure computation. In the two-party setting, one of the parties “encrypts” the circuit being
evaluated, whereas the other party privately evaluates it. Garbled circuit-based protocols have recently be-
come much more efficient, and currently give the most practical approach for actively secure computation
of binary circuits [RR16, NST17]. With more than two parties, the situation is more complex, as the gar-
bled circuit must be computed by all parties in a distributed manner using another (non-constant-round)
MPC protocol, as in the BMR protocol from [BMR90]. This still leads to a low depth circuit, hence a
constant round protocol overall, because all gates can be garbled in parallel. We note that this paradigm
has received very little attention, compared with two-party protocols. The original BMR construction uses
generic zero-knowledge techniques for proving correct computation of PRG values, so is impractical. A
different protocol, but only for three parties, was designed by Choi et al. [CKMZ14] in the dishonest ma-
jority setting. More practical, actively secure protocols for any number of parties are the recent works of
Lindell et al. [LPSY15, LSS16], which use somewhat homomorphic encryption (SHE) or generic MPC to
garble a circuit. Ben-Efraim et al. [BLO16] recently presented and implemented an efficient multi-party
garbling protocol based on oblivious transfer, but with only semi-honest security. Very recently, Katz et al.
introduced in [KRW17] protocols based on authenticated garbling, with a preprocessing phase that can be
instantiated based on TinyOT [NNOB12].

1.1 Our Contributions

In this work, we present a practical, actively secure, constant round multi-party protocol for generating BMR
garbled circuits with free-XOR in the presence of up to n−1 out of n corruptions. As in prior constructions,
our approach has two phases: a preprocessing phase where the garbled circuit is mutually generated by
all parties, and an online phase where the parties obtain the output of the computation. While the online
phase is typically efficient and incurs no cost to achieve active security, the focus of recent works was on
optimizing the preprocessing complexity, where the main bottleneck is with respect to garbling AND gates.
In that context, we present two new constant-round protocols for securely generating the garbled circuit:

1. A generic approach using any secret-sharing based MPC protocol for binary circuits, and a correlated

3

oblivious transfer functionality.

2. A specialized protocol which uses secret-sharing based MPC with information-theoretic MACs, such
as TinyOT [NNOB12, FKOS15]. This approach is less general, but requires no additional correlated
OTs to compute the garbled circuit.

In both approaches, the underlying secret-sharing based protocol is only used for one secure F2 multi-
plication per AND gate.

In the first, more general method, every pair of parties needs to run one correlated OT per AND gate,
which costsO(κ) communication for security parameter κ. Combining this with the overhead induced by the
correlated OTs in our protocol, we obtain total complexity O(|C|κn2), assuming only symmetric primitives
and O(κ) seed OTs between every pair of parties. This gives an overall communication cost of O(M +
|C|κn2) to evaluate a circuit C, where M is the cost of evaluating |C| AND gates in the secret-sharing
based protocol, Π. To realize Π, we can define a functionality with multiplication depth 1 that computes all
the AND gates in parallel (these multiplications can be computed in parallel as they are independent of the
parties’ inputs). Furthermore, the [IPS08] compiler can we instantiated with semi-honest [GMW87] as the
inner protocol and [DI06] as the outer protocol. By Theorem 2, Section 5 from [IPS08], for some constant
number of parties m ≥ 2, the functionality can be computed with communication complexity O(|C|) plus
low order terms that depend on a statistical parameter s, the circuit’s depth and log |C|. As in [IPS08], this
extends to the case of a non-constant number of parties n, in which case the communication complexity
grows by an additional factor of |C|poly(n).

Another interesting candidate for instantiating Π would be to use an MPC protocol optimized for SIMD
binary circuits such as MiniMAC [DZ13]. This is because in our construction, all the AND gates can be
computed in parallel. Currently, the only known preprocessing methods [FKOS15] for MiniMAC are not
practical, but this seems to be an interesting future direction to explore.

TinyOT is currently the most practical approach to secret-sharing based MPC on binary circuits, so the
second method leads to a highly practical protocol for constant-round secure computation. The complexity
is essentially the same as TinyOT, as here we do not require any additional OTs. However, the protocol is
less general and has worse asymptotic communication complexity, since TinyOT costs either O(|C|Bκn2)
(with 2 parties or the recent protocol of [WRK17]), or O(|C|B2κn2) (with [FKOS15]), where B = O(1 +
s/ log |C|) (and in practice is between 3–5), and s is the statistical security parameter.

Our constructions employ several very appealing features. For a start, we embed into the modeling
of the preprocessing functionality, which computes the garbled circuit, an additive error introduced into
the garbling by the adversary. Concretely, we extend the functionality from [LPSY15] so that it obtains
a vector of additive errors from the adversary to be applied to each garbled gate, which captures the fact
that the adversary may submit inconsistent keys and pseudorandom function (PRF) values. We further
strengthen this by allowing the adversary to pick the error adaptively after seeing the garbled circuit (in
prior constructions this error is independent of the garbling) and allowing corrupt parties to choose their
own PRF keys, possibly not at random. This requires a new analysis and proof of the online phase.

Secondly, we devise a new consistency check to enforce correctness of inputs to correlated OT, which is
based on very efficient linear operations similar to recent advances in homomorphic commitments [CDD+16].
This check, combined with our improved error analysis for the online phase, allows the garbled circuit to be
created without authenticating any of the parties’ keys or PRF values, which removes a significant cost from
previous works (saving a factor of Ω(n)).

4

Protocol Based on Free XOR Comms. per Garbled Gate

SPDZ-BMR [LPSY15] SHE + ZKPoPK 7 O(n4κ)
SHE-BMR [LSS16] SHE (depth 4) + ZKPoPK 7 O(n3κ)
MASCOT-BMR-FX OT 3 O(n3κ2)

This work §3 OT + [IPS08] 3 O(n2κ+ poly(n))
This work §4 TinyOT 3 O(n2B2κ)

[KRW17] (concurrent) Optimized TinyOT 3 O(n2Bκ)

Table 1: Comparison of actively secure, constant round MPC protocols. B = O(1+s/ log |C|) is a cut-and-
choose parameter, which in practice is between 3–5. Our second protocol can also be based upon optimized
TinyOT to obtain the same complexity as [KRW17].

Implementation. We demonstrate the practicality of our TinyOT-based protocol with an implementation,
and perform experiments with up to 9 parties securely computing the AES and SHA-256 circuits. In a 1Gbps
LAN setting, we can securely compute the AES circuit with 9 parties in just 620ms. This improves upon
the best possible performance that would be attainable using [LPSY15] by around 60 times. The details of
our implementation can be found in Section 6.

1.1.1 Comparison with Other Approaches

Table 1 shows how the communication complexity of our work compares with other actively secure, constant-
round protocols. As mentioned earlier, most previous constructions express the garbling function as an arith-
metic circuit over a large finite field. In these protocols, garbling even a single AND gate requires computing
O(n) multiplications over a large field with SHE or MPC. This means they scale at least cubically in the
number of parties. In constrast, our protocol only requires one F2 multiplication per AND gate, so scales
with O(n2). Previous SHE-based protocols also require zero-knowledge proofs of plaintext knowledge of
SHE ciphertexts, which in practice are very costly. Note that the recent MASCOT protocol [KOS16] for
secure computation of arithmetic circuits could also be used in [LPSY15], instead of SHE, but this still
has very high communication costs. We denote by MASCOT-BMR-FX an optimized variant of [LPSY15],
modified to use free-XOR as in our protocol, with multiplications in F2κ done using MASCOT. Finally,
the recent concurrent work by Katz et al. [KRW17] is based on an optimized variant of TinyOT, with
comparable performance to our approach.

None of these previous works have reported implementations at the time of writing, but our implementa-
tion of the TinyOT-based protocol improves upon the best times that would be achievable with SPDZ-BMR
and MASCOT by up to 60x. This is because our protocol has lower communication costs than [LPSY15] (by
at least 2 orders of magnitude) and the main computational costs are from standard symmetric primitives,
so far cheaper than using SHE.

Overall, our protocols significantly narrow the gap between the cost of constant-round and many-round
MPC protocols for binary circuits. More specifically, this implies that, with current techniques, constant
round MPC for binary circuits is not much more expensive than practical, non-constant round protocols. Ad-
ditionally, both of our protocols have potential for future improvement by optimizing existing non-constant
round protocols: a practical implementation of MiniMAC [DZ13] would lead to a very efficient approach
with our generic protocol, whilst any future improvements to multi-party TinyOT would directly give a
similar improvement to our second protocol.

5

1.2 Technical Overview

Our protocol is based on the recent free-XOR variant of BMR garbling used for semi-honest MPC in [BLO16].
In that scheme, a garbling of the g-th AND gate with input wires u, v and output wire w, consists of the 4n
values (where n is the number of parties):

g̃ja,b =

(
n⊕
i=1

Fkiu,a,kiv,b
(g‖j)

)
⊕ kjw,0 (1)

⊕
(
Rj((λu ⊕ a)(λv ⊕ b)⊕ λw)

)
, (a, b) ∈ {0, 1}2, j ∈ [n]

Here, F is a double-key PRF, Rj ∈ {0, 1}κ is a fixed correlation string for free-XOR known to party Pj ,
and the keys kju,a, k

j
v,b ∈ {0, 1}

κ are also known to Pj . Furthermore, the wire masks λu, λv, λw ∈ {0, 1}
are random, additively secret-shared bits known by no single party.

The main idea behind BMR is to compute the garbling, except for the PRF values, with a general MPC
protocol. The analysis of [LPSY15] showed that it is not necessary to prove in zero-knowledge that every
party inputs the correct PRF values to the MPC protocol that computes the garbling. This is because when
evaluating the garbled circuit, each party Pj can check that the decryption of the j-th entry in every garbled
gate gives one of the keys kjw,b, and this check would overwhelmingly fail if any PRF value was incorrect. It
further implies that the adversary cannot flip the value transmitted through some wire as that would require
from it to guess a key.

Our garbling protocol proceeds by computing a random, unauthenticated, additive secret sharing of
the garbled circuit. This differs from previous works [LPSY15, LSS16], which obtain authenticated (with
MACs, or SHE ciphertexts) sharings of the entire garbled circuit. Our protocol greatly reduces this com-
plexity, since the PRF values and keys (on the first line of equation (1)) do not need to be authenticated.
The main challenge, therefore, is to compute shares of the products on the second line of (1). Similarly
to [BLO16], a key observation that allows efficiency is the fact that these multiplications are either between
two secret-shared bits, or a secret-shared bit and a fixed, secret string. So, we do not need the full power of
an MPC protocol for arithmetic circuit evaluation over F2κ or Fp (for large p), as used in previous works.

To compute the bit product λu ·λv, we can use any actively secure GMW-style MPC protocol for binary
circuits. This protocol is only needed for computing one secure AND per garbled AND gate, since all bit
products in g̃ja,b can be computed as linear combinations of λu ·λv, λu and λv. We then need to multiply the
resulting secret-shared bits by the string Rj , known to Pj . We give two variants for computing this product,
the first one being more general and the second more concretely efficient. In more details,

1. The first solution performs the multiplication by running actively secure correlated OT between Pj and
every other party, where Pj inputs Rj as the fixed OT correlation. The parties then run a consistency
check by applying a universal linear hash function to the outputs and sacrificing a few OTs, ensuring
the correct inputs were provided to the OT. This protocol is presented in Section 3.

2. The second method requires using a ‘TinyOT’-style protocol [FKOS15, BLN+15] based on information-
theoretic MACs, and allows us to compute the bit/string products directly from the MACs, provided
each party’s MAC key is chosen to be the same string Ri used in the garbling. This saves interaction
since we do not need any additional OTs. This protocol is presented in Section 4.

6

After creating shares of all these products, the parties can compute shares of the whole garbled circuit.
These shares must then be rerandomized, before they can be broadcast. Opening the garbled circuit in this
way allows a corrupt party to introduce further errors into the garbling by changing their share, even after
learning the correct garbled circuit, since we may have a rushing adversary. Nevertheless, we prove that the
BMR online phase remains secure when this type of error is allowed, as it would only lead to an abort. This
significantly strengthens the result from [LPSY15], which only allowed corrupt parties to provide incorrect
PRF values, and is an important factor that allows our preprocessing protocol to be so efficient.

1.2.1 Concurrent Work

Two recent works by Katz, Ranellucci and Wang introduced constant round, two-party [WRK17] and multi-
party [KRW17] protocols based on authenticated garbling, with a preprocessing phase that can be instan-
tiated based on TinyOT. At the time of writing, their two-party paper also reports on an implementation,
but the multi-party version does not. Our work is conceptually quite similar, since both involve generating
a garbled circuit in a distributed manner using TinyOT. The main difference seems to be that our protocol
is symmetric, since all parties evaluate the same garbled circuit. With authenticated garbling, the garbled
circuit is only evaluated by one party. This makes the garbled circuit slightly smaller, since there are n− 1
sets of keys instead of n, but the online phase requires at least one more round of interaction (if all par-
ties learn the output). The works of Katz et al. also contain concrete and asymptotic improvements to the
two-party and multi-party TinyOT protocols, which improves upon our protocol in Appendix A by a factor
of O(s/ log |C|) where s is a statistical parameter. These improvements can be directly plugged into our
second garbling protocol. We remark that the two-party protocol in [WRK17] inspired our use of TinyOT
MACs to perform the bit/string multiplications in our protocol from Section 4. The rest of our work is
independent.

Another difference is that our protocol from Section 3 is more generic, since FBitMPC can be imple-
mented with any secret-sharing based bit-MPC protocol, rather than just TinyOT. This can be instantiated
with [IPS08] to obtain a constant-round protocol with complexity O(|C|(κn2 + poly(n))) in the OT-hybrid
model. The multi-party paper [KRW17] does not have an analogous generic result.

2 Preliminaries

We denote the security parameter by κ. We say that a function µ : N→ N is negligible if for every positive
polynomial p(·) and all sufficiently large κ it holds that µ(κ) < 1

p(κ) . We use the abbreviation PPT to denote
probabilistic polynomial-time. We further denote by a ← A the uniform sampling of a from a set A, and
by [d] the set of elements (1, . . . , d). We often view bit-strings in {0, 1}k as vectors in Fk2 , depending on the
context, and denote exclusive-or by “⊕” or “+”. If a, b ∈ F2 then a · b denotes multiplication (or AND),
and if c ∈ Fκ2 then a · c ∈ Fκ2 denotes the product of a with every component of c.

For vectors x = (x1, . . . , xn) ∈ Fn2 and y ∈ Fm2 , the tensor product (or outer product) x⊗ y is defined
as the n×m matrix over F2 where the i-th row is xi · y. We use the following property.

Fact 2.1 If x ∈ Fn2 ,y ∈ Fm2 and M ∈ Fm×n2 then

M · (x⊗ y) = (M · x)⊗ y.

We next specify the definition of computational indistinguishability.

7

Definition 2.1 Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c
≈ Y , if for every PPT

machine D and every a ∈ {0, 1}∗, there exists a negligible function negl such that:∣∣Pr [D(X(a, κ), a, 1κ) = 1]− Pr [D(Y (a, κ), a, 1κ) = 1]
∣∣ < negl(κ).

2.1 Pseudorandom Functions

The BMR garbling technique from [LPSY15] is proven secure based on a pseudorandom function (PRF)
with multiple keys, defined below.

Definition 2.2 Let F : {0, 1}n × {0, 1}n 7→ {0, 1}n be an efficient, length preserving, keyed function. F
is a pseudorandom function under multiple keys if for all polynomial-time distinguishers D, there exists a
negligible function negl such that:∣∣Pr[DFk̄(·)(1κ) = 1]− Pr[Df̄(·)(1κ) = 1]

∣∣ ≤ negl(κ).

where Fk̄ = Fk1 , . . . , Fkm(n)
are the pseudorandom function F keyed with polynomial number of randomly

chosen keys k1, . . . , km(n) and f̄ = f1, . . . , fm(n) are m(n) random functions from {0, 1}n 7→ {0, 1}n. The
probability in both cases is taken over the randomness of D as well.

When the keys are independently chosen then security with multiple keys is implied by the standard security
PRF notion, by a simple hybrid argument. However, since our scheme supports free-XOR, we require
assuming a stronger notion, discussed next.

2.2 Circular 2-Correlation Robust PRF

We adapt the definition of correlation robustness with circularity from [CKKZ12] given for hash functions
to double-key PRFs. This definition captures the related key and circularity requirements induced by sup-
porting the free-XOR technique. Formally, fix some function F : {0, 1}n × {0, 1}κ × {0, 1}κ 7→ {0, 1}κ.
We define an oracle CircR as follows:

• CircR(k1, k2, g, j, b1, b2, b3) outputs Fk1⊕b1R,k2⊕b2R(g‖j)⊕ b3R.

The outcome of oracle Circ is compared with the a random string of the same length computed by an oracle
Rand:

• Rand(k1, k2, g, j, b1, b2, b3): if this input was queried before then return the answer given previously.
Otherwise choose u← {0, 1}κ and return u.

Definition 2.3 (Circular 2-correlation robust PRF) A PRF F is circular 2-correlation robust if for any
non-uniform polynomial-time distinguisher D making legal queries to its oracle, there exists a negligible
function negl such that:∣∣Pr[R← {0, 1}κ;DCircR(·)(1κ) = 1]− Pr[DRand(·)(1κ) = 1]

∣∣ ≤ negl(κ).

As in [CKKZ12], some trivial queries must be ruled out. Specifically, the distinguisher is restricted
as follows: (1) it is not allowed to make any query of the form O(k1, k2, g, j, 0, 0, b3) (since it can com-
pute Fk1,k2(g‖j) on its own) and (2) it is not allowed to query both tuples O(k1, k1, g, j, b1, b2, 0) and
O(k1, k1, g, j, b1, b2, 1) for any values k1, k2, g, j, b1, b2 (since that would allow it to trivially recover the
global difference). We say that any distinguisher respecting these restrictions makes legal queries.

8

2.3 Almost-1-Universal Linear Hashing

We use a family of almost-1-universal linear hash functions over F2, defined by:

Definition 2.4 (Almost-1-Universal Linear Hashing) We say that a familyH of linear functions Fm2 → Fs2
is ε-almost 1-universal, if it holds that for every non-zero x ∈ Fm2 and for every y ∈ Fs2:

Pr
H←H

[H(x) = y] ≤ ε

where H is chosen uniformly at random from the family H. We will identify functions H ∈ H with their
s×m transformation matrix, and write H(x) = H · x.

This definition is slightly stronger than a family of almost-universal linear hash functions (where the
above need only hold for y = 0, as in [CDD+16]). However, this is still much weaker than 2-universality (or
pairwise independence), which a linear family of hash functions cannot achieve, because H(0) = 0 always.
The two main properties affecting the efficiency of a family of hash functions are the seed size, which
refers to the length of the description of a random function H ← H, and the computational complexity
of evaluating the function. The simplest family of almost-1-universal hash functions is the set of all s ×
m matrices; however, this is not efficient as the seed size and complexity are both O(m · s). Recently,
in [CDD+16], it was shown how to construct a family with seed size O(s) and complexity O(m), which
is asymptotically optimal. A more practical construction is a polynomial hash based on GMAC (used also
in [NST17]), described as follows (here we assume that s divides m, for simplicity):

• Sample a random seed α← F2s

• Define Hα to be the function:

Hα : Fm/s2s → F2s , Hα(x1, . . . , xm/s) = α · x1 + α2 · x2 + · · ·+ αm/s · xm/s

Note that by viewing elements of F2s as vectors in Fs2, multiplication by a fixed field element αi ∈ F2s

is linear over F2. Therefore, Hα can be seen as an F2-linear map, represented by a unique matrix in
Fs×m2 .

Here, the seed is short, but the computational complexity isO(m·s). However, in practice when s = 128
the finite field multiplications can be performed very efficiently in hardware on modern CPUs. Note that
this gives a 1-universal family with ε = m

s · 2
−s. This can be improved to 2−s (i.e. perfect), at the cost of a

larger seed, by using m/s distinct elements αi, instead of powers of α.

2.4 Security Model

Universal composability. We prove security of our protocols in the universal composability (UC) frame-
work [Can01] (see also [CCL15] for a simplified version of UC). This framework is based on the real/ideal
paradigm, where all the entities (including the parties and the adversary) are modeled as interactive Turing
machines. The goal of a protocol is defined by an ideal functionality, which can be seen as a trusted party
sending the desired results to the parties. To prove security of a protocol, we aim to show that any adversary
attacking the real protocol can be used to construct a corresponding ideal adversary, called the simulator,
that runs in the ideal world, interacting only with the functionality F and the real adversary, such that the
distributions of messages seen in the real world and ideal world executions are indistinguishable. The UC

9

The Functionality FCommit

Commit: On input (Commit, x, i, τx) from Pi, store (x, i, τx) and output (i, τx) to all parties.

Open: On input (Open, i, τx) by Pi, output (x, i, τx) to all parties.
If instead (NoOpen, i, τx) is given by the adversary, and Pi is corrupt, the functionality outputs (⊥, i, τx)
to all parties.

Figure 1: Ideal commitments

framework additionally defines a powerful entity called the environment, which is the interactive machine
trying to distinguish the two worlds. The environment has total control over the adversary, and can choose
the inputs, and see the outputs, of all parties.

We denote by REALπ,A,Z(1κ, z) the output distribution of the environment Z in the real world ex-
ecution of protocol π, with n parties and an adversary A, where κ is the security parameter and z is the
auxiliary input to Z . The output distribution of Z in the ideal world is denoted by IDEALF ,S,Z(1κ, z),
where F is the ideal functionality to be realized and S is the simulator. Additionally, we denote the hybrid
execution of a protocol π, which is given access to an ideal functionality G, by HYBGπ,A,Z(1κ, z). This is
defined similarly to the real execution, and is known as the G-hybrid model. Security of a protocol is then
defined as follows.

Definition 2.5 A protocol π UC-securely computes an ideal functionalityF in the G-hybrid model if for any
PPT adversary A, there exists a PPT simulator S such that for any PPT environment Z , it holds that:

HYBGπ,A,Z
c
≈ IDEALF ,S,Z .

The composition theorem provides security guarantees when protocols are composed together. This means
that if ρ is a UC-secure protocol for G, then the protocol π in the G-hybrid model can be replaced by the com-
position π ◦ρ. Informally, the composition theorem then guarantees that REALπ◦ρ,A,Z is indistinguishable
from HYBGπ,A,Z .

Communication model. We assume all parties are connected via authenticated communication channels,
as well as secure point-to-point channels and a broadcast channel. The default method of communication
in our protocols is authenticated channels, unless otherwise specified. Note that in practice, these can all be
implemented with standard techniques (in particular, for broadcast a simple 2-round protocol suffices, since
we allow abort [GL05]).

Adversary model. The adversary model we consider is a static, active adversary who corrupts up to n−1
out of n parties. This means that the identities of the corrupted parties are fixed at the beginning of the
protocol, and they may deviate arbitrarily from the protocol.

2.5 Commitment Functionality

We require a UC commitment functionality FCommit (Figure 1). This can easily be implemented in the
random oracle model by defining Commit(x, Pi) = H(x, i, r), where H is a random oracle and r ← {0, 1}κ.

10

Functionality FRand

Upon receiving (rand, S) from all parties, where S is any efficiently sampleable set, it samples r ← S and
outputs r to all parties.

Figure 2: Coin-tossing functionality

Fixed Correlation OT Functionality - FCOT

Initialize: Upon receiving (init,∆), where ∆ ∈ {0, 1}κ from PS and (init) from PR, store ∆. Ignore any
subsequent (init) commands.

Extend: Upon receiving (extend, x1, . . . , xm) from PR, where xi ∈ {0, 1}, and (extend) from PS , do the
following:

• Sample ti ∈ {0, 1}κ, for i ∈ [m]. If PR is corrupted then wait for A to input ti.

• Compute qi = ti + xi ·∆, for i ∈ [m].

• If PS is corrupted then wait for A to input qi ∈ {0, 1}κ and recompute ti = qi + xi ·∆.

• Output ti to PR and qi to PS , for i ∈ [m].

Figure 3: Fixed correlation oblivious transfer functionality

2.6 Coin-Tossing Functionality

We use a standard coin-tossing functionality, FRand (Figure 2), which can be implemented with UC com-
mitments to random values.

2.7 Correlated Oblivious Transfer

In this work we use an actively secure protocol for oblivious transfer (OT) on correlated pairs of strings of
the form (ai, ai⊕∆), where ∆ is fixed for every OT. The TinyOT protocol [NNOB12] for secure two-party
computation constructs such a protocol, and a significantly optimized version of this is given in [NST17].
The communication cost is roughly κ+ s bits per OT. The ideal functionality is shown in Figure 3.

2.8 Functionality for Secret-Sharing-Based MPC

We make use of a general, actively secure protocol for secret-sharing-based MPC for binary circuits, which
is modeled by the functionality FBitMPC in Figure 4. This functionality allows parties to provide private
inputs, which are then stored and can be added or multiplied internally by FBitMPC, and revealed if desired.
Note that we also need the Multiply command to output a random additive secret-sharing of the product to
all parties; this essentially assumes that the underlying protocol is based on secret-sharing.

We use the notation 〈x〉 to represent a secret-shared value x that is stored internally by FBitMPC, and
define xi to be party Pi’s additive share of x (if it is known). We also define the + and · operators on two
shared values 〈x〉, 〈y〉 to call the Add and Multiply commands of FBitMPC, respectively, and return the
identifier associated with the result.

11

The Bit MPC Functionality - FBitMPC

The functionality runs with parties P1, . . . , Pn and an adversary A. The functionality maintains a dictionary,
Val← {}, to keep track of values in F2.

Input: On receiving (Input, id1, . . . , id`, x1, . . . , x`, Pj) from party Pj and (Input, id1, . . . , id`, Pj) from
all other parties, where xi ∈ F2, store Val[idi]← xi for i ∈ [`].

Add: On input (Add, id, id1, . . . , id`) from all parties, where (id1, . . . , id`) are keys in Val, set Val[id] ←∑`
i=1 Val[idi].

Multiply: On input (multiply, id, id1, id2) from all parties, where (id1, id2) are keys in Val, compute y ←
Val[id1] · Val[id2]. Receive shares yi ∈ F2 from A, for i ∈ I , then sample random honest parties’
shares yj ∈ F2, for j /∈ I , such that

∑n
i=1 y

i = y. Send yi to party Pi, for i ∈ [n], and store the value
Val[id]← y.

Open: On input (Open, id) from all parties, where id is a key in Val, send x← Val[id] toA. Wait for an input
from A. If it inputs OK then output x to all parties, otherwise output ⊥ and terminate.

Figure 4: Functionality for GMW-style MPC for binary circuits

2.9 BMR Garbling

The [BMR90] garbling technique by Beaver, Micali and Rogaway involves garbling each gate separately
using pseudorandom generators while ensuring consistency between the wires. This method was recently
improved in a sequence of works [LPSY15, LSS16, BLO16], where the latter work further supports the free
XOR property. The main task of generating the garbled circuit while supporting this property is to compute,
for each AND gate g with input wires u, v and output wire w, the 4n values:

g̃ja,b =

(
n⊕
i=1

Fkiu,a,kiv,b
(g‖j)

)
⊕ kjw,0 (2)

⊕
(
Rj · ((λu ⊕ a) · (λv ⊕ b)⊕ λw)

)
, (a, b) ∈ {0, 1}2, j ∈ [n]

where the wire masks λu, λv, λw ∈ {0, 1} are secret-shared between all parties, while the PRF keys kju,a, k
j
v,b

and the global difference string Rj are known only to party Pj .

3 Generic Protocol for Multi-Party Garbling

We now describe our generic method for creating the garbled circuit using any secret-sharing based MPC
protocol (modeled by FBitMPC) and the correlated OT functionality FCOT. We first describe the function-
ality in Section 3.1 and the protocol in Section 3.2, and then analyse its security in Sections 3.4–3.5.

3.1 The Preprocessing Functionality

The preprocessing functionality, formalized in Figure 5, captures the generation of the garbled circuit as
well as an error introduced by the adversary. The adversary is allowed to submit an additive error, chosen
adaptively after seeing the garbled circuit, that is added by the functionality to each entry when the garbled
circuit is opened.

12

The Preprocessing Functionality

Let F be a circular 2-correlation robust PRF. The functionality runs with parties P1, . . . , Pn and an adversary A,
who corrupts a subset I ⊂ [n] of parties.

Garbling: On input (Garbling, Cf) from all parties, where Cf is a boolean circuit, denote byW its set of wires
and by G its set of AND gates. The functionality is defined as follows:

• Sample a global difference Rj ← {0, 1}κ, for each j /∈ I , and receive corrupt parties’ strings Ri ∈
{0, 1}κ from A, for i ∈ I .

• Passing topologically through all the wires w ∈W of the circuit:

– If w is an input wire:
1. Sample λw ← {0, 1}. If Pj , the party who provides input on that wire in the online phase, is

corrupt, instead receive λw from A.
2. Sample a key kjw,0 ← {0, 1}κ, for each j /∈ I , and receive corrupt parties’ keys kiw,0 from A,

for i ∈ I . Define kiw,1 = kiw,0 ⊕Ri for all i ∈ [n].
– If w is the output of an AND gate:

1. Sample λw ← {0, 1}.
2. Sample a key kjw,0 ← {0, 1}κ, for each j /∈ I , and receive corrupt parties’ keys kiw,0 from A,

for i ∈ I . Set kiw,1 = kiw,0 ⊕Ri, for i ∈ [n].
– If w is the output of a XOR gate, and u and v its input wires:

1. Compute and store λw = λu ⊕ λv .
2. For i ∈ [n], set kiw,0 = kiu,0 ⊕ kiv,0 and kiw,1 = kiw,0 ⊕Ri.

• For every AND gate g ∈ G, the functionality computes the 4n entries of the garbled version of g as:

g̃ja,b =

(
n⊕
i=1

Fkiu,a,kiv,b(g‖j)

)
⊕ kjw,0

⊕
(
Rj · ((λu ⊕ a) · (λv ⊕ b)⊕ λw)

)
, (a, b) ∈ {0, 1}2, j ∈ [n].

Set g̃a,b = g̃1a,b ◦ . . . ◦ g̃na,b (a, b) ∈ {0, 1}2. The functionality stores the values g̃a,b.

• Wait for an input fromA. If it inputs OK then output λw to all parties for each circuit-output wire w, and
output to each Pi all the keys {kiw,0}w∈W , and Ri. Otherwise, output ⊥ and terminate.

Open Garbling: On receiving (OpenGarbling) from all parties, when the Garbling command has already run
successfully, the functionality sends to A the values g̃a,b for all g ∈ G and waits for a reply.

• If A returns ⊥ then the functionality aborts.

• Otherwise, the functionality receives OK and an additive error e = {ea,bg }a,b∈{0,1},g∈G chosen by A.
Afterwards, it sends to all parties the garbled circuit g̃a,b ⊕ ea,bg for all g ∈ G and a, b ∈ {0, 1}.

Figure 5: The Preprocessing Functionality FPrepocessing

13

3.2 Protocol Overview

The garbling protocol, shown in Figure 6, proceeds in three main stages. Firstly, the parties locally sample
all of their keys and shares of wire masks for the garbled circuit. Secondly, the parties compute shares of
the products of the wire masks and each party’s global difference string; these are then used by each party
to locally obtain a share of the entire garbled circuit. Finally, the bit masks for the output wires are opened
to all parties. The opening of the garbled circuit is shown in Figure 7.

Concretely, each party Pi starts by sampling a global difference string Ri ← {0, 1}κ, and for each wire
w which is an output wire of an AND gate, or an input wire, Pi also samples the keys kiw,0, kiw,1 = kiw,0⊕Ri

and an additive share of the wire mask, λiw ← F2. As in [BLO16], we let Pi input the actual wire mask
(instead of a share) for every input wire associated with Pi’s input.

In step 3, the parties compute additive shares of the bit products λuv = λu · λv ∈ F2, and then, for each
j ∈ [n], shares of:

λu ·Rj , λv ·Rj , λuvw ·Rj ∈ Fκ2 (3)

where λuvw := λuv ⊕ λw, and u, v and w are the input and output wires of AND gate g. We note that (as
observed in [BLO16]) only one bit/bit product and 3n bit/string products are necessary, even though each
gate has 4n entries, due to correlations between the entries, as can be seen below.

We compute the bit multiplications using theFBitMPC functionality on the bits that are already stored by
FBitMPC. To compute the bit/string multiplications in (3), we use correlated OT, followed by a consistency
check to verify that the parties provided the correct shares of λw and correlation Ri to each FCOT instance;
see Section 3.3 for details.

Using shares of the bit/string products, the parties can locally compute an unauthenticated additive share
of the entire garbled circuit (steps 3d–4). First, for each of the four values (a, b) ∈ {0, 1}2, each party
Pi, i 6= j computes the share

ρij,a,b =

{
a · (λv ·Rj)i ⊕ b · (λu ·Rj)i ⊕ (λuvw ·Rj)i if i 6= j

a · (λv ·Rj)i ⊕ b · (λu ·Rj)i ⊕ (λuvw ·Rj)i ⊕ a · b ·Rj if i = j

These define additive shares of the values

ρj,a,b = Rj · (a · λv ⊕ b · λu ⊕ λuvw ⊕ a · b)
= Rj · ((λu ⊕ a) · (λv ⊕ b)⊕ λw)

Each party’s share of the garbled circuit is then obtained by adding the appropriate PRF values and keys
to the shares of each ρj,a,b. To conclude the Garbling stage, the parties reveal the masks for all output wires
using FBitMPC, so that the outputs can be obtained in the online phase.

Before opening the garbled circuit, the parties must rerandomize their shares by distributing a fresh,
random secret-sharing of each share to the other parties, via private channels. This is needed so that the
shares do not leak any information on the PRF values, so we can prove security. This may seem unnecessary,
since the inclusion of the PRF values in the shares should randomize them sufficiently. However, we cannot
prove this intuition, as the same PRF values are used to compute the garbled circuit that is output by the
protocol, so they cannot also be used as a one-time pad.1 In steps 1 to 2 of Figure 7, we show how to perform
this extra rerandomization step with O(n2 · κ) communication.

1Furthermore, the environment sees all of the PRF keys of the honest parties, since these are outputs of the protocol, which
seems to rule out any kind of computational reduction in the security proof.

14

The Preprocessing Protocol ΠPreprocessing – Garbling Stage

Given a gate g, we denote by u (resp. v) its left (resp. right) input wire, and by w its output wire. 〈·〉i denotes the
i-th share of an authenticated bit and (·)i the i-th share of a string.
Let F : {0, 1}2κ × [|G|]× [n]→ {0, 1}κ be a circular 2-correlation robust PRF, and G : {0, 1}κ → {0, 1}4nκ|G|
be a PRG.

Garbling:

1. Each party Pi samples a random key offset Ri ← Fκ2 .

2. Generate wire masks and keys: Passing through the wires of the circuit topologically, proceed as
follows:

• If w is a circuit-input wire, and Pj is the party whose input is associated with it:
(a) Pj calls Input on FBitMPC with a randomly sampled λw ∈ {0, 1} to obtain 〈λw〉. Pj

defines the share λjw = λw, every other Pi sets λiw = 0.
(b) Every Pi samples a key kiw,0 ← {0, 1}κ and sets kiw,1 = kiw,0 ⊕Ri.

• If the wire w is the output of an AND gate:
(a) Each Pi calls Input on FBitMPC with a randomly sampled λiw ← {0, 1}. The parties then

compute the secret-shared wire mask as 〈λw〉 =
∑
i∈[n]〈λiw〉.

(b) Every Pi samples a key kiw,0 ← {0, 1}κ and sets kiw,1 = kiw,0 ⊕Ri.
• If the wire w is the output of a XOR gate:

(a) The parties compute the mask on the output wire as 〈λw〉 = 〈λu〉+ 〈λv〉.
(b) Every Pi sets kiw,0 = kiu,0 ⊕ kiv,0 and kiw,1 = kiw,0 ⊕Ri.

3. Secure product computations:
(a) For each AND gate g ∈ G, the parties compute 〈λuv〉 = 〈λu〉 · 〈λv〉 by calling Multiply on
FBitMPC.

(b) Each Pi calls Input onFBitMPC with randomly sampled bits x̂i1, . . . , x̂
i
s. For ` ∈ [s], the parties

compute secret-shared mask 〈x̂`〉 =
∑
i∈[n]〈x̂i`〉.

(c) For every j ∈ [n], the parties run the subprotocol ΠBit×String, where Pj inputsRj and everyone
inputs the 3|G|+ s shared bits:

(〈λu〉, 〈λv〉, 〈λuv〉+ 〈λw〉)(u,v,w) and (〈x̂1〉, . . . , 〈x̂s〉).

where the (u, v, w) indices are taken over the input/output wires of each AND gate g ∈ G.
(d) For each AND gate g, party Pi obtains from ΠBit×String an additive share of the 3n values

(each defined as one row of the matrix Zj in this subprotocol):

λu ·Rj , λv ·Rj , λuvw ·Rj , for j ∈ [n]

where λuvw := λuv + λw. Each Pi then uses these to compute a share of

ρj,a,b = λuvw ·Rj ⊕ a · λv ·Rj ⊕ b · λu ·Rj ⊕ a · b ·Rj

4. Garble gates: For each AND gate g ∈ G, each j ∈ [n], and the four combinations of a, b ∈ {0, 1}2,
the parties compute shares of the j-th entry of the garbled gate g̃a,b as follows:

• Pj sets (g̃ja,b)
j = ρjj,a,b ⊕ Fkju,a,kjv,b(g‖j)⊕ k

j
w,0.

• For every i 6= j, Pi sets (g̃ja,b)
i = ρij,a,b ⊕ Fkiu,a,kiv,b(g‖j).

5. Reveal masks for output wires: For every circuit-output-wire w, the parties call Open on FBitMPC

to reveal λw to all the parties.

Figure 6: The preprocessing protocol that realizes FPrepocessing in the {FCOT,FBitMPC,FRandFCommit}-
hybrid model. 15

The Preprocessing Protocol ΠPreprocessing – Open Garbling Stage

Open Garbling: Let C̃i = ((g̃ja,b)
i)j,a,b,g ∈ {0, 1}4nκ|G| be Pi’s share of the whole garbled circuit.

1. Each party Pi samples random seeds sij ← {0, 1}κ, j 6= i. Pi sends sij to Pj over a private channel.

2. Pi computes the shares Sii =
⊕

i 6=j G(sij), and Sji = G(sji), for j 6= i.a

3. Each Pi, for i = 2, . . . , n, sends C̃i ⊕
⊕n

j=1 S
j
i to P1.

4. P1 reconstructs the garbled circuit, C̃, and broadcasts this.

aSteps 1 to 2 are independent of C̃i, so can be merged with previous rounds in the Garbling stage.

Figure 7: Open Garbling stage of the preprocessing protocol.

Finally, to reconstruct the garbled circuit, the parties sum up and broadcast the rerandomized shares and
add them together to get g̃ja,b.

3.3 Bit/String Multiplications

Our method for this is in the subrotocol ΠBit×String (Figure 8). It proceeds in two stages: first the Multiply
step creates the shared products, and then the Consistency Check verifies that the correct inputs were used
to create the products.

Recall that the task is for the parties to obtain an additive sharing of the products, for each j ∈ [n] and
(a, b) ∈ {0, 1}2:

Rj · ((λu ⊕ a) · (λv ⊕ b)⊕ λw) (4)

where the string Rj is known only to Pj , and fixed for every gate. Denote by x one of the additively shared
λ(·) bits used in a single bit/string product and stored by FBitMPC. We obtain shares of x ·Rj using actively
secure correlated OT (cf. Figure 3), as follows:

1. For each i 6= j, parties Pi and Pj run a correlated OT, with choice bit xi and correlationRj . Pi obtains
Ti,j and Pj obtains Qi,j such that:

Ti,j = Qi,j + xi ·Rj .

2. Each Pi, for i 6= j, defines the share Zi = Ti,j , and Pj defines Zj =
∑

i 6=j Qi,j + xj · Rj . Now we
have:

n∑
i=1

Zi =
∑
i 6=j

Ti,j +
∑
i 6=j

Qi,j + xj ·Rj =
∑
i 6=j

(Ti,j +Qi,j) + xj ·Rj = x ·Rj

as required.

The above method is performed 3|G| times and for each Pj , to produce the shared bit/string products
x ·Rj , for x ∈ {λu, λv, λuv}.

16

Bit/string multiplication subprotocol – ΠBit×String

Inputs: Each Pj inputs the private global difference string Rj ∈ Fκ2 , which was generated in the main protocol.
All parties input 3|G| authenticated, additively shared bits, 〈x1〉, . . . , 〈x3|G|〉, and s additional, random shared
bits, 〈x̂1〉, . . . , 〈x̂s〉, to be used as masking values and discarded.

I: Init: Every ordered pair of parties (Pi, Pj) calls Initialize on FCOT, where Pj , the sender, inputs the global
difference string Rj .

II: Multiply: For each j ∈ [n], the parties do as follows:

1. For every i 6= j, parties Pi and Pj call Extend on the FCOT instance where Pj is sender, and Pi
inputs the choice bits xi = (xi1, . . . , x

i
3|G|, x̂

i
1, . . . , x̂

i
s).

For each OT between (Pi, Pj), Pj receives q ∈ {0, 1}κ and Pi receives t ∈ {0, 1}κ. Pi stores their
3|G| + s strings from this instance into the rows of a matrix Ti,j , and Pj stores the corresponding
outputs in Qi,j . These satisfy:

Ti,j = Qi,j + xi ⊗Rj ∈ F(3|G|+s)×κ
2 .

2. Each Pi, for i 6= j, defines the matrix Zij = Ti,j , and Pj defines Zjj =
∑
i6=jQi,j + xj ⊗Rj .

Now, it should hold that
∑n
i=1 Z

i
j = x⊗Rj , for each j ∈ [n].

III: Consistency Check: The parties check correctness of the above as follows:

1. Each Pi removes the last s rows from Zij (for j ∈ [n]) and places these ‘dummy’ masking values in
a matrix Ẑij ∈ Fs×κ2 . Similarly, redefine xi = (xi1, . . . , x

i
3|G|) and let x̂i = (x̂1

i, . . . , x̂s
i).

2. The parties call FRand (Figure 2) to sample a seed for a uniformly random, ε-almost 1-universal
linear hash function, H ∈ Fs×3|G|2 .

3. All parties compute the vector:

〈cx〉 = H · 〈x〉 + 〈x̂〉 ∈ Fs2
and open cx using the Open command of FBitMPC. If FBitMPC aborts, the parties abort.

4. Each party Pi calls Commit on FCommit (Figure 1) with input the n matrices:

Ci
j = H · Zij + Ẑij , for j 6= i, and Ci

i = H · Zii + Ẑii + cx ⊗Ri.

5. All parties open their commitments and check that, for each j ∈ [n]:

n∑
i=1

Ci
j = 0.

If the check fails, the parties abort.

6. Each party Pi stores the matrices Zi1, . . . ,Z
i
n.

Figure 8: Subprotocol for bit/string multiplication and checking consistency

17

3.4 Consistency Check

We now show how the parties verify that the correct shares of x and correlations Rj were used in the
correlated OTs, and analyse the security of this check. The parties first create m + s bit/string products,
where m is the number of products needed and s is a statistical security parameter, and then open random
linear combinations (over F2) of all the products and check correctness of the opened results. This is possible
because the products are just a linear function of the fixed string Rj . In more detail, the parties first sample
a random ε-almost 1-universal hash function H← Fm×s2 , and then open

cx = H · x+ x̂

using FBitMPC. Here, x is the vector of all m wire masks to be multiplied, whilst x̂ ∈ Fs2 are the additional,
random masking bits, used as a one-time pad to ensure that cx does not leak information on x.

To verify that a single shared matrix Zj is equal to x ⊗ Rj (as in Figure 8), each party Pi, for i 6= j,
then commits to H · Zij , whilst Pj commits to H · Zij + cx ⊗ Rj . The parties then open all commitments
and check that these sum to zero, which should happen if the products were correct.

The intuition behind the check is that any errors present in the original bit/string products will remain
when multiplied by H, except with probability ε, by the almost-1-universal property (Definition 2.4). Fur-
thermore, it turns out that cancelling out any non-zero errors in the check requires either guessing an honest
party’s global difference Rj , or guessing the secret masking bits x̂.

We formalize this, by first considering the exact deviations that are possible by a corruptPj in ΠBit×String.
These are:

1. Provide inconsistent inputsRj when acting as sender in the Initialize command of theFCOT instances
with two different honest parties.

2. Input an incorrect share xj when acting as receiver in the Extend command of FCOT.

Note that in both of these cases, we are only concerned when the other party in the FCOT execution is
honest, as if both parties are corrupt then FCOT does not need to be simulated in the security proof.

We model these two attacks by defining Rj,i and xj,i to be the actual inputs used by a corrupt Pj in the
above two cases, and then define the errors (for j ∈ I and i /∈ I):

∆j,i = Rj,i +Rj

δj,i` = xj,i` + xj` , ` ∈ [3|G|].

Note that ∆j,i is fixed in the initialization of FCOT, whilst δj,i` may be different for every OT. Whenever Pi
and Pj are both corrupt, or both honest, for convenience we define ∆j,i = 0 and δj,i = 0.

This means that the outputs of FCOT with (Pi, Pj) then satisfy (omitting ` subscripts):

ti,j = qi,j + xi ·Rj + δi,j ·Rj + ∆j,i · xi

where δi,j 6= 0 if Pi cheated, and ∆j,i 6= 0 if Pj cheated.
Now, as in step 1 of the first stage of ΠBit×String, we can put the FCOT outputs for each party into the

rows of a matrix, and express the above as:

Ti,j = Qi,j + xi ⊗Rj + δi,j ⊗Rj + ∆j,i ⊗ xi

where δj,i = (δj,i1 , . . . , δj,i3|G|), and the tensor product notation is defined in Section 2.

18

Accounting for these errors in the outputs of the Multiply step in ΠBit×String, we get:

Zj =
n∑
i=1

Zij = x⊗Rj +Rj ·
∑
i∈I
δi,j︸ ︷︷ ︸

=δj

+
∑
i/∈I

xi ·∆j,i. (5)

The following lemma shows if a party cheated, then to pass the check they must either guess all of the
shares x̂i ∈ Fs2 for some honest Pi, or guess Pi’s global difference Ri (except with negligible probability
over the choice of the ε-almost 1-universal hash function, H).

Lemma 3.1 If the check in ΠBit×String passes, then except with probability max(2−s, ε + 2−κ), all of the
errors δj ,∆i,j are zero.

Proof: From (5), we have, for each j ∈ [n]:

Zj =

n∑
i=1

Zij = x⊗Rj + δj ⊗Rj +
∑
i/∈I

xi ⊗∆j,i.

Notice that steps 4–5 of the check in Figure 8 perform n individual checks on the matrices Z1, . . . ,Zn
in parallel. Fix j, and first consider the check for a single matrix Zj . From here, we omit the subscript j to
simplify notation.

Let (C∗)i, for i ∈ I , be the values committed to by corrupt parties in step 4, and define

C̃i =

{
H · Zi + Ẑi, if i 6= j

H · Zi + Ẑi + cx ⊗Ri, if i = j

to be the value which a corrupt Pi should have committed to.
Denote the difference between what a corrupt Pi actually committed to, and what they should have

committed to, by:

Di = (C∗)i + C̃i ∈ Fs×κ2 .

Also, define the sum of the differences DI =
∑

i∈I D
i. To pass the consistency check, it must hold that:

0 =
∑
i/∈I

Ci +
∑
i∈I

C̃i + DI

⇔ DI =
∑
i/∈I

Ci +
∑
i∈I

C̃i

= H(

n∑
i=1

Zi) +
n∑
i=1

Ẑi + cx ⊗Rj

= H(x⊗Rj + δj ⊗Rj +
∑
i/∈I

xi ⊗∆j,i) + Ẑ + H(x)⊗Rj + x̂⊗Rj (6)

= H(δj ⊗Rj +
∑
i/∈I

xi ⊗∆j,i) + Ẑ + x̂⊗Rj (7)

where (6) holds because cx = H(x) + x̂, and (7) due to linearity of H and Fact 2.1.

19

Now, taking into account the fact that Ẑ is constructed the same way as Z, and considering (5), there
exist some adversarially chosen errors δ̂j ∈ Fs2 such that:

Ẑ = x̂⊗Rj + δ̂j ⊗Rj +
∑
i/∈I

x̂i ⊗∆j,i.

Plugging this into equation (7), the check passes if and only if:

DI = H(δj ⊗Rj +
∑
i/∈I

xi ⊗∆j,i) + δ̂j ⊗Rj +
∑
i/∈I

x̂i ⊗∆j,i

= (H(δj) + δ̂j)⊗Rj +
∑
i/∈I

(H(xi) + x̂i)⊗∆j,i. (8)

We now show that the probability of this holding is negligible, if any errors are non-zero.
First consider the left-hand summation in (8), supposing that at least one of δj , δ̂j is non-zero. Recall

that δj and δ̂j are fixed by the adversary’s inputs to FCOT, so are independent of the random choice of
the hash function H. Therefore, by the ε-almost 1-universal property of the family of linear hash functions
(Definition 2.4), it holds that

Pr
H

[H(δj) + δ̂j = 0] ≤ ε.

So except with probability ε, A will have to guess Rj to construct DI to pass the check, since Rj is
independent of the right-hand summation. By a union bound, therefore, if at least one of δj or δ̂

j
is non-zero

then the check passes with probability at most ε+ 2−κ.
Now suppose that δj = δ̂j = 0, so A only needs to guess the right-hand summation of (8) to pass the

check. If the error ∆j,i 6= 0 for some i /∈ I then the adversary must successfully guess H(xi) + x̂i to be
able to pass the check. Since x̂i is uniformly random in the view of the adversary, this can only occur with
probability 2−s.

In conclusion, the probability of passing the j-th check when any of the errors δj , δ̂j or ∆j,i are non-
zero, is no more than max(2−s, ε + 2−κ). Since the adversary must pass all n checks to prevent an abort,
this also gives an upper bound for the overall success probability.

3.5 Security Proof

We now give some intuition behind the security of the whole protocol. In the proof, the strategy of the
simulator is to run an internal copy of the protocol, using dummy, random values for the honest parties’
keys and wire mask shares. All communication with the adversary is simulated by computing the correct
messages according to the protocol and the dummy honest shares, until the final output stage. In the output
stage, we switch to fresh, random honest parties’ shares, consistent with the garbled circuit received from
FPrepocessing and the corrupt parties’ shares.

Firstly, by Lemma 3.1, it holds that in the real execution, if the adversary introduced any non-zero errors
then the consistency check fails with overwhelming probability. The same is true in the ideal execution;
note that the errors are still well-defined in this case because the simulator can compute them by comparing
all inputs received to FCOT with the inputs the adversary should have used, based on its random tape. This
implies that the probability of passing the check is the same in both worlds. Also, if the check fails then

20

both executions abort, and it is straightforward to see that the two views are indistinguishable because no
outputs are sent to honest parties (hence, also the environment).

It remains to show that the two views are indistinguishable when the consistency check passes, and the
environment sees the outputs of all honest parties, as well as the view of the adversary during the protocol.
The main point of interest here is the output stage. We observe that, without the final rerandomization step,
the honest parties’ shares of the garbled circuit would not be uniformly random. Specifically, consider an
honest Pi’s share, (g̃ja,b)

i, where Pj is corrupt. This is computed by adding some PRF value, v, to the FCOT

outputs where Pi was receiver and Pj was sender (step 2 of ΠBit×String). Since Pj knows both strings in each
OT, there are only two possibilities for Pi’s output (depending on the choice bit), so this is not uniformly
random. It might be tempting to argue that v is a random PRF output, so serves as a one-time pad, but this
proof attempt fails because v is also used to compute the final garbled circuit. In fact, it seems difficult to
rely on any reduction to the PRF, since all the PRF keys are included in the output to the environment.

To avoid this issue, we need the rerandomization step using a PRG, and the additional assumption of
secure point-to-point channels. Note that this is missing from the protocol of [BLO16], which does not
currently have a security proof. Rerandomization ensures that the honest shares can be simulated with
random values which, together with the corrupt shares, sum up to the correct garbled circuit. We proceed
with the complete proof.

Theorem 3.1 Protocol ΠPreprocessing from Figure 6 UC-securely computes FPrepocessing from Figure 5 in
the presence of a static, malicious adversary corrupting up to n−1 parties in the {FCOT,FBitMPC,FRand,
FCommit}-hybrid model.

Proof: Let A denote a PPT adversary corrupting a strict subset I ([n] of parties. As part of the proof, we
will construct a simulator S that plays the roles of the honest parties on arbitrary inputs, as well as the roles
of functionalities {FCOT,FBitMPC,FRand,FCommit} and interacts with A. We assume w.l.o.g. that A is
a deterministic adversary, which receives as additional input a random tape that determines its internal coin
tosses. Nevertheless, since A is malicious, it may still ignore the random tape, and use its own (possibly
biased) random values instead.

The simulator begins by initializing A with the inputs from the environment, Z , and a uniform string r
as its random tape. During the simulation, we will use r to compute values that A should (but might not)
use during the protocol. We can now define the rest of S as follows:

Garbling: 1. The simulator emulates FCOT.Initialize as follows:

• For a honest party Pi, i /∈ I , S samples Ri ∈ {0, 1}κ.
• For a corrupted party Pj , j ∈ I , S computesRj from that party’s random tape. Additionally,

for each pair of parties involving that party, (Pj , Pi) where i /∈ I , S receives by A values
Rj,i ∈ {0, 1}κ and stores ∆j,i = Rj,i +Rj . If ∀i /∈ I,∆j,i = d, then S modifies its stored
values by setting Rj ← Rj + d and ∆j,i ← 0,∀i /∈ I .

2. GENERATE WIRE MASKS AND KEYS: Passing through each wire w of the circuit topologically,
the simulator S proceeds as follows.

• It emulates FBitMPC and defines the wire masks:
– If w is a circuit-input wire, Pi is the party whose input is associated with it and i ∈ I ,

then S receives λw by A. If i 6∈ I , then S chooses λw.
– If w is the output of an AND gate, S samples λw ← F2 and receives from the adversary
λiw for every i ∈ I . Then, S samples random λjw, j 6∈ I , such that λw =

∑
`∈[n] λ

`
w.

21

– If w is the output of a XOR gate, S , it sets λw = λu + λv.
• It defines the PRF keys:

– If w is not the output of a XOR gate, S computes kiw,0 ∈ {0, 1}κ for i ∈ [n]. For
corrupted parties i ∈ I , S reads this off Pi’s random tape, whereas for honest parties it
samples a random key.

– If w is the output of a XOR gate, for i ∈ [n], it sets kiw,0 = kiu,0 ⊕ kiv,0 and kiw,1 =

kiw,0 ⊕Ri for i ∈ [n].

• Finally, it sends to FPrepocessing the global difference Ri and the keys kiw,0, for each i ∈ I
and each w that is an output wire of an AND gate, as well as the wire masks λw (for each
w that is an input wire of a corrupt party).

3. SECURE PRODUCT COMPUTATIONS: The simulator S emulates FBitMPC.Input receiving
x̂i = (x̂i1, . . . , x̂

i
s) for every i ∈ I , and also samples honest parties’ shares x̂j , for j /∈ I .

For each AND gate g ∈ G, it emulates FBitMPC.Multiply by receiving shares (λuv)
i from

A for i ∈ I and setting random (λuv)
j for j 6∈ I such that

∑
`∈[n](λuv)

` = λu · λv. For the
ΠBit×String subprotocol:

• Multiply: S emulatesFCOT.Extend between each pair of parties Pi and Pj . If both parties
are honest, or if both are corrupted, the simulation is trivial. Hereafter, we focus on the cases
where exactly one party of each pair is corrupted:

– When Pi is a corrupted sender, S receives a (possibly) different qi ∈ {0, 1}κ from A
for each of the 3|G|+ s calls.

– WhenPi is a corrupted receiver, S receives
(
λiu + δi,jλu , λ

i
v + δi,jλv , λ

i
uv + λiw + δi,jλuv+λw

)
(u,v,w)

for each AND gate, plus the values x̂i1 + δi,jx̂1
, . . . , x̂is + δi,jx̂s . For each of the 3|G| + s

previous inputs, it also receives a (possibly) different ti ∈ {0, 1}κ from A.

Note that the errors δi,j and the ti, qi values received from A are stored by S, whilst the λ
values and shares were fixed in the previous stage.
• Consistency Check:

2. S emulates FRand and sends a seed for a uniformly random ε-almost 1-universal linear
hash function H ∈ Fs×3|G|

2 to A.
3. S emulates FBitMPC.Open and sends cx = H · x + x̂ ∈ Fs2 to A, where x is the

vector of 3|G| values (λu, λv, λuvw)(u,v,w) from the previous stage, and x̂ =
∑

i∈[n] x̂
i,

received just before the Multiply step. If A does not send back OK to S , then S sends
⊥ to FPrepocessing and aborts.

4-5. Emulating FCommit, S receives Ci
` from A for all ` ∈ [n] and i ∈ I . It then computes

Cj
` for j /∈ I , as each honest party would, and completes the emulation of FCommit

by sending these to A. If
∑

i∈I C
i
` +

∑
j /∈I C

j
` 6= 0, for any ` ∈ [n], S sends ⊥ to

FPrepocessing and terminates.

4. GARBLE GATES: For every AND gate g ∈ G, the simulator S computes and stores corrupt
parties’ shares of the garbled circuit, C̃i, for i ∈ I , as the adversary should do according to
the protocol. Note that S has all the necessary values to do so from the messages it previously
received and the knowledge of A’s random tape. Namely, the simulator knows the PRF keys,
the global differences, and the ti and qi values received in the FCOT calls.

22

5. REVEAL MASKS FOR OUTPUT WIRES: S emulates FBitMPC.Open and for every circuit-output
wire w, it calls FPrepocessing to get the wire mask λw and forward it to A. If A does not send
back OK to S , then S sends ⊥ to FPrepocessing and terminates.

Open Garbling:

6. For each i ∈ I , S samples random shares {Sij}j /∈I and sends these to A.

7. S then callsFPrepocessing to receive the garbled circuit C̃. Using the corrupted parties’ shares C̃i,
i ∈ I , received previously, S generates random honest parties’ shares C̃j , j /∈ I , subject to the
constraint that

∑
`∈[n] C̃

` = C̃. Once this is done, S forwards the honest shares of the garbled
circuit to A. If A does not respond with OK then S sends ⊥ to FPrepocessing and terminates.
Otherwise, it receives from the adversary OK and shares Ĉi for i ∈ I . Finally, S computes the
error E =

∑
i∈I(C̃

i + Ĉi) and sends this to FPrepocessing.

INDISTINGUISHABILITY: We will first show that, during the Garbling phase, the environmentZ cannot
distinguish between an interaction with S and FPrepocessing and an interaction with the real adversaryA and
ΠPreprocessing. We then argue that the garbled circuit, and the honest parties’ shares of it, are also identically
distributed in both worlds.

Garbling phase indistinguishability: Let’s look at the Garbling command. In both worlds and for every
AND gate, the honest parties’s shares for the masks λw, and for the products λuv are uniformly random
additive shares, whereas the corrupted parties shares’ are chosen by A. Every other step up to the execution
of the ΠBit×String subprotocol provides no output to the parties, and hence Z has exactly the same view in
both worlds up to that point.

In the Multiply step of ΠBit×String, S only receives values from A, so no further information is added
to his view here. Note that since the corrupted parties’ inputs to FCOT are received by S , all the errors
∆i,j , δj =

∑
i∈I δ

i,j are well-defined in the simulation.
Next, consider the Consistency Check step. If any of the errors are non-zero, then from Lemma 3.1, we

know that in both worlds the check fails with overwhelming probability. In this case, no outputs are sent to
the honest parties, and (recalling that there are no inputs from honest parties) indistinguishability is trivial
since the simulator just behaved as honest parties would until this point.

We now assume that all of the errors ∆i,j , δj =
∑

i∈I δ
i,j are zero, and so the check passes. The

values H and cx = Hx + x̂ seen by A are uniformly random in both worlds, since the masking values x̂
are uniformly random and never seen by the environment. The distribution of the committed and opened
values, Ci

j , is more subtle, however. First, consider the case when there is exactly one honest party. In this
case, in both worlds the values Cj

i , for honest Pi, are a deterministic function of the adversary’s behaviour,
since they should satisfy

∑n
i=1 C

i
j = 0. Therefore, these values are identically distributed in both worlds.

Now, suppose there is more than one honest party. The values Ci
i are computed based on the Zii values,

which are the sum of outputs from FCOT with every other party. This means for every honest Pi, Ci
i is

uniformly random, since it includes an FCOT output with one other honest party. On the other hand, the
values Ci

j , where j ∈ I and i /∈ I , only come from a single FCOT instance between Pi and Pj , and Pi’s
output from FCOT in this case is not random in the view of A. It actually should satisfy:

Ci
j = H · Zij + Ẑij = H ·Qi,j + Q̂i,j + (H · xi + x̂i)⊗Rj

23

where Qi,j , Q̂i,j are the FCOT outputs of corrupt Pj , and Rj is also known to Pj . This means for each row
of Ci

j , in the view of A there are only two possibilities, depending on one bit from (H · xi + x̂i). Since the
shares x̂i are uniformly random and never seen by the environment, H · xi + x̂i is also uniformly random
in both worlds, subject to the constraint that these sum to cx (which was opened previously). We conclude
that the Cj

i values are identically distributed.
After ΠBit×String, Z remains unable to distinguish in the garbling phase. First, the Garble Gates step of

ΠPreprocessing requires no communication. Finally, regarding Reveal masks for output wires, the revealed
wire masks are random bits in both worlds.

Open Garbling phase indistinguishability: The seeds sent in the first step of the Open Garbling stage
are uniformly random in both executions. We claim that the rerandomized shares of the garbled circuit in the
real execution are computationally indistinguishable from the simulated random shares. This holds because,
(1) The simulated shares seen by the adversary are uniformly random, subject to the constraint that all shares
sum up to the same garbled circuit, and (2) In the real world, every pair of honest parties masks their shares
with outputs from the PRG G, using a unique seed that is not seen by the environment. By a standard hybrid
argument, we can therefore reduce indistinguishability of the shares to security of the PRG, by successively
replacing each PRG output sent between two honest parties with a random string.

4 More Efficient Garbling with Multi-Party TinyOT

We now describe a less general, but concretely more efficient, variant of the protocol in the previous sec-
tion. We replace the generic FBitMPC functionality with a more specialized one based on ‘TinyOT’-style
information-theoretic MACs. This is asymptotically worse, but more practical, than using [IPS08] for
FBitMPC. It also allows us to completely remove the bit/string multiplications and consistency checks in
ΠBit×String, since we show that these can be obtained directly from the TinyOT MACs. This means the only
cost in the protocol, apart from opening and evaluating the garbled circuit, is the single bit multiplication
per AND gate in the underlying TinyOT-based protocol.

In Appendix A we present a complete description of a suitable TinyOT-based protocol. This is done by
combining the multiplication triple generation protocol (over F2) from [FKOS15] with a consistency check
to enforce correct shared random bits, which is similar to the more general check from the previous section.

4.1 Secret-Shared MAC Representation

For x ∈ {0, 1} held by Pi, define the following two-party MAC representation, as used in 2-party TinyOT
[NNOB12]:

[x]i,j = (x,M i
j ,K

j
i), M i

j = Kj
i + x ·Rj

where Pi holds x and a MAC M i
j , and Pj holds a local MAC key Kj

i , as well as the fixed, global MAC key
Rj .

Similarly, we define the n-party representation of an additively shared value x = x1 + · · ·+ xn:

[x] = (xi, {M i
j ,K

i
j}j 6=i)i∈[n], M i

j = Kj
i + xi ·Rj

where each party Pi holds the n − 1 MACs M i
j on xi, as well as the keys Ki

j on each xj , for j 6= i, and a
global key Ri. Note that this is equivalent to every pair (Pi, Pj) holding a representation [xi]i,j .

24

The key observation for this section, is that a sharing [x] can be used to directly compute shares of all
the products x ·Rj , as in the following claim.

Claim 4.1 Given a representation [x], the parties can locally compute additive shares of x · Rj , for each
j ∈ [n].

Proof: Write [x] = (xi, {M i
j ,K

i
j}j 6=i)i∈[n]. Each party Pi defines the n shares:

Zii = xi ·Ri +
∑
j 6=i

Ki
j and Zij = M i

j , for each j 6= i

We then have, for each j ∈ [n]:

n∑
i=1

Zij = Zjj+
∑
i 6=j

Zij = (xj ·Rj+
∑
i 6=j

Kj
i)+

∑
i 6=j

M i
j = xj ·Rj+

∑
i 6=j

(M i
j+K

j
i) = xj ·Rj+

∑
i 6=j

(xi·Rj) = x·Rj .

We define addition of two shared values [x], [y], to be straightforward addition of the components. We
define addition of [x] with a public constant c ∈ F2 by:

• P1 stores: (x1 + c, {M1
j ,K

1
j }j 6=1)

• Pi stores: (xi, (M i
1,K

i
1 + c ·Ri), {M i

j ,K
i
j}j∈[n]\{1,i})), for i 6= 1

This results in a correct sharing of [x+ c].
We can create a sharing of the product of two shared values using a random multiplication triple

([x], [y], [z]) such that z = x · y with Beaver’s technique [Bea92], shown in Figure 18.

4.2 MAC-Based MPC Functionality

The functionality Fn-TinyOT, which we use in place of FBitMPC for the optimized preprocessing, is shown
in Figure 9. It produces authenticated sharings of random bits and multiplication triples. For both of these,
Fn-TinyOT first receives corrupted parties’ shares, MAC values and keys from the adversary, and then ran-
domly samples consistent sharings and MACs for the honest parties.

Another important aspect of the functionality is the Key Queries command, which allows the adversary
to try to guess the MAC key Ri of any party, and will be informed if the guess is correct. This is needed
to allow the security proof to go through; we explain this in more detail in Appendix A. In that section we
also present a complete description of a variant on the multi-party TinyOT protocol, which can be used to
implement this functionality.

4.3 Garbling with Fn-TinyOT

Following from the observation in Claim 4.1, if each party Pj chooses the global difference string in
ΠPreprocessing to be the sameRj as in the MAC representation, then given [λ], additive shares of the products
λ · Rj can be obtained at no extra cost. Moreover, the shares are guaranteed to be correct, and the honest
party’s shares will be random (subject to the constraint that they sum to the correct value), since they come

25

Functionality Fn-TinyOT

Initialize: On receiving (init) from all parties, the functionality receives Ri ∈ {0, 1}κ, for i ∈ I , from the
adversary, and then samples Ri ← {0, 1}κ, for i /∈ I , and sends Ri to party Pi.

Prep: On receiving (Prep,m,M) from all parties, generate m random bits as follows:

1. Receive corrupted parties’ shares bi` ∈ F2 from A, for i ∈ I .

2. Sample honest parties’ shares, bi` ← F2, for i /∈ A and ` ∈ [m].

3. Run n-Bracket(b1` , . . . , b
n
`), for every ` ∈ [m], so each party obtains the shares bi`, as well as n − 1

MACs on bi` and a key on each bj` , for j 6= i.

And M multiplication triples as follows:

1. Sample a`, b` ← F2 and compute c` = a` · b`, for ` ∈ [M].

2. For each x ∈ {a`, b`, c`}`∈[M], authenticate x as follows:

(a) Receive corrupted parties’ shares xi ∈ F2, for i ∈ I , from A.
(b) Sample honest parties’ shares xi ← F2, for i /∈ I subject to

∑n
i=1 x

i = x.
(c) Run n-Bracket(x1, . . . , xn), so the parties obtain [x].

Key queries: On receiving (i, R′) from A, where i ∈ [n], output 1 to A if Ri = R′. Otherwise, output 0 to A.

Figure 9: Functionality for secure multi-party computation based on TinyOT

Macro n-Bracket

This subroutine of Fn-TinyOT uses the global MAC keys R1, . . . , Rn stored by the functionality.

On input (x1, . . . , xn), authenticate the share xi ∈ {0, 1}, for each i ∈ [n], as follows:

If Pi is corrupt: receive a MAC M i
j ∈ Fκ2 from A and compute the key Kj

i = M i
j + xi ·Rj , for each j 6= i.

Otherwise:

1. Sample honest parties’ keys Kj
i ← Fκ2 , for j ∈ [n] \ (I ∪ {i}).

2. Receive keys Kj
i ∈ Fκ2 , for each j ∈ I , from A.

3. Compute the MACs M i
j = Kj

i + xi ·Rj , for j ∈ I .

Finally, output (xi, {M i
j ,K

i
j}j 6=i) to party Pi, for i ∈ [n].

Figure 10: Macro used by Fn-TinyOT to authenticate bits

26

directly from the Fn-TinyOT functionality. This means there is no need to perform the consistency check,
which greatly simplifies the protocol.

The rest of the protocol is mostly the same as ΠPreprocessing in Figure 6, using Fn-TinyOT with [·]-
sharings instead of FBitMPC with 〈·〉-sharings. One other small difference is that because Fn-TinyOT does
not have a private input command, we instead sample [λw] shares for input wires using random bits, and
later use a private output protocol to open the relevant input wire masks to Pi. This change is not strictly
necessary, but simplifies the protocol for implementing Fn-TinyOT — if Fn-TinyOT also had an Input com-
mand for sharing private inputs based on n-Bracket, it would be much more complex to implement with the
correct distribution of shares and MACs.

In more detail, the Garbling phase proceeds as follows.

1. Each party obtains a random key offset Ri by calling the Initialize command of Fn-TinyOT.

2. For every wirew which is an input wire, or the output wire of an AND gate, the parties obtain a shared
mask [λw] using the Bit command of Fn-TinyOT.

3. All the wire keys kiw,0, k
i
w,1 = kiw,0 ⊕Ri are defined by Pi the same way as in ΠPreprocessing.

4. For XOR gates, the output wire mask is computed as [λw] = [λu] + [λv].

5. For each AND gate, the parties compute [λuv] = [λu · λv] using the subprotocol ΠMult in Figure 18.

6. The parties then obtain shares of the garbled circuit as follows:

• For each AND gate g ∈ G with wires (u, v, w), the parties use Claim 4.1 with the shared values
[λu], [λv], [λuv + λw], to define, for each j ∈ [n], shares of the bit/string products:

λu ·Rj , λv ·Rj , (λuv + λw) ·Rj

• These are then used to define shares of ρj,a,b and the garbled circuit, as in the original protocol.

7. For every circuit-output-wire w, the parties run ΠOpen to reveal λw to all the parties.

8. For every circuit input wire w corresponding to party Pi’s input, the parties run Πi
Open (Figure 15) to

open λw to Pi.

The only interaction introduced in the new protocol is in the multiply and opening protocols, which were
abstracted away by FBitMPC in the previous protocol. Simulating and proving security of these techniques
is straightforward, due to the correctness and randomness of the multiplication triples and MACs produced
by Fn-TinyOT. One important detail is the Key Queries command of the Fn-TinyOT functionality, which
allows the adversary to try to guess an honest party’s global MAC key share, Ri, and learn if the guess is
correct. To allow the proof to go through, we modify FPrepocessing to also have a Key Queries command,
so that the simulator can use this to respond to any key queries from the adversary. We denote this modified
functionality by FKQ

Prepocessing.
The following theorem can be proven, similarly to the proof of Theorem 3.1 where we modify the

preprocessing functionality to support key queries, and adjust the simulation as described above.

Theorem 4.1 The modified protocol described above UC-securely computes FKQ
Prepocessing from Figure 5 in

the presence of a static, malicious adversary corrupting up to n− 1 parties in the Fn-TinyOT-hybrid model.

Finally, in Section 5.1 we discuss how to extend the proof of the online phase, showing that allowing
key queries in the preprocessing functionality does not affect security.

27

5 The Online Phase

Our final protocol, presented in Figure 11, implements the online phase where the parties reveal the gar-
bled circuit’s shares and evaluate it. Our protocol is presented in the FPrepocessing-hybrid model. Upon
reconstructing the garbled circuit and obtaining all input keys, the process of evaluation is similar to that
of [Yao86], except here all parties run the evaluation algorithm, which involves each party computing n2

PRF values per gate. During evaluation, the parties only see the randomly masked wire values and cannot
determine the actual wire values. Upon completion, the parties compute the actual output using the output
wire masks revealed from FPrepocessing. We conclude with the following theorem.

Theorem 5.1 Let f be an n-party functionality {0, 1}nκ 7→ {0, 1}κ and assume that F is a PRF. Then
Protocol ΠMPC from Figure 11, UC-securely computes f in the presence of a static malicious adversary
corrupting up to n− 1 parties in the FPrepocessing-hybrid.

Proof overview. Our proof follows by first demonstrating that the adversary’s view is computationally
indistinguishable in both real and simulated executions. To be concrete, we consider an event for which the
adversary successfully causes the bit transferred through some wire to be flipped and prove that this event
can only occur with negligible probability (our proof is different to the proof in [LPSY15] as in our case the
adversary may choose its additive error as a function of the garbled circuit). Then, conditioned on the event
flip not occurring, we prove that the two executions are computationally indistinguishable via a reduction to
the correlation robust PRF, inducing a garbled circuit that is indistinguishable. The complete proof is found
below.

Proof: Let A be a PPT adversary corrupting a subset of parties I ⊂ [n]. We prove that there exists a PPT
simulator S with access to an ideal functionality F that implements f , that simulates the adversary’s view.
Denoting the set of honest parties by Ī , our simulator S is defined below.

The description of the simulation.

1. INITIALIZATION. Upon receiving the adversary’s input (1κ, I, ~xI), S incorporates A and internally
emulates an execution of the honest parties running ΠMPC with the adversary A:

2. PROCESSING. S emulates the preprocessing phase of functionality FPrepocessing, obtaining the ad-
versary input (init, Cf) where Cf is a Boolean circuit that computes f with a set of wires W and a
set G of AND gates.

3. GARBLING. Let W ′ denote the set of input wires that are associated with the adversary’s input. Then
upon receiving the input (Garbling, Cf) from the adversary the simulator emulates the garbling
phase as follows.

• Upon receiving the global differences {Ri}i∈I from the adversary the simulator records this set.

• For every input wire w ∈ W ′ that is associated to the adversary’s input, the simulator obtains
from the adversary a random masking value λw ∈ {0, 1} and an input key kiw,0 ∈ {0, 1}κ.

• For every wire w ∈ W that is the output of an AND gate and i ∈ I , the simulator chooses a
random λw ∈ {0, 1} and records it. Moreover, the simulator obtains from the adversary a key
kiw,0 and records the pair (kiw,0, k

i
w,1 = kiw,0 ⊕Ri).

28

The MPC Protocol - ΠMPC

On input a circuit Cf representing the function f and ρ = (ρ1, . . . , ρn) where ρi is party’s Pi input, the parties
execute the following commands in sequence.

Preprocessing: This sub-task is performed as follows.

• Call Garbling on FPrepocessing with input Cf .

• Each party Pi obtains the λw wire masks for every output wire and every wire associated with their input, and
all the keys {kiw,0}w∈W and Ri.

Online Computation: This sub-task is performed as follows.

• For all input wires w with input from Pi, party Pi computes Λw = ρw ⊕ λw, where ρw is Pi’s input to Cf ,
and λw was obtained in the preprocessing stage. Then, Pi broadcasts the public value Λw to all parties.

• For all input wires w, each party Pi broadcasts the key kiw associated to Λw.

• The parties call Open Garbling on FPrepocessing to reconstruct g̃ja,b for every gate g and values a, b.

• Passing through the circuit topologically, the parties can now locally compute the following operations for
each gate g. Let the gates input wires be labelled u and v, and the output wire be labelled w. Let a and b be
the respective public values on the input wires.

1. If g is a XOR gate, set the public value on the output wire to be c = a+ b. In addition, for every j ∈ [n],
each party computes kjw,c = kju,a ⊕ k

j
v,b.

2. If g is an AND gate , then each party computes, for all j ∈ [n]:

kjw,c = g̃ja,b ⊕

(
n⊕
i=1

Fkiu,a,kiv,b(g‖j)

)
3. If kiw,c 6∈ {kiw,0, kiw,1 = kiw,0 ⊕ Ri}, then Pi outputs abort. Otherwise, it proceeds. If Pi aborts it

notifies all other parties with that information. If Pi is notified that another party has aborted it aborts as
well.

4. If kiw,c = kiw,0 then Pi sets c = 0; if kiw,c = kiw,1 then Pi sets c = 1.
5. The output of the gate is defined to be (k1w,c, . . . , k

n
w,c) and the public value c.

• Assuming no party aborts, everyone will obtain a public value cw for every circuit-output wire w. The party
can then recover the actual output value from ρw = cw ⊕ λw, where λw was obtained in the preprocessing
stage.

Figure 11: The MPC Protocol - ΠMPC

29

• Upon receiving an OK command from the adversary, the simulator forwards it a random masking
value λw ∈ {0, 1}, for every output wire w ∈W .

4. ONLINE COMPUTATION. In the online computation the simulator honestly generates the public values
{Λw}w∈W ′′ and the input keys {kiw,Λw}i∈Ī,w∈W ′′ that are associated with the honest parties’ input
wire set W ′′, and broadcasts these to the adversary.

It then obtains the adversary’s public values {Λw}w∈W ′ as well as its input keys {k̂iw}i∈I,w∈W ′ (which
may be different to the keys received in the garbling phase), and defines the adversary’s input as
follows.

• INPUT EXTRACTION. For each input wire w ∈W ′, the simulator computes ρw = Λw ⊕λw and
fixes the adversary’s input {~xI} to be the concatenation of these bits. S sends this input to the
trusted party computing f , receiving the output y = (y1, . . . , ym). Note thatAmay still provide
inconsistent input keys with ρ which we view as providing incorrect PRF values for these wires.

5. SIMULATED GARBLED CIRCUIT GENERATION. Upon receiving the adversary’s (OpenGarbling)
message on FPrepocessing the simulator completes the generation of the garbled circuit as follows.

• It first generates the honest parties’ keys {kiw,Λw}i∈Ī,w∈W associated with every internal wire
w ∈W that is an output of an AND gate. Note that for the honest parties the simulator generates
a single key per wire.

• Next, the simulator chooses a random Λw ← {0, 1} for the public value on every internal wire
w ∈W that is an output of an AND gate, except for the circuit output wires. For the t-th output
wire, S defines Λw = λw ⊕ yt (recall that the masking values for the output wires are already
fixed at this point, so the public values must be consistent with the output y = y1, . . . ym).

• For every XOR gate with input wires u and v and output wire w, S sets kiw,0 = kiu,0 ⊕ kiv,0 and
kiw,1 = kiw,0 ⊕Ri for all i ∈ [n], and Λw = Λu ⊕ Λv.

• ACTIVE PATH GENERATION. In the next step the simulator computes an active path of the
garbled circuit which corresponds to the sequence of keys that will be observed by the adversary.
More formally, for every AND gate g that is not an output gate, S honestly generates the entry
in row (Λu,Λv), where Λu (resp. Λv) is the public value associated to the left (resp. right) input
wire to g. Namely, the simulator computes

g̃jΛu,Λv =

(
n⊕
i=1

Fkiu,Λu ,k
i
v,Λv

(g‖j)

)
⊕ kjw,Λw

fixing g̃Λu,Λv = g̃1
Λu,Λv

◦ . . . ◦ g̃nΛu,Λv . The remaining three rows are sampled uniformly at
random from {0, 1}nκ. Importantly, S never uses the inactive keys ki

u,Λ̄u
, ki
v,Λ̄v

and ki
w,Λ̄w

in
order to generate the garbled circuit.

6. The simulator hands the adversary the complete garbled circuit. In case the adversary aborts, the
simulator sends NO-GO to the trusted party and aborts. Otherwise, the simulator obtains an additive
error e = {ea,bg }a,b∈{0,1},g∈G and computes the modified garbled circuit as g̃Λu,Λv + eΛu,Λv

g .

Next, the simulator evaluates the modified circuit using the input wire keys {k̂iw,Λw}w∈W ′,i∈I and
{kjw,Λw}w∈W ′′,j∈I and checks whether the honest parties would have aborted. Namely, for each gate,

30

whether the evaluation reveals the honest parties’ keys associated with Λw for w the output wire of
some AND gate. If there exists a gate for which the evaluation does not yield the key associated with
Λw then the simulator outputs fail and aborts.

This concludes the description of the simulation. Note that the difference between the simulated and the
real executions is regarding the way the garbled circuit is generated. More concretely, the simulated garbled
circuit is only generated after the simulator extracts the adversary’s input. Moreover, the simulated garbled
gates include a single row that is properly produced, whereas the remaining three rows are picked at random.

Let HYB
FPrepocessing
ΠMPC,A,Z

(1κ, z) denote the output distribution of the adversary A and honest parties in a real
execution using ΠMPC with adversaryA. Moreover, let IDEALF ,S,Z(1κ, z) denote the output distribution
of S and the honest parties in an ideal execution.

We next define Flip to be the event that there exists an AND gate g and an honest party Pj , who, when
evaluating the modified garbled circuit, (1) Does not abort; and (2) Obtains the incorrect key kj

w,Λ̄w
for the

output wire w of g. Note that this event implies that the adversary causes Pj to compute an incorrect value,
as the bit value being transferred within the output wire w is now flipped with respect to Pj .

To prove that this event occurs with negligible probability, we consider an execution ˜IDEAL where a
simulator S̃ produces a view that is identical to the view produced by S in IDEAL. Namely, the adversary’s
view is simulated exactly as in IDEAL by a simulator S̃ with the exception that S̃ further picks the global
differences {Ri}i∈Ī and {kj

w,Λ̄w
}j∈Ī,w∈W (which are never defined by S). Moreover, the event for which

the simulator outputs fail and aborts is modified as follows. Namely, the simulator aborts if there exists a
gate for which the evaluation does not yield the key associated with Λw or with Λ̄w. Note that this event
is well-defined since all the wire keys are chosen in this game. Then the difference between IDEAL and
˜IDEAL is the event that S aborts whereas S̃ does not abort. Note that this event occurs when the adversary

successfully flipped a wire value. Specifically, this will yield a valid evaluation in ˜IDEAL but not in
IDEAL. We next show that this event occurs with negligible probability.

Fix the additive error e = {ea,bg }a,b∈{0,1},g∈G that is added to the simulated garbled circuit, and let
g̃a,b + ea,bg for all g ∈ G and a, b ∈ {0, 1} denote the garbled circuit with the additive error. We prove

that Flip only occurs with negligible probability in ˜IDEAL which implies that the statement also holds in
IDEAL. Intuitively, this is due to the fact that the adversary can only succeed in this attack by guessing
correctly the global difference Ri.

Lemma 5.1 The probability that Flip occurs in ˜IDEAL is no more than n · 2−κ.

Proof: Recall first that the simulated garbling in IDEAL involves only generating a single key kjw per
wire and per honest party, which either corresponds to kjw,0 or kjw,1. Consequently, the simulator does not
even need to choose a global difference Ri in order to complete the garbling. Furthermore, the simulator in
˜IDEAL does generate these extra values, but never uses them; this means that the simulated garbled circuit

given to A is completely independent of the honest parties’ global differences.
Now, suppose Flip occurs with respect to party Pj , and let g be the first flipped AND gate (in some

topological order), with input wires u, v and output wire w. Then, because Pj did not abort, the keys on
wires u and v obtained by Pj must contain kju,Λu , k

j
v,Λv

. Note that it is possible that the corrupt parties’ keys

for these wires may be incorrect, so we denote these by k̂iu, k̂
i
w, for i ∈ I . Since gate g was flipped, the j-th

entry of the active row of the garbled gate is

31

ĝjΛu,Λv =
n⊕
i∈Ī

(
Fkiu,Λu ,k

i
v,Λv

(g‖j)
)
⊕

n⊕
i∈I

(
Fk̂iu,k̂iv

(g‖j)
)
⊕ kj

w,Λ̄w
.

To cause this to happen, the adversary needs to introduce an error into this entry of the original garbled gate
g̃, given by:

∆g := ĝjΛu,Λv ⊕ g̃
j
Λu,Λv

=
n⊕
i∈I

(
Fk̂iu,k̂iv

(g‖j)⊕ Fkiu,Λu ,kiv,Λv (g‖j)
)
⊕Rj

This boils down to correctly guessing Rj for the honest party Pj , which is bounded by 2−κ as Rj is picked
truly at random and independently of all other items in the execution. Taking a union bound over the global
differences of all honest parties completes the proof. �

In the next step we prove that the ideal and real executions are indistinguishable, conditioned on the
event Flip not occurring.

Lemma 5.2 Conditioned on the event Flip, the following two distributions are computationally indistin-
guishable:

• {HYB
FPrepocessing
ΠMPC,A,Z

(1κ, z)}κ∈N,z∈{0,1}∗

• {IDEALF ,S,Z(1κ, z)}κ∈N,z∈{0,1}∗

Proof: We begin by defining a slightly modified real execution H̃YB, where the creation of the garbled
circuit is moved from the preprocessing stage to the online computation stage, after the parties have broad-
cast their masked inputs. Note that the garbled circuit is still computed according to FPrepocessing, and
the rest of the protocol is identical to HYB, which induces the same view for the adversary. This hybrid
execution is needed in order to construct a distinguisher for the correlation robustness assumption. Let

H̃YB
FPrepocessing
ΠMPC,A (1κ, z) denote the output distribution of the adversary A and honest parties in this game.

It is simple to verify that in the FPrepocessing-hybrid model, the adversary’s views in H̃YB and HYB are
identical.

Our proof of the lemma follows by a reduction to the correlation robustness of the PRF F (cf. Definition
2.3). Assume by contradiction the existence of an environment Z , an adversary A and a non-negligible
function p(·) such that∣∣Pr[Z(H̃YB

FPrepocessing
ΠMPC,A,Z (1κ, z)) = 1]− Pr[Z(IDEALF ,S,Z(1κ, z)) = 1]

∣∣ ≥ 1

p(κ)

for infinitely many κ’s. We construct a distinguisher D′ with access to an oracle O (that implements either
Circ or Rand) that breaks the security of the correlation robustness assumption. Namely, we show that∣∣Pr[R← {0, 1}n;ACircR(·)(1κ) = 1]− Pr[ARand(·)(1κ) = 1]

∣∣ ≥ 1

p(κ)
.

Distinguisher D′ receives the environment’s input z and internally invokes Z and simulator S, playing the
role of functionality f . In more details,

32

• D′ internally invokes Z that fixes the honest parties’ inputs ρ.

• D′ emulates the communication with the adversary (controlled by Z) in the initialization, preprocess-
ing and garbling steps as in the simulation with S.

• For each wire u, let `u ∈ {0, 1} be the actual value on wire u. Note that these values, as well as the
output of the computation y, can be determined since D′ knows the actual input of all parties to the
circuit (where the adversary’s input is extracted as in the simulation with S).

• It next constructs the garbled circuit as follows. For each wire w in the circuit that is an output wire
of an AND gate and i ∈ Ī , it samples a key kiw and a public value Λw. Using the internal values `w,
we can also compute the masks λw = `w ⊕ Λw.

• For each wire that is the output of an XOR gate with input wires u and v and output wire w, the
distinguisher sets kiw = kiu ⊕ kiv for all i ∈ [n], and Λw = Λu ⊕ Λv.

• The distinguisher picks an honest party, say Pi0 , and samples global differences Ri for i ∈ I \ {i0}.
For every i ∈ I \ {i0} and w ∈W , D′ now has both keys kiw,Λw = kiw and ki

w,Λw
= kiw ⊕Ri.

• Finally, for each wire that is the output of an AND gate g with input wires u and v and output wire w,
the distinguisher computes four ciphertexts c00, c01, c10 and c11 as the garbled gate, that are generated
as follows,

– First, the j-th entry in the (Λu,Λv)-th row is computed as(
n⊕
i=1

Fkiu,Λu ,k
i
v,Λv

(g‖j)

)
⊕ kjw,Λw .

– Next, for for all (a, b) ∈ {0, 1}2 such that (a, b) 6= (Λu,Λv) the distinguisher sets `a,b = 0 if
g(a⊕λu, b⊕λv) = `w, and sets `a,b = 1 otherwise. It then queries hja,b = O(ki0u,Λu , k

i0
v,Λv

, g, j, a⊕
λu, b⊕ λv, `a,b), and sets the j-th entry of row (a, b) in the garbled gate to be:⊕

i 6=i0

Fkiu,a,kiv,b
(g‖j)

⊕ hja,b ⊕ kjw,Λw
– For the output wires the distinguisher sets the public values as in the simulation.

• D′ hands the adversary the complete description of the garbled circuit and concludes the execution as
in the simulation with S.

• D′ outputs whatever Z does.

Note first that D′ only makes legal queries to its oracle. Furthermore, if O = Circ then the view of A
is identically distributed to its view in the real execution of the protocol on the given inputs, whereas if
O = Rand then A’s view is distributed identically to the output of the simulator described previously since
the oracle’s response is truly random in this case. This completes the proof. �

Finally, we demonstrate that the probability Flip occurs in HYB is negligible as well due to indistin-
guishability of executions. This concludes the proof as it demonstrates that with overwhelming probability
the adversary is getting caught whenever cheating in the computation of the PRF values.

33

Lemma 5.3 The probability that Flip occurs in HYB is bounded by 2−κ + negl(κ) for some negligible
function negl(·).

Proof: Intuitively speaking, we prove that if Flip occurs in the real execution with a non-negligible proba-
bility, then we can leverage this distinguishing gap in order to break the correlation robustness assumption.
Namely, if this event occurs then it is possible to extractRi and all pairs of inputs keys associated with every
wire with respect to an honest party. Given all keys it is possible to recompute the garbled circuit and verify
whether it was generated honestly or as in the simulation. More formally, assume by contradiction that

Pr[Flip occurs in HYB] ≥ 1

q(κ)

for some non-negligible function q(·) and infinitely many κ’s. We construct a distinguisher D that breaks
the security of the underlying correlation robust PRF with non-negligible probability as follows.

1. Distinguisher D is identically defined as the distinguisher in the proof of Lemma 5.2, externally com-
municating with an oracle Q that either realizes the function Circ or Rand, while internally invoking
A. The only difference is that D chooses i0 at random. This is due to the fact that the event Flip holds
with respect to (at least) one honest party, whose identity is unknown.

2. Upon receiving the modified garbled circuit from A, D evaluates the circuit on the parties’ inputs
and compares every active key k̃iw that is revealed during the execution with the actual active key
kiw that was created by D in the garbling phase. For every gate g for which there exists a difference
∆i
g = k̃iw ⊕ kiw for all i ∈ Ī , D sets Rig = ∆i

g.

3. For every gate g for which D recorded a global difference Ri0g for party i0, it defines the inactive
key for the output wire w ∈ W of this gate by ki0

w,Λ̄w
= ki0w,Λw ⊕ Ri0g . Next, for some gate g′

for which wire w is an input wire (say associated with left input wire to g′ w.l.o.g., D queries its
oracle on (ki0

w,Λ̄w
, ki0v , g, j, ā ⊕ λw, b ⊕ λv, `a,b) where ki0v is the active key associated with the other

input wire of Pi0 . D compares this outcome with the values it obtained from its oracle for the query
(ki0w,Λw , k

i0
v , g, j, a⊕ λw, b⊕ λv, `a,b). If equality holds, then D outputs Circ.

4. Upon concluding the execution so that D did not output Circ, it returns Rand.

Clearly, whenever Flip occurs with respect to i0 than D can identify this event by extracting some inactive
key and querying its oracle in this key. Therefore D outputs Circ with probability 1

q(κ)·n . On the other hand,
due to the claim made in Lemma 5.2, Flip rarely occurs in IDEAL and thusD outputs Rand on the event of
Flip only with negligible probability. This implies a non-negligible gap with respect to the event occurring
in the two executions and concludes the proof. �

5.1 The Online Phase with FKQ
Prepocessing

In this section we now prove the following theorem, for the online protocol based on FPrepocessing with key
queries, denoted by FKQ

Prepocessing and formally defined in Section 4.3.

Theorem 5.2 Let f be an n-party functionality {0, 1}nκ 7→ {0, 1}κ and assume that F is a PRF. Then
Protocol ΠMPC from Figure 11, UC-securely computes f in the presence of a static malicious adversary
corrupting up to n− 1 parties in the FKQ

Prepocessing-hybrid model.

34

In what follows, we discuss how to adapt the proof of Theorem 5.1 to support key queries.

Proof Sketch: We first modify the simulator specified in that proof. Namely, upon receiving the adver-
sary’s queries (i, R′), the simulator outputs 0. Intuitively, we claim that with overwhelming probability the
adversary only sees zero responses to its key queries as it can only guess a global key with negligible prob-
ability. In the following, we formalize this intuition and discuss how to modify the proof of Theorem 5.1 by
re-proving Lemma 5.1. Namely, we need to take into account the fact that the probability that the event Flip
occurs also depends on the leakage obtained by the key queries made to the functionality.

We define a new hybrid game H where the simulator SH is defined identically to simulator S with the
exception that SH knows the honest parties’ inputs and further generates the inactive keys by picking global
differences for the honest parties. Furthermore, for every key query (i, R′) made by A, SH verifies first
whether R′ = Ri and aborts in case equality holds. Else, it replies with 0. Nevertheless, SH garbles the
circuit the same way S does. Let Guess denote the event in H for which the adversary makes a key query
Ri (meaning, it guesses the correct Ri value). We prove the following.

Lemma 5.4 The probability that Flip occurs in H is no more than (q+ 1)/2κ, where q is the number of key
queries.

Proof: We analyze the probability that the event Flip occurs.

Pr(Flip) = Pr(Flip|Guess) · Pr(Guess) + Pr(Flip|Guess) · Pr(Guess)

≤ Pr(Guess) + Pr(Flip|Guess) ≤ q/2κ + 2−κ.

�
This implies that the distributions induced within IDEAL and H are statistically close since the only

difference is whenever event Guess occurs. We next claim that the proof of Lemma 5.2 holds with respect
to H and HYB.

Lemma 5.5 Conditioned on the event Flip, the following two distributions are computationally indistin-
guishable:

• {HYB
FPrepocessing
ΠMPC,A

(1κ, z)}κ∈N,z∈{0,1}∗

• {H
FPrepocessing
ΠMPC,SH

(1κ, z)}κ∈N,z∈{0,1}∗

Proof: This proof will have to incorporate the key queries as well. Namely, distinguisher D′ first picks the
identity of party i0 at random. Then, whenever a key query (i0, R

i0) is made by A, D′ uses it to calculate
the inactive keys of party Pi0 and checks whether this yields the garbling it obtained from its oracle. In case
it does, D outputs Circ. Otherwise, it outputs Rand. Otherwise, if at the end of the execution no queries
have resulted in a correct garbling, output Rand. �

Finally, we reprove Lemma 5.3 by demonstrating that if the success probability of Flip is non-negligibly
higher in HYB, then we can distinguish the two executions HYB and H.

Lemma 5.6 The probability that Flip occurs in HYB is bounded by 2−κ + negl(κ) for some negligible
function negl(·).

35

Proof: This proof follows similarly to the proof of Lemma 5.3 in the sense that the reduction additionally
needs to reply the adversary’s key queries. Namely, for each query (i, Ri) such that i 6= i0, D can answer
this query as it picked the global difference for that party. Moreover, for each query (i0, R

i0), D uses this
query to fix a set of inactive keys for party i0 and verifies whether this guess is correct by recomputing the
garbled circuit and comparing it with the original garbled circuit. If equality holds then D responses with 1
to this query. The rest of the proof follows identically. �

6 Performance

In this section we present implementation results for our protocol from Section 4 for up to 9 parties. We
also analyse the concrete communication complexity of the protocol and compare this with previous, state-
of-the-art protocols in a similar setting.

We have made a couple of tweaks to our protocol to simplify the implementation. We moved the Open
Garbling stage to the preprocessing phase, instead of the online phase. This optimizes the online phase
so that the amount of communication is independent of the size of the circuit. This change means that our
standard model security proof would no longer apply, but we could prove it secure using a random oracle
instead of the circular-correlation robust PRF, similarly to [BHR12, LR15]. Secondly, when not working in
a modular fashion with a separate preprocessing functionality, the share rerandomization step in the output
stage is not necessary to prove security of the entire protocol, so we omit this.

6.1 Implementation

We implemented our variant of the multi-party TinyOT protocol (Section A) using the libOTe library [Rin]
for the fixed-correlation OTs. and tested it for between 3 and 9 parties. We benchmarked the protocol over a
1Gbps LAN on 5 servers with 2.3GHz Intel Xeon CPUs with 20 cores. For the experiments with more than
5 parties, we had to run more than one party per machine; this should not make much difference in a LAN,
as the number of threads being used was still fewer than the number of cores. As benchmarks, we measured
the time for securely computing the circuits for AES (6800 AND gates) and SHA-256 (90825 AND gates).

For the TinyOT bit and triple generation, every pair of parties needs two correlated OT instances running
between them (one in each direction). We ran each OT instance in a separate thread with libOTe, so that
each party uses 2(n − 1) OT threads. This gave a small improvement (≈ 6%) compared with running
n − 1 threads. We also considered a multiple execution setting, where many (possibly different) secure
computations are evaluated. Provided the total number of AND gates in the circuits being evaluated is at
least 220, this allows us to generate the TinyOT triples for all executions at once using a bucket size of
B = 3, compared with B = 5 for one execution of AES or B = 4 for one execution of SHA-256. Since the
protocol in Section A scales with B2, this has a big impact on performance. The results for 9 parties, for the
different choices of B, are shown in Table 2.

Figures 12–13 show how the performance of AES and SHA-256 scales with different numbers of parties,
in the amortized setting. Although the asymptotic complexity is quadratic, the runtimes grow relatively
slowly as the number of parties increases. This is because in the preprocessing phase, the amount of data
sent per party is actually linear. However, the super-linear trend is probably due to the limitations of the
total network capacity, and the computational costs.

Comparison with other works. We calculated the cost of computing the SPDZ-BMR protocol [LPSY15]
using [KOS16] to derive estimates for creating the SPDZ triples (the main cost). Using MASCOT over F2κ

36

AES AES SHA-256 SHA-256
(B = 5) (B = 3) (B = 5) (B = 3)

Prep. 1329 586.9 10443 6652
Online 35.34 33.30 260.58 252.8

Table 2: Runtimes in ms for AES and SHA-256 evalution with 9 parties

3 5 7 9

0

200

400

600

Number of parties

Ti
m

e
(m

s)

Figure 12: AES performance (6800 AND
gates).

3 5 7 9

0

2,000

4,000

6,000

Number of parties

Ti
m

e
(m

s)

Online
Preprocessing

Figure 13: SHA-256 performance (90825
AND gates).

with free-XOR, SPDZ-BMR requires 3n+1 multiplications per garbled AND gate. This gives an estimated
cost of at least 14 seconds to evaluate AES, which is over 20x slower than our protocol.

The only other implementation of actively secure, constant-round, dishonest majority MPC is the con-
current work of [KRW17], which presents implementation figures for up to 256 parties running on Amazon
servers. Their runtimes with 9 parties in a LAN setting are around 200ms for AES and 2200ms for SHA-
256, which is around 3 times faster than our results. However, their LAN setup has 10Gbps bandwidth,
whereas we only tested on machines with 1Gbps bandwidth. Since the bottleneck in our implementation is
mostly communication, it seems that our implementation could perform similar to or even faster than theirs
in the same environment, despite our higher communication costs. However, it is not possible to make an
accurate comparison without testing both implementations in the same environment.

Compared with protocols based solely on secret-sharing, such as SPDZ and TinyOT, the advantage
of our protocol is the low round complexity. We have not yet managed to benchmark our protocol in a
WAN setting, but since our total round complexity is less than 20, it should perform reasonably fast. With
secret-sharing, using e.g. TinyOT, evaluating the AES circuit requires at least 40 rounds in just the online
phase (it can be done with 10 rounds [DNNR16], but this uses a special representation of the AES function,
rather than a general circuit), whilst computing the SHA-256 circuit requires 4000 rounds. In a network
with 100ms delay between parties, the AES online time alone would be at least 4 seconds, whilst SHA-256
would take over 10 minutes to securely compute in that setting. If our protocol is run in this setting, we
should be able to compute both AES and SHA-256 in just a few seconds (assuming that latency rather than
bandwidth is the bottleneck).

37

6.2 Communication Complexity Analysis

We now focus on analysing the concrete communication complexity of the optimized variant of our protocol
and compare it with the state of the art in constant-round two-party and multi-party computation protocols.
We have not implemented our protocol, but since the underlying computational primitives are very simple,
the communication cost will be the overall bottleneck. As a benchmark, we estimate the cost of securely
computing the AES circuit (6800 AND gates, 25124 XOR gates), where we assume that one party provides
a 128-bit plaintext or ciphertext and the rest of them have an XOR sharing of a 128-bit AES key. This
implies we have 128 ·n input wires and an additional layer of XOR gates in the circuit to add the key shares
together. We consider a single set of 128 output wires, containing the final encrypted or decrypted message.

6.2.1 Complexity of Our TinyOT-Based Protocol

We now measure the exact communication cost of our optimized protocol based on TinyOT (in the random
oracle model), in terms of number of bits sent over the network per party (multiply this by n for the overall
complexity). We exclude one-time costs such as checking MACs, which can be done in a batch at the end,
and initializing the base OTs. Consider a circuit with G AND gates, I input wires (in total) and O output
wires. The costs of the different stages are as follows, with computational security parameter κ = 128 and
statistical security parameter s = 40.

TinyOT Preprocessing. One triple and one random bit per AND gate, plus one random bit per input wire.
From the analysis in Appendix A this gives:

(504B2 + 168)(n− 1)G+ 168(n− 1)I.

Garbling. Two bit openings for each AND gate (for the bit multiplication), one bit opening for every
output wire and one private opening for every input wire, gives

2(n− 1)G+ (n− 1)O + (n− 1)I.

Open Garbling. The rerandomization step costs κ(n− 1) bits per party. Opening the garbled circuit can
be done efficiently by each party sending their share to P1, who broadcasts the result; this costs 4nκG bits
per party, giving a total of

4nκG+ κ(n− 1).

Online. If party Pi has Ii input bits then the cost for Pi is Ii + I · (n− 1) · κ bits.

Note that for a single execution of AES we have G = 6800, I = 128n and O = 128, which means for
multi-party TinyOT we can choose B = 4, following the combinatorial analysis of [FLNW17].

6.2.2 Two Parties

In Table 3 we compare the cost of our protocol in the two-party case, with state-of-the-art secure two-party
computation protocols. We instantiate our TinyOT-based preprocessing method with the optimized, two-
party TinyOT protocol from [WRK17], lowering the previous costs further. For consistency with the other
two-party protocols, we divide the protocol costs into three phases: function-independent preprocessing,

38

Protocol # Executions Function-indep.
prep.

Function-dep.
prep.

Online

[RR16]
32 – 3.75 MB 25.76 kB
128 – 2.5 MB 21.31 kB
1024 – 1.56 MB 16.95 kB

[NST17]

1 14.94 MB 227 kB 16.13 kB
32 8.74 MB 227 kB 16.13 kB
128 7.22 MB 227 kB 16.13 kB
1024 6.42 MB 227 kB 16.13 kB

[WRK17]

1 2.86 MB 570 kB 4.86 kB
32 2.64 MB 570 kB 4.86 kB
128 2.0 MB 570 kB 4.86 kB
1024 2.0 MB 570 kB 4.86 kB

Ours + [WRK17]

1 2.86 MB 872 kB 4.22 kB
32 2.64 MB 872 kB 4.22 kB
128 2.0 MB 872 kB 4.22 kB
1024 2.0 MB 872 kB 4.22 kB

Table 3: Communication estimates for secure AES evaluation with our protocol and previous works in the
two-party setting. Cost is the maximum amount of data sent by any one party, per execution.

which only depends on the size of the circuit; function-dependent preprocessing, which depends on the
exact structure of the circuit; and the online phase, which depends on the parties’ inputs. As with the
implementation, we move the garbled circuit opening to the function-dependent preprocessing, to simplify
the online phase.

The online phase of the modified protocol is just two rounds of interaction, and has the lowest online
cost of any actively secure two-party protocol.2 The main cost of the function-dependent preprocessing is
opening the garbled circuit, which requires each party to send 8κ bits per AND gate. This is slightly larger
than the best Yao-based protocols, due to the need for a set of keys for every party in BMR.

In the batch setting, where many executions of the same circuit are needed, protocols such as [RR16]
clearly still perform the best. However, if many circuits are required, but they may be different, or not known
in advance, then our multi-party protocol is highly competitive with two-party protocols.

6.2.3 Comparison with Multi-Party Protocols

In Table 4 we compare our work with previous constant-round protocols suitable for any number of parties,
again for evaluating the AES circuit. We do not present the communication complexity of the online phase
as we expect it to be very similar in all of the protocols. We denote by MASCOT-BMR-FX an optimized
variant of [LPSY15], modified to use free-XOR as in our protocol, with multiplications done using the
OT-based MASCOT protocol [KOS16].

2If counting the total amount of data sent, in both directions, our online cost would be larger than [WRK17], which is highly
asymmetric. In practice, however, the latency depends on the largest amount of communication from any one party, which is why

39

Protocol Security Function-indep. prep. Function-dep. prep.

n = 3 n = 10 n = 3 n = 10

SPDZ-BMR active 25.77 GB 328.94 GB 61.57 MB 846.73 MB
SPDZ-BMR covert, pr. 1

5 7.91 GB 100.98 GB 61.57 MB 846.73 MB
MASCOT-
BMR-FX

active 3.83 GB 54.37 GB 12.19 MB 178.25 MB

[KRW17] active 4.8 MB 20.4 MB 1.3 MB 4.4 MB
Ours active 14.01 MB 63.22 MB 1.31 MB 4.37 MB

Table 4: Comparison of the cost of our protocol with previous constant-round MPC protocols in a range of
security models, for secure AES evaluation. Costs are the amount of data sent over the network per party.

As in the previous section, we move the cost of opening the garbled circuit to the preprocessing phase
for all of the presented protocols (again relying on random oracles). By applying this technique the online
phase of our work is just two rounds, and has exactly the same complexity as the current most efficient semi-
honest constant-round MPC protocol for any number of parties [BLO16], except we achieve active security.
We see that with respect to other actively secure protocols, we improve the communication cost of the
preprocessing by around 2–4 orders of magnitude. Moreover, our protocol scales much better with n, since
the complexity is O(n2) instead of O(n3). The concurrent work of Katz et al. [KRW17] requires around
3 times less communication than our protocol, which is due to their optimized version of the multi-party
TinyOT protocol.

Acknowledgements

We are grateful to Moriya Farbstein and Lior Koskas for their valuable assistance with implementation and
experiments. We also thank Yehuda Lindell for helpful feedback.

The first author was supported by the European Research Council under the ERC consolidators grant
agreement No. 615172 (HIPS), and by the BIU Center for Research in Applied Cryptography and Cyber
Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office. The second
author was supported by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval
Warfare Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070. The third author
was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 643161.

References
[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer

extensions with security for malicious adversaries. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 673–701. Springer, Heidelberg, April 2015.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 420–432. Springer, Heidelberg, August 1992.

we measure in this way.

40

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–796. ACM Press, October 2012.

[BLN+15] Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi,
Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. High performance multi-party computation for
binary circuits based on oblivious transfer. Cryptology ePrint Archive, Report 2015/472, 2015. http:
//eprint.iacr.org/2015/472.

[BLO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multiparty computa-
tion for the internet. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 16, pages 578–590. ACM Press, October 2016.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended
abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In 20th ACM STOC, pages 1–10. ACM Press,
May 1988.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally composable secu-
rity for standard multiparty computation. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 3–22. Springer, Heidelberg, August 2015.

[CDD+16] Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling, and Jesper Buus Nielsen. Rate-1, linear
time and additively homomorphic UC commitments. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 179–207. Springer, Heidelberg, August 2016.

[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the security of the “free-
XOR” technique. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 39–53. Springer,
Heidelberg, March 2012.

[CKMZ14] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient three-party com-
putation from cut-and-choose. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 513–530. Springer, Heidelberg, August 2014.

[DI06] Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 501–520. Springer, Heidelberg, August 2006.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Prac-
tical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In Jason Crampton,
Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages 1–18. Springer,
Heidelberg, September 2013.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 572–590. Springer, Heidelberg,
August 2007.

[DNNR16] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. Gate-scrambling revis-
ited - or: The TinyTable protocol for 2-party secure computation. Cryptology ePrint Archive, Report
2016/695, 2016. http://eprint.iacr.org/2016/695.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012.

41

http://eprint.iacr.org/2015/472
http://eprint.iacr.org/2015/472
http://eprint.iacr.org/2016/695

[DZ13] Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation of Boolean circuits using
preprocessing. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 621–641. Springer,
Heidelberg, March 2013.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A unified approach to
MPC with preprocessing using OT. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
Part I, volume 9452 of LNCS, pages 711–735. Springer, Heidelberg, November / December 2015.

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-party com-
putation for malicious adversaries and an honest majority. In EUROCRYPT (2), volume 10211 of Lecture
Notes in Computer Science, pages 225–255, 2017.

[GL05] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement. Journal of
Cryptology, 18(3):247–287, July 2005.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - ef-
ficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572–591. Springer,
Heidelberg, August 2008.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no honest majority.
In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 294–314. Springer, Heidelberg,
March 2009.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic secure com-
putation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS 16, pages 830–842. ACM Press, October 2016.

[KRW17] Jonathan Katz, Samuel Ranellucci, and Xiao Wang. Authenticated garbling and efficient maliciously
secure multi-party computation. IACR Cryptology ePrint Archive, 2017:189, 2017.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applica-
tions. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 486–498. Springer,
Heidelberg, July 2008.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 52–78.
Springer, Heidelberg, May 2007.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, April 2009.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 329–346. Springer, Heidelberg, March
2011.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-party
computation combining BMR and SPDZ. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 319–338. Springer, Heidelberg, August 2015.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2PC in the offline/online setting with security for malicious
adversaries. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors, ACM CCS 15, pages 579–590.
ACM Press, October 2015.

42

[LSS16] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient constant-round multi-party
computation from BMR and SHE. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I,
volume 9985 of LNCS, pages 554–581. Springer, Heidelberg, October / November 2016.

[MRZ15] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party computation: The garbled
circuit approach. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors, ACM CCS 15, pages
591–602. ACM Press, October 2015.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new ap-
proach to practical active-secure two-party computation. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer, Heidelberg, August 2012.

[NST17] Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round maliciously secure 2pc
with function-independent preprocessing using lego. In 24th NDSS Symposium. The Internet Society,
2017. http://eprint.iacr.org/2016/1069.

[RBO89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.

[Rin] Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer Library. https:
//github.com/osu-crypto/libOTe.

[RR16] Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with online/offline dual
execution. In 25th USENIX Security Symposium (USENIX Security 16), pages 297–314, Austin, TX,
2016. USENIX Association.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and communication-efficient,
constant-round, secure two-party computation. IACR Cryptology ePrint Archive, 2017:30, 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages
162–167. IEEE Computer Society Press, October 1986.

A Protocol for GMW-Style MPC for Binary Circuits

Here we describe the full protocol for realizing the Fn-TinyOT functionality. It essentially consists of the
bit triple generation protocol from [FKOS15], with some minor modifications, and a method for producing
random shared bits with a consistency check that is similar to the bit/string check from Section 3.3.

We first recall the two-party and n-party MAC representations from Section 4:

[xi]i,j = (xi,M i
j ,K

j
i)

[x] = (xi, {M i
j ,K

i
j}j 6=i))i∈[n], M i

j = Kj
i + xi ·Rj

where in the two-party sharing [xi]i,j , Pi holds the share xi and MAC M i
j , whilst Pj holds the local key Kj

i

and a fixed, global key Rj . In the n-party sharing, each party Pi holds n− 1 MACs on xi, as well as a key
on xj , for each j 6= i, and a global key Ri. Note that if Pi holds xi and Pj holds the key Rj , a sharing [xi]i,j
can easily be created using one call to the correlated OT functionality (Figure 3), in which the correlation
Rj is fixed by Pj in the initialization stage.

As required in the modified preprocessing protocol from Section 4, we need a method for opening
[x]-shared values, both to all parties, and privately to a single party. These are straightforward, shown in
Figure 14–15.

The main protocol, shown in Figure 16, consists of two main parts, for creating shared random bits, and
for multiplication (AND) triples. Creating shared bits is straightforward, by using FCOT to MAC random
bits, then opening a random linear combination of the MACs to ensure consistency.

43

http://eprint.iacr.org/2016/1069
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe

Subprotocol ΠOpen

To open a shared value [x] to all parties:

1. Each party Pi broadcasts its share xi, and sends the MAC M i
j to Pj , for j 6= i.

2. All parties compute x = x1 + · · ·+ xn.

3. Each Pi has received MACs M j
i , for j 6= i, and checks that

M j
i = Ki

j + xj ·Ri.

If any check fails, broadcast ⊥ and abort.

Figure 14: Subprotocol for opening and checking MACs on n-party authenticated secret shares

Subprotocol Πj
Open

To open a shared value [x] to only Pj :

1. Each party Pi, for i 6= j, privately sends its share xi and MAC M i
j to Pj .

2. Pj computes x = x1 + · · ·+ xn, and checks that, for each i 6= j

M i
j = Kj

i + xi ·Rj .

If any check fails, broadcast ⊥ and abort.

Figure 15: Subprotocol for private opening to one party

To create shares of a random multiplication triple (x, y, z), each party first locally samples shares xi, yi,
and then uses FCOT to authenticate these shares. The MAC on a share xi is used to obtain a sharing of
the product of xi with a random bit (ui,j` + vi,j`) known to Pj (using a hash function), and then Pj converts
this to a share of xi · yj by sending a correction bit in step 4a. This opens up an avenue for cheating, as
Pj may send an incorrect correction value to some Pi. This could result in the triple being correct, or, if
xi = 0 the triple would still be correct but Pj would learn the bit xi. These issues are addressed by the
bucket-based cut-and-choose procedure in Figure 17, which first checks correctness by sacrificing triples,
and then removes any potential leakage on the x values by combining several triples together. Note that the
complex bucketing procedure is necessary for these steps, as opposed to simple pairwise checks, because
with triples over F2, one pairwise check (or leakage combiner) can only guarantee correctness (or remove
leakage) if at least one of the two triples is correct (or leakage-free). So, the cut-and-choose and bucketing
procedure are done so that each bucket contains at least one good triple, with overwhelming probability.

A.1 Why the Need for Key Queries?

For completeness, we briefly explain why these are needed in Fn-TinyOT, when using this protocol. After
the protocol execution the environment learns the honest parties’ outputs, which include MAC keys Ki and
R. On the other hand, during the protocol the adversary sees values of the form (simplifying things slightly):

U = H(Ki) + H(Ki +R)

where H is modeled as a random oracle. In the security proof, U is simulated as a uniformly random value
U , since the simulator, S , does not know Ki or Ki + R. This means that if the environment later queries

44

Protocol Πn-TinyOT

Let H : {0, 1}κ → {0, 1} be a single-bit output hash function, modeled as a random oracle.

Initialize:

1. Each party Pi samples Ri ← {0, 1}κ.

2. Every ordered pair (Pi, Pj) calls FCOT, where Pi sends (init, Ri) and Pj sends (init).

Prep: To create m random shared bits [b1], . . . , [bm] do:

1. Each party Pi samples m+ κ random bits bi1, . . . , b
i
m, r

i
1, . . . , r

i
κ ← {0, 1}.

2. Every ordered pair (Pi, Pj) calls FCOT, where Pi is receiver and inputs
(extend, bi1, . . . , b

i
m, r

i
1, . . . , r

i
κ).

3. Use the previous outputs to define sharings [b1], . . . , [bm], [r1], . . . , [rκ].

4. Check consistency of the FCOT inputs as follows:

(a) Call FRand to obtain random field elements χ1, . . . , χm ∈ F2κ

(b) The parties locally compute (with arithmetic over F2κ)

[C] =

m∑
`=1

χ` · [b`] +

κ∑
h=1

Xh−1 · [rh]

(c) Each Pi now has a share Ci ∈ F2κ , and the MACs and keys (M i
j ,K

i
j)j 6=i from [C].

(d) Each Pi rerandomizes Ci by privately distributing fresh shares, and sums up the shares they
receive to obtain a new share C̄i.

(e) Broadcast C̄i and reconstruct c = C̄1 + · · ·+ C̄n.
(f) Each party Pi defines and commits to the n+ 1 values:

Ci, Zij = M i
j (for j 6= i), Zii =

∑
j 6=i

Ki
j + (C + Ci) ·Ri.

(g) All parties open their commitments and check that, for each j ∈ [n],
∑n
i=1 Z

i
j = 0. Addition-

ally, each Pi checks that Zji = Ki
j + Cj ·Ri . If any check fails, abort.

To create M AND triples, first create m′ = B2M + c triples as follows:

1. Each party Pi samples xi`, y
i
` ← F2 for ` ∈ [m′]

2. Every ordered pair (Pi, Pj) calls FCOT, where Pi is receiver and inputs (extend, xi1, . . . , x
i
m′).

3. Pi and Pj obtain their respective value of [xi`]i,j = (M i,j
` ,Kj,i

`), such that M i,j
` = Kj,i

` + xi` ·Rj ∈
Fκ2 .

4. For each ` ∈ [m′] and each pair of parties (Pi, Pj):

(a) Pj computes uj,i` = H(Kj,i
`), vj,i` = H(Kj,i

` +Rj), and sends d = uj,i` + vj,i` + yj` to Pi
(b) Pi computes wi,j` = H(M i,j

`) + xi` · d = uj,i` + xi` · y
j
`

5. Each party Pi defines shares
zi` =

∑
j 6=i

(ui,j` + wi,j`) + xi` · yi`

6. Every ordered pair (Pi, Pj) calls FCOT, where Pi is receiver and inputs (extend, {yi`, zi`}`∈[m′]).

7. Use the above, and the previously obtained MACs on xi`, to create sharings [x`], [y`], [z`].

Finally, run ΠTripleBucketing on ([x`], [y`], z`])`∈[m′], to output M correct and secure triples.

Figure 16: Protocol for TinyOT-style secure multi-party computation of binary circuits45

Subprotocol ΠTripleBucketing

The protocol takes as input m′ = B2m+ c triples, which may be incorrect and/or have leakage on the x compo-
nent, and produces m triples which are guaranteed to be correct and leakage-free.
B determines the bucket size, whilst c determines the amount of cut-and-choose to be performed.

Input: Start with the shared triples {[xi], [yi], [zi]}i∈[m′].

I: Cut-and-choose: Using FRand, the parties select at random c triples, which are opened with ΠOpen and
checked for correctness. If any triple is incorrect, abort.

II: Check correctness: The parties now have B2m unopened triples.

1. Use FRand to sample a random permutation on {1, . . . , B2m}, and randomly assign the triples into
mB buckets of size B, accordingly.

2. For each bucket, check correctness of the first triple in the bucket, say [T] = ([x], [y], [z]), by per-
forming a pairwise sacrifice between [T] and every other triple in the bucket. Concretely, to check
correctness of [T] by sacrificing [T ′] = ([x′], [y′], [z′]):

(a) Open d = x+ x′ and e = y + y′ using ΠOpen.
(b) Compute [f] = [z] + [z′] + d · [y] + e · [x] + d · e.
(c) Open [f] using ΠOpen and check that f = 0.

III: Remove leakage: Taking the first triple in each bucket from the previous step, the parties are left with Bm
triples. They remove any potential leakage on the [x] bits of these as follows:

1. Place the triples into m buckets of size B.

2. For each bucket, combine all B triples into a single triple. Specifically, combine the first triple
([x], [y], [z]) with [T ′] = ([x′], [y′], [z′]), for every other triple T ′ in the bucket:

(a) Open d = y + y′ using ΠOpen.
(b) Compute [z′′] = d · [x′] + [z] + [z′] and [x′′] = [x] + [x′].
(c) Output the triple [x′′], [y], [z′′].

If all the checks and MAC checks passed, output the first triple from each of the m buckets in the final
stage.

Figure 17: Checking correctness and removing leakage from triples with cut-and-choose

Subprotocol ΠMult

Given a multiplication triple [a], [b], [c] and two shared values [x], [y], the parties compute a sharing of x · y as
follows:

1. Each party broadcasts di = ai + xi and ei = bi + yi.

2. Compute d =
∑
i d
i, e =

∑
i e
i, and run ΠOpen to check the MACs on [d] and [e].

3. Output
[z] = [c] + d · [b] + e · [a] + d · e

= [x · y].

Figure 18: Subprotocol for multiplying secret shared values using a triple

46

both Ki and (Ki + R) to the random oracle then they could distinguish, as S would not be able to detect
this, so the response would be inconsistent with the simulated U . However, with a Key Query command in
the functionality, the simulator can detect this (based on the technique from [NNOB12]):

• For each query Q, S looks up all previous queries Qi, and sends (Q + Qi) to the Key Query of the
functionality.

• If Key Query is successful then S knows that Q+Qi = R, so can program the response H(Q) such
that H(Q) + H(Qi) = U , as required.

A.2 Security

In this section we formalize the security of the implementation of the Prep command of Fn-TinyOT in our
Πn-TinyOT protocol. More concretely, we focus on the consistency check in the production of m random
bits. This guarantees that the MAC keys are consistent, after which the triple generation protocol can be
proven secure similarly to [FKOS15]. The exact deviations that are possible by a corrupt Pj in the bit
generation are:

1. Provide inconsistent inputsRj when acting as sender in the Initialize command of theFCOT instances
with two different honest parties.

2. Input inconsistent shares bj` , ` ∈ [m] or rjh, h ∈ [κ] when acting as receiver in the Extend command
of FCOT with two different honest parties.

Note that in both of these cases, we are only concerned when the other party in the FCOT execution is
honest, as if both parties are corrupt then FCOT does not need to be simulated in the security proof. We
should also remark that preventing the first attack in the production of the random bits extends to preventing
it everywhere else in the protocol, as the Rj values are fixed in the Initialize phase.

These two attacks are modelled by defining Rj,i, bj,i` and rj,ih to be the actual inputs used by a corrupt
Pj in the above two cases. Without loss of generality, we pick a honest party Pi0 and fix bj` = bj,i0` , rjh =

rj,ih , R
j = Rj,i0 to be the inputs by Pj that should be consistent with every other honest party. Let I be the

set of corrupted parties. For each j ∈ I , we can resume the previous statements by defining the values:

∆j,i0 = 0, ∆j,i = Rj,i +Rj , i /∈ (I ∪ i0)

δj,i0` = 0, δj,i` = bj,i` + bj` , ` ∈ [m], i /∈ (I ∪ i0)

δ̂j,i0` = 0, δ̂j,ih = rj,ih + rjh, h ∈ [κ], i /∈ (I ∪ i0).

Note that ∆j,i is fixed in the initialization of FCOT, whilst δj,i` may be different for every OT. Whenever Pi
and Pj are both corrupt, or both honest, for convenience we define ∆j,i = 0 and δj,i = 0. The above means
that the outputs of FCOT with (Pi, Pj) then satisfy:

M j
i (bj,i`) = Ki

j(b
j,i
`) + bj,i` ·R

i,j

or, equivalently:
M j
i (bj` + δj,i`) = Ki

j(b
j
` + δj,i`) + (bj` + δj,i`) · (Ri + ∆i,j)

where δj,i 6= 0 if Pj (the receiver) cheated, and ∆i,j 6= 0 if Pi (the sender) cheated. Remember from Section
4.1 that M j

i (bj` + δj,i`) represents the receiver’s MAC on the value bj` + δj,i` and Ki
j(b

j
` + δj,i`) and represents

the sender’s MAC key on that same value.

47

We start by assuming that the corrupted party in the couple (Pi, Pj) running FCOT is the sender Pj , try-
ing to have inconsistent correlations Rj,i with different honest parties Pi, i /∈ I . We prove the inconsistency
impossible in the next claim:

Claim A.1 If the Prep step of Πn-TinyOT succeeds then all the global keys Rj are consistent and well-
defined, i.e. ∆j,i = 0 for every i, j ∈ [n].

Proof: We enumerate the possible deviations by the Adversary affecting the check
∑n

i=1 Z
i
j = 0 in Step 4g

with which we want to catch inconsistent Rj,i values to different honest parties. These possible disruptions
are two:

In Step 4e, the parties broadcast C̄i values, every corrupted P`, ` ∈ I can send instead some adversarial
value Ĉ` such that

∑n
j=1 Ĉ

j = C + e, where e is some additive error of the Adversary’s choice. Finally, a
similar active deviation is to commit to Ẑ`j values, ` ∈ I , in such a way that

∑
`∈I Ẑ

`
j =

∑
`∈I Z

`
j + Ej .

A malicious Pj trying to cheat has to pass the aforementioned mentioned check, which becomes:

0 =
n∑
i=1

Ẑij = Ej + Zjj +
∑
i 6=j

Zij = Ej +

∑
i 6=j

Kj
i (C

i) + (C + e+ Cj) ·Rj
+

∑
i 6=j

M i
j(C

i) =

Ej + (C + e+ Cj) ·Rj +
∑
i 6=j

(Kj
i (C

i) +M i
j(C

i)) = Ej + (C + e+ Cj) ·Rj +
∑
i 6=j

Ci ·Rj,i =

Ej + (C + e+ Cj +
∑
i 6=j

Ci) ·Rj +
∑
i 6=j

Ci ·∆j,i = Ej + e ·Rj +
∑
i 6=j

Ci ·∆j,i

As having inconsistent keys requires that there exists i0, i1 /∈ I such that ∆j,i0 6= ∆j,i1 6= 0, the attack
would require the adversary to set Ej + e ·Rj = Ci0 ·∆j,i0 +Ci1 ·∆j,i1 . But this is negligible in κ, as the
only information the adversary has about Ci0 , Ci1 ∈ F2κ at the time of committing to the values Ẑ`j , ` ∈ I
is that they are two uniform additive shares of C, due to the rerandomization in Step 4d.

Finally, we prove that a corrupted receiver Pj cannot input inconsistent values bj,i` to different honest
parties.

Claim A.2 If the Prep step of Πn-TinyOT succeeds, every ordered pair (Pi, Pj) holds a secret sharing of
bj` ·R

i for every ` ∈ [m]. In other words, δj,i` = 0 for every i, j, `.

Proof: For every ordered pair (Pi, Pj) we can define Pj’s MAC on [Cj]j,i as

M j
i (Cj) =

m∑
`=1

χ` ·M j
i (bj,i`) +

κ∑
h=1

Xh−1 ·M j
i (rj,ih)

and Pi’s key on the same value as:

Ki
j(C

j) =

m∑
`=1

χ` ·Ki
j(b

j,i
`) +

κ∑
h=1

Xh−1 ·Ki
j(r

j,i
h)

In Step 4f of Bits, an adversarial Pj can also commit to incorrect MACs Ẑji (c
j) = M j

i (cj) + Eji and
Ĉj = Cj + ej . Nevertheless, in order to succeed an attack, the check Ẑji = Ki

j(C
j) + Ĉj ·Ri from Step 4g

48

would have to hold. This check implies the following:

M j
i (Cj) + Eji = Ki

j(C
j) + (Cj + ej) ·Ri

⇔ Eji + (Cj + ej) ·Ri = M j
i (Cj) +Ki

j(C
j) = (

m∑
`=1

χ` · bj,i` +
κ∑
h=1

Xh−1 · rj,ih) ·Ri

⇔ Eji =

(
Cj + ej +

m∑
`=1

χ` · (bj` + δj,i`) +
κ∑
h=1

Xh−1 · (rjh + δ̂j,ih)

)
·Ri

= (ej +
m∑
`=1

χ` · δj,i` +
κ∑
h=1

Xh−1 · δ̂j,ih) ·Ri

A malicious Pj has then just two options to cheat Pi, both with only probability 2−κ to succeed:

1. Setting Eji = (ej +
∑m

`=1 χ` · δ
j,i
` +

∑κ
h=1X

h−1 · δ̂j,ih) ·Ri 6= 0, which requires guessing the string
Ri ∈ F2κ kept secret by the honest party Pi.

2. Setting Eji = 0 and ej =
∑m

`=1 χ` · δ
j,i
` +

∑κ
h=1X

h−1 · δ̂j,ih for every i /∈ I . As δj,i0` = δ̂j,i0h = 0, this
implies that ej = 0. Thus, for every i /∈ (I ∪ i0) it needs to hold that

0 =

m∑
`=1

χ` · δj,i` +

κ∑
h=1

Xh−1 · δ̂j,ih =

κ∑
h=1

Xh−1 · (δ̂j,ih +

m∑
`=1

δj,i` · χ`,h),

where the χ`,h values are defined in such a way that χ` =
∑κ

h=1X
h−1 · χ`,h. This would need that,

for every h ∈ [κ]:

δ̂j,ih =
m∑
`=1

δj,i` · χ`,h ∈ F2,

which can only happen with probability 1/2 for each of them, as χ`,h ∈ F2 are uniformly random
sampled field elements after the deviations δ̂j,ih , δ

j,i
` have been defined.

A.3 Parameters

Based on the analysis from previous works [FKOS15, FLNW17, WRK17], if roughly 1 million triples
are created at once then the buckets in the cut-and-choose stages can be of size B = 3, to guarantee
security except with probability 2−40. The additional cut-and-choose parameter c can be as low as 3, so is
insignificant as we initially need m′ = B2m+ c triples to produce m final triples.

A.4 Communication Complexity

Here we analyse the communication complexity of Πn-TinyOT. The cost of creating one shared random
bit is the same as one invocation of the extend command in FCOT between all pairs of parties, giving
n(n− 1)(κ+ s) bits (we ignore the consistency check, since this cost amortizes away when creating many
bits).

The cost of one triple (not counting the bucketing stage), is 3 calls toFCOT between every pair of parties
for authenticating shares of (x, y, z), plus sending one correction bit between every pair of parties, giving

49

n(n − 1)(3(κ + s) + 1) bits. This is then multiplied by approximately B2 to account for the bucketing.
When creating a batch of at least a million triples (with s = 40), we can set B = 3, so the overall cost per
party is around (n− 1)27 · (κ+ s) bits.

We remark that when checking a large number of MACs using ΠOpen or Πi
Open, the checks can be

batched together, by first computing a random linear combination of all MACs, and checking the MAC on
this, as in e.g. [DKL+13, KOS16]. This means that the cost of checking many MACs is roughly the cost of
checking one, which is why we did not factor the MAC checks into the cost of the bucketing stage.

A.5 Round Complexity

Initializing the correlated OTs can be done with any 2-round OT protocol. Extending the correlated OTs
using [NST17] and [ALSZ15] takes 3 rounds. Note that when authenticating random bits, the s additional
bits in the consistency check can be created in parallel with the original m bits, giving an overall cost of 5
rounds for random bits.

The triple generation consists of one set of correlated OTs (2 + 3 rounds), plus 1 round, plus another
round of correlated OTs (3 rounds). Then there are 2 rounds for FRand in the bucketing (which can all be
done in parallel), one round for the openings in step 2a and one round for step 2c. The openings in step 2a
can be merged with the previous round. This gives a total of 13 rounds.

A.6 Realizing General Secure Computation

The previous protocol can easily be used to implement a general secure computation functionality such as
FBitMPC. The main feature missing is the ability for parties to provide inputs, since we only need to create
random bits and triples for our application to garbled circuits. However, this is easy to do with a standard
technique: if Pi wishes to secret-share an input x, the parties do as follows:

• Create a shared random bit [b].

• Open b to Pi using Πi
Open.

• Pi broadcasts d = x− b.

• All parties compute [x] = [b] + d.

50

	Introduction
	Our Contributions
	Technical Overview

	Preliminaries
	Pseudorandom Functions
	Circular 2-Correlation Robust PRF
	Almost-1-Universal Linear Hashing
	Security Model
	Commitment Functionality
	Coin-Tossing Functionality
	Correlated Oblivious Transfer
	Functionality for Secret-Sharing-Based MPC
	BMR Garbling

	Generic Protocol for Multi-Party Garbling
	The Preprocessing Functionality
	Protocol Overview
	Bit/String Multiplications
	Consistency Check
	Security Proof

	More Efficient Garbling with Multi-Party TinyOT
	Secret-Shared MAC Representation
	MAC-Based MPC Functionality
	Garbling with Fn TinyOT

	The Online Phase
	The Online Phase with FPrepocessingKQ

	Performance
	Implementation
	Communication Complexity Analysis

	Protocol for GMW-Style MPC for Binary Circuits
	Why the Need for Key Queries?
	Security
	Parameters
	Communication Complexity
	Round Complexity
	Realizing General Secure Computation

