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Abstract—Fault Sensitivity Analysis is an attack on crypto-
graphic implementations that exploits dependencies between the
sensitive data and the intensity of an injected fault. Masking,
an established Side-Channel Analysis countermeasure, was orig-
inally believed to resist Fault Sensitivity Analysis, until Moradi
et al. presented a successful attack on several masked AES
ASIC cores by leveraging Fault Sensitivity Analysis. However, the
attacked masked implementations are known to be vulnerable to
power analysis through glitches occurring from non-ideal gates in
CMOS. This means that glitch-resistant masking schemes specif-
ically have not been assessed against Fault Sensitivity Analysis.
In this work we give a response to this matter and show that
implementations protected with these glitch-resistant masking
schemes provide Fault Sensitivity Analysis resistance by design.
We argue our claims through a theoretical elaboration and
provide further evidence through simulations for both ASIC and
FPGA platforms. In our setup we give the attackers numerous,
often unrealistic, advantages, only to see the attacks fail against
glitch-resistant masking schemes.

Index Terms—FSA, Glitch, Masking, Countermeasure, Non-
Completeness.

I. INTRODUCTION

When cryptographic algorithms are naively implemented
on embedded systems, many problems surrounding the ac-
tual security of the cryptographic device may arise. A well
known issue in embedded cryptosystems is the leakage of
sensitive information through so called side channels. These
unintentional information channels manifest themselves in
the dependency between sensitive data and some observable
characteristics of the implementation, e.g. the time it takes
to finish a computation [1], the power consumed during an
encryption [2], or the electromagnetic waves radiated [3], [4]
from a device during cryptographic operations. Side-Channel
Analysis (SCA) exploits information leaked through these side
channels to attempt to break cryptosystems.

To harden devices against Side-Channel Analysis, mask-
ing [5], [6] is a well-studied countermeasure due to its general
applicability and provable security [7]. Masking reduces the
information leaked through side channels by randomizing in-
termediate values of the computation. The security offered by
classic masking schemes was shown to deteriorate when they
are implemented in hardware with non-ideal gates, i.e. gates
that evaluate more than once per clock cycle, or glitch [8],
[9]. As a result, glitch-resistant masking schemes were pro-
posed, of which Threshold Implementations (TI) [10]–[13],
Consolidated Masking Schemes (CMS) [14], Domain Oriented

Masking (DOM) [15], and the Roche and Prouff masking
scheme [16], [17] are some examples.

After Side-Channel Analysis, another well-known path to
obtain sensitive information from cryptographic implemen-
tations is through the deliberate injection of faults during
operations. Such attacks that rely on the malicious interaction
of an adversary are known as Fault Attacks (FAs) [18]. A
very powerful FA subtype against symmetric cryptosystems
is Differential Fault Analysis (DFA) [19]. In contrast to side-
channel attacks, which are related to the actual implementation
of the cryptographic algorithm, DFA exploits knowledge of
faulty ciphertexts and the type of injected fault in order to
facilitate cryptanalysis on the target cipher.

At CHES 2010, a new type of side-channel attack was
presented as Fault Sensitivity Analysis (FSA) [20]. Unlike the
completely passive SCA, FSA is an actively triggered passive
attack. It requires an attacker to inject faults of increasing
intensity for a given input, up until a fault is detected. An
advantage compared to DFA is that an FSA attacker only
needs to observe the occurrence of a fault, as opposed to the
actual faulty output value. This attack has already been used
in practice to break devices with conventional FA countermea-
sures [21]–[23], even when they do not reveal faulty outputs.

Initially masking was thought to prevent FSA, until Moradi
et al. [21], [24] successfully broke several masked AES im-
plementations. One of the successfully attacked cores, named
the AES TI core, hints at securing its AES with Threshold
Implementations. Despite its name this AES core did not
consider the uniformity and non-completeness properties, both
essential for side-channel security. Thereby, this core can not
be considered secure in the presence of glitches.

Actual glitch-resistant masking schemes have thus not yet
been subjected to FSA. In this work, we show both theoret-
ically and practically that glitch-resistant masking schemes,
such as TI, provide protection against both SCA and FSA.
We ground this observation in several experiments that involve
both ASIC and FPGA implementation. We simulate FSA
attacks on different unprotected and protected S-Boxes to
show their resilience against FSA. Attacks on the glitch-
resistant masked implementations fail even in a scenario that is
beyond worst-case in practice: an attacker with advantageous
noiseless, high-precision and simulated observations does not
succeed in retrieving the key.

The remainder of this paper starts with a review of FSA, a



summary of the characteristics of TI, and a review of related
work in Section II. We give theoretical reasons on why this
masking scheme works as countermeasure against FSA in
Section III. We present experiments to show that our claims
hold in practice in Section IV, and the corresponding results
in Section V. Finally, we conclude in Section VII.

II. PRELIMINARIES

A. Fault Sensitivity Analysis

FSA is an actively triggered side-channel attack that can
retrieve secret keys from the correlation of processed data val-
ues with their fault sensitivity (FS) [20]. The fault sensitivity
is the intensity of an injected fault at which the device shows
a detectable characteristic, e.g. supply voltage and/or clock
frequency where the device starts outputting incorrect results.

An FSA attack is mounted in two phases: a collection or
profiling phase, and a key retrieval phase. In the profiling
phase, fault sensitivities of input values are collected. The
FS of a value is retrieved by repeatedly encrypting a fixed
plaintext. During each encryption, the intensity of the applied
fault is gradually increased. The first fault intensity at which
the output becomes faulty is noted as the fault sensitivity for
that input. In the case of clock glitching, this corresponds
to shortening the clock period momentarily to a value lower
than the propagation delay caused by the input transition.
This process of retrieving the FS is repeated for several
different plaintexts. In the subsequent key retrieval phase, the
FS information is used to find the highest correlation between
the predicted FS from a key guess and the measured FS. The
highest correlation then leads to the correct key [20].

Two factors that codetermine the success of an FSA attack
are the resolution of the fault injection the attacker can apply,
and whether or not a model for the FS and the processed
data can be extracted. A clock glitch generator has shown
to provide enough resolution for successfully mounting FSA
attacks on both IC and FPGA implementations [25], [26]. The
Hamming Weight model has been used with success [20], but
was shown to not work on all S-Boxes [27]. An alternative
model based on the zero-value attack was shown successful
in the latter cases [22].

B. Threshold Implementations

Masking is considered secure at a certain order. If the
attacker observes the first-order statistical moment of the
power consumption, the implementation can be secured using
first-order masking. The attacker can, however, observe the
variance, or second-order statistical moment, to break the
first-order masking scheme. Generally, an attacker observing
the dth-order statistical moment can be mitigated by a dth-
order masking scheme. It is known that attacking becomes
exponentially harder with the masking order.

The Threshold Implementation (TI) masking scheme [10]–
[13] can protect hardware implementations against SCA in the
presence of glitches at any order d. Due to its efficiency in
both area and latency, it has been implemented extensively.

Secret or sensitive values are shared among several players
using boolean masking, and a multi-party computation proto-
col is employed for computations on the shares. TI is a (n,n)-
threshold scheme, i.e. the secret value is distributed among n
players and n of them are required to reconstruct the secret
input.

A sensitive variable Z ∈ F2m is shared among n players in
the form Z by drawing n − 1 random coefficients Si from a
uniform distribution and constructing the final share as:

Sn = Z +
n−1

∑
i=1

Si . (1)

To achieve SCA security, three properties have to hold,
namely:

1) Correctness: a shared function f such that fi(Z) = Yi,
where i = 1 . . . n, is correctly shared if ∑Yi = Y = f(Z),

2) Uniformity: the inputs of a shared function have to
conform to a uniform distribution,

3) Non-completeness: a shared function f is dth-order non-
complete if any combination of up to d intermediate
values of the shared function is independent of at least
one input share.

Whereas correctness and uniformity are properties shared
by all masking schemes, non-completeness was specifically
introduced in TI to provide resistance against glitches and
early propagation originating from non-ideal gates.

C. Related Work

In the original work of Li, it was argued that masking
schemes could provide resistance against FSA [20]. After sev-
eral masking schemes were broken using FSA [21], [22], [24],
dedicated countermeasures against FSA have been proposed.
These can be categorized into gate-level countermeasures and
RTL-level countermeasures.

The first gate-level countermeasure against FSA was pro-
posed by Ghalaty et al. [28]. Their proposed method is based
on internally changing the circuit in order to balance out the
sources of FSA leakage with low area overhead.

Another approach to counteracting FSA attacks is through
RTL-level countermeasures [29]. By only allowing the results
of the combinational logic to the inputs of the capturing
register after its outputs have been stabilized using an enable
signal, the fault sensitivity is made constant and equal to the
arrival of the enable signal. This method was shown possible
by Endo et al. by choosing the enable signal to be greater
than the largest critical path delay of the circuit during post-
manufacturing reconfiguration [30], [31].

While these countermeasures have a reasonably small im-
pact on the area and throughput, the resulting circuits are
still vulnerable to passive SCA. It is reasonable to expect an
integrated circuit to require both protection against SCA and
FAs and therefore, combinations of threshold implementations
and FA countermeasures have been investigated in more recent
works: ParTI [32] and Private Circuits-II enhanced TI [33].
Since the latter two approaches build on the properties of TI,



we believe the claims of FSA resistance we make in this work
can directly be applied to them.

III. THE POWER OF SCA GLITCH-RESISTANCE AGAINST
FSA

In this section we provide theoretical insights on why glitch-
resistant schemes against SCA are also a valid protection
against Fault Sensitivity Analysis. We begin by giving the as-
sumptions we make on the attacker, and proceed by explaining
the concepts that lead to FSA resistance.

A. Assumptions

In order to facilitate our explanation, we make the following
assumptions:

1) we assume that the attacker actually measures the tim-
ing properties of the circuit, i.e. the propagation delay
through his FSA attack,

2) we assume the players to leak independently and that
the requirements for the masking schemes are satisfied.

The validity of the first assumption can be explained by
looking at the physical effect of the FSA attack. The attacker
applies a fault and gradually increases its intensity, each
time noting whether the output was correct or incorrect.
After m injections, the attacker holds a list of m responses
[(∆1, F I1), ..., (∆m, F Im)] [27], symbolizing whether or not
the fault injection led to correct or incorrect outputs under
fault intensity FIi. If ∆i = 1, we consider the computation to
have finished correctly under fault intensity FIi and ∆i = 0
otherwise. The fault intensity FI , for which FIi = FI leads
to ∆i = 1, and Fi+1 leads to ∆i = 0, is defined as the fault
sensitivity for input x. This point can be considered as the last
point in time for which not all output bits were valid yet, i.e.
the critical propagation delay.

The independent leakage requirement of the second as-
sumption means that, from a side channel point of view,
the power consumption of the n different players of the
masking scheme are independent from each other. In case
the players operate in a parallel way (such as e.g. in TI),
this means the power consumption of the players can be
linearly decomposed into independent instantaneous power
consumption traces. When the players operate in a serial
way (such as e.g. in the implementations of the Roche and
Prouff masking scheme [34], [35]), the instantaneous power
consumption of the n players should not overlap in time. The
assumption that the requirements of the masking scheme are
satisfied is straightforward, as otherwise even the side-channel
security can not be guaranteed.

B. On Non-Completeness

As pointed out in [20], signal transitions in a device are data-
dependent, and thus the fault sensitivities as well. Following
the same principle as the previous work uses to prove the
data-dependency of the signal timing delay, we prove that
masking schemes fulfilling the non-completeness property are
inherently secure against FSA.

To do this, we use the following example of a TI shared
AND gate. Given the shares of the two inputs x and y as
(x1, x2, x3) and (y1, y2, y3), then the shares (z1, z2, z3) of
the output z are computed as:

z1 = f1(x1, x2, y1, y2) = x1y1 + x1y2 + x2y1 ,

z2 = f2(x2, x3, y2, y3) = x2y2 + x2y3 + x3y2 , (2)
z3 = f3(x1, x3, y1, y3) = x3y3 + x3y1 + x1y3 .

Fig. 1 presents a generic scheme of a three shares threshold
implementation of a non-linear operation. Any TI implemen-
tation follows a similar structure, which means the claims
presented below can be generalized.

x1

x2

x3

y

3y

2y

f3

f2

f1
1

Fig. 1: General structure of a threshold implementation

All three combinational circuits are computed in parallel
and independently, as stated in assumption 2, where every
one of them has a different propagation delay. Thus, the fault
sensitivity targets solely the circuit with the longest (critical)
propagation delay. Let us assume this holds for the first
combinational circuit:

FS1(x1,2, y1) ≥ FS2(x2,3, y2) ≥ FS3(x1,3, y1) (3)

We analyze in detail the data-dependency of the transitions
of the first share from the previous example, looking at the
timing delay of the signals. This is depicted in Fig. 2, where
Tc represents the timing delay of a component c, either wire
or gate, and, in case of a fanout wire, T i refers to the i-th
branch.

As shown in [20], the propagation delay of a transition in an
XOR gate is determined by the longest propagation delay at its
inputs, independently of the value of the inputs. Authors also
show that the propagation delay of an AND gate is predisposed
by the values on its inputs before and after each transition. For
example, arrival of the first logic zero at the inputs determines
the output value, hence the propagation delay, regardless of
the other input bits. On the contrary, setting one of the inputs
to a logic one can not determine the propagation delay through
the AND gate until the rest of the inputs have been updated.
Therefore, regardless of the initial (reset) value of the AND
gate the more logic zeros the new input contains, the shorter
the propagation delay. In other words, for each input transition,
the propagation delay is directly correlated with the Hamming
Weight (HW) of the inputs. Reversely, OR gates have the logic



Fig. 2: First share combinational circuit from the 3-share AND
gate en Eqn. 2

one as the dominant signal and leads to the reverse but dual
correlation between the two.

We assume the delay of any share of the variable x to be
greater than the ones from y. Therefore, we can express the
timing delays of the outputs of the AND gates from Fig. 2 as
follows.

TA =

⎧⎪⎪
⎨
⎪⎪⎩

T 1
y1
+ TAND (if y1 = '0')

T 1
x1
+ TAND (if y1 = '1')

TB =

⎧⎪⎪
⎨
⎪⎪⎩

Ty2 + TAND (if y2 = '0')
T 2
x1
+ TAND (if y2 = '1')

(4)

TC =

⎧⎪⎪
⎨
⎪⎪⎩

T 2
y1
+ TAND (if y1 = '0')

Tx2 + TAND (if y1 = '1')

It is straightforward to see that the side-channel information
leaked from attacking the first combinational logic cloud only
reveals information on two out of the three shares of the
secret (x1, x2 and y1, y2). FSA targets exclusively the longest
propagation delay, which means that it is not possible to get
additional information from a different combinational cloud
and combine it with previous information to retrieve the secret.

Hence, we can conclude that any threshold implementa-
tion fulfilling the non-completeness property is secure against
FSA. Both the CMS and DOM sharing schemes inherit non-
completeness to provide security in the presence of glitches,
which means that these schemes are also secure against FSA.

C. On Uniformity

It is important to note that the example above does not have
a uniform output sharing. This property is needed to provide
first-order SCA security when the output is subsequently used

in a nonlinear computation. We emphasize that, as demon-
strated above, it is not needed to provide FSA security. For a
scheme to provide security against FSA it suffices that the non-
completeness property is satisfied. It is certainly advantageous
to use a uniform sharing for larger systems so that the scheme
provides security against both FSA and first-order SCA.

IV. EXPERIMENTS

To illustrate the theoretical insights of our claims, we
simulate the actual FSA attack using two representative TI
implementations of S-Boxes. We discuss the details of our
experimental setup and the two stages of the FSA attack in
the remainder of this section.

A. Setup

We rely on post place-and-route simulations, in both ASIC
and FPGA. This way we are able to obtain perfectly aligned
noiseless observations with a timing precision of 1ps. As
we extract the data-dependent propagation delays from the
simulated data, we do not have to take into account any
jitter introduced by the glitching apparatus. Furthermore, we
observe target circuits in isolation from any other components
by directly calculating the propagation delay of this circuit
for a given input. Therefore we are arming our adversary with
unrealistically clean measurements that are likely unattainable
in practice.

1) ASIC: We synthesize designs using a 45nm open-source
standard cell library from NanGate. It relies on state of the
art Composite Current Source models which provide 1ps
precision for timing simulations. We use Synopsys Design
Compiler for logic synthesis; Cadence Innovus for placement,
routing and RC extraction; and MentorGraphics QuestaSim for
timing simulation. Design flow automation and data processing
is done using the CASCADE [36] framework.

2) FPGA: We run the experiments with the Xilinx tools,
using the Isim environment to perform the simulations. We
choose a Spartan-6 XCLX75-2CG484 as the target platform
for our experiments.

B. Profiling phase

In the seminal paper Li et al. [20] use the value zero as
the reset value between two fault injections. We leverage the
small size of our target circuits, and the high speed and high
precision of our simulated approach, to show that this is not
necessarily the best value to start the attack from. Instead of
only collecting fault sensitivities for up to 2N input values
from an N -bit circuit, we simulate all possible 22⋅N transitions
as well. From there we differentiate 2N profiles, using all
2N reset values. Consequently, each profile has 2N traces.
The double exponential complexity of this approach makes
it infeasible for circuits with larger number of inputs. From
this approach we obtain profiles with the maximal correlation
between fault sensitivities and input data, i.e. profiles which
are optimal for the attacker. We then proceed to key recovery
using the most effective profile.



C. Key Recovery

We attack a dummy cipher round consisting of a single S-
Box and key addition, as depicted in Fig. 3. As in the profiling
phase, the small input space of our targets allows us to collect
all possible ciphertexts. Note that since the delay of XOR gates
is not data dependent, as pointed out in [20], the XOR circuit
need not be included in the profiling.

Fig. 3: Circuit under attack, unprotected.

The profiling is made over the inputs of the S-Box, so we
attack the inputs of the circuit. Eqn. 5 presents the function
used to get the predicted fault sensitivities (FSg), using the
ciphertext (CT ) and the key guess (Kg):

FSg =HW (SBox−1(CT ⊕Kg)) . (5)

The guessed fault sensitivities are subsequently correlated
with the observed ones, where the maximum correlation
should correspond with to the correct key.

For the protected implementations, the circuit under attack
has similar structure, in this case shared over three shares,
as shown in Fig. 4. We allow the attacker to only observe
unshared plaintext-ciphertext pairs, i.e. the attacker sees the
dotted domain as a black box. On the contrary, we allow the
attacker to see the exact sharing to do the profile, i.e. what
is outside of the dashed box. This means that the attacker is
able to get the exact shared input that corresponds to the profile
with the highest correlation. The aim of these experiments is to

Fig. 4: Circuit under attack, protected.

immerse our S-Boxes into the worst case scenario, to test how
the proposed countermeasure responds. In reality, attackers are
very unlikely to attain such detailed profiling nor have such

a stripped down target circuit. Moreover, the attackers would
not be able to cover the whole state of inputs in a real design,
which means that the attacks are limited to the amount of
measurements they can procure.

V. RESULTS

In this section we present the results of our experiments.
We perform our experiments in both ASIC and FPGA to get
a deeper and broader view of the effects of fault sensitivity
analysis. As expected, the experiments show that the attacks
fail against the TI implementations, even given the highly
favorable conditions for the attack. We present results for two
target circuits that illustrate different scenarios: FSA resistance
with a conventional TI implementation, and FSA resistance
with a non-uniform implementation.

A. PRESENT

Our first target is the 4-bit S-Box of the lightweight ISO
standard PRESENTblockcipher. For the protected design we
use the TI approach from Poschmann et al. [37]. This design
is decomposed into two quadratic S-boxes F and G forming a
pipelined implementation. As already mentioned before, FSA
targets the longest propagation delay. To comply with this, we
target just one of the two stages to gather the profiles, choosing
the first stage F for our experiments. The unprotected imple-
mentation has a total of 24 inputs and 22⋅4 possible transitions
that can occur on the inputs. The protected implementation is
split into three shares per variable, in accordance with the TI
principles. The total number of inputs (resp. outputs) is thus
12 (4 sensitive bits masked with 3 shares), resulting in the
total of 22⋅12 transitions.

Fig. 5 shows correlation values between the HW of the input
and the FS for profiles with different reset values. Prominent
correlation peaks appear in the case of the unprotected imple-
mentation. In case of ASIC as target, the correlation peaks at
0.75 for reset value 0b1011, whereas in the case of FPGA as
target, peak value is as high as 0.55 corresponding to reset
value 0b0000. It is interesting to see that this peak is closely
followed by the 0.51 value for reset value 0b1111. We will
discuss this in the later Sec. VI.

In case of the protected implementation, the attacker is
allowed to profile the S-Box for all 212 shared reset values to
maximize the attacking precision. Still, correlation peaks do
not surpass 0.41 for ASIC with reset value 0x798, nor 0.39 for
FPGA with reset value 0x821. In comparison, the correlation
values corresponding to the all-zero reset vector are 0.08 for
ASIC and 0.24 for FPGA. This demonstrates that the all-zero
reset (or initial state) vector may be an effective one, but it is
not necessarily the best one.

At first glance it would stand to reason to maximize the
number of collected traces by looking at the correlation be-
tween the HW and the FS across all transitions. Nevertheless,
doing so results in consistently lower correlation values across
all of our experiments. Fig. 6 provides a graphical explanation
of this.
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Fig. 5: ASIC vs FPGA correlations for all profiles of the
unprotected (top) and protected (bottom) PRESENT S-Box.

Similarly, we tried using the correlation of Hamming Dis-
tance (HD) and FS in both scenarios, only to obtain sig-
nificantly lower correlation values. We attribute this to the
nature of the side channel we attempt to exploit compared
to the classical SCA. Let us observe a 2-input AND gate,
transitioning first 0b00→0b11, and then back 0b11→0b00. The
power consumption of the two transitions will normally be
comparable as it is proportional to the amount of current
needed to charge and discharge the circuit’s capacitances. For
FSA however, the differences in the input-dependent propaga-
tion delays matter. Hence a transition ending in 0b00 will on
average be faster in an AND gate [20]. As a consequence of
this discrepancy, the HW of the input value at the end of a
transition is the most relevant observation as opposed to the
HD.

Fig.7 illustrates the key recovery attacks on the unprotected
and protected implementations. We can see that the guessed
value (×) coincides with the target value (∎) of the key
for the unprotected implementation, representing a successful
attack. This is not the case for the TI implementation, where
even though the attacker is given the best reset value and
unrealistically accurate profiling, correlations for each key
guess remain dauntingly small.

B. KECCAK

Our second target is the 5-bit KECCAK χ permutation. We
use the TI implementation from [38] for our experiments. It
has three 5-bit shares along with a 4-bit input for randomness.
By fixing the random bits to 0b0000 we disable the uniformity
at the output of this implementation. We thereby test the claim
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Fig. 6: ASIC FS of the unprotected PRESENT S-Box for the
highest correlation profile.
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Fig. 7: FSA attack on the unprotected (top), and TI (bottom)
implementation of the PRESENT S-Box.

that the non-completeness is sufficient to provide security
against FSA attacks, as opposed to both non-completeness and
a uniformly shared output. A qualitative difference compared
to the previous experiments is that we do not exhaust all
of the 22⋅3⋅5 input transitions. Instead we pick 22⋅12 random
transitions to match the previous experiment in volume. Note
that the results we obtain are consistent over different pools
of random inputs.

The results of the FSA attack are shown in Fig. 8, which
shows that despite the lack of uniformity at the output of the
TI, the non-completeness is sufficient to provide protection
against FSA.
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Fig. 8: FSA attack on the unprotected (top), and TI (bottom)
implementation of the KECCAK S-Box.

VI. DISCUSSIONS

A. The Roche and Prouff Scheme

The Roche and Prouff masking scheme [16], [17] offers
an alternative approach at masking hardware implementations
at any order d in the presence of glitches. Shamir’s secret
sharing scheme [39] is used to share the sensitive variables,
and computations on the resulting shares are performed using
the BGW secure multi-party computation protocol [40].

The protocol for a multiplication (or AND gate) is split into
two stages to achieve glitch-resistance [34]. In neither of the
two stages is there an intermediate variable that depends on
any unmasked inputs, which is exactly the definition of non-
completeness. Thus, we argue that this sharing scheme is also
resistant against FSA given that non-completeness is fulfilled.
By extension, any scheme that is based on a glitch-resistant
masking scheme benefits from FSA resistance, including the
schemes by Reparaz et al. [41] and Seker et al. [42].

B. ASIC vs FPGA

We simulated attacks on two substantially different plat-
forms, namely a standard-cell library for ASIC development,
and an FPGA board. Albeit their difference, all obtained
results are consistent across the target circuits. The first
difference is that the propagation delays in FPGA are much
larger. For the ASIC example, Fig. 6 shows that the propa-
gation delays of the unprotected PRESENT S-Box are spread
between 100–600ps. The same circuit on the FPGA leads to
propagation delays that are spread between 8200–9200ps. An

older technology and a higher complexity of the configurable
LUTs that realize logic on an FPGA lead to this absolute
difference.

A second difference stems from the 5to1 (5-input, 1-output)
LUTs of the target FPGA, which allow merging multiple logic
gates, leading to a lower number of LUTs than standard cells
needed for the same circuit. The fine-grained standard cells of
ASICs lead to a higher spread in propagation delays. Hence,
a finer distinction can be made in the latter between different
input values, resulting in higher correlation peaks.

Furthermore, as depicted in Fig. 5, the choice of the best
profile, i.e. the best reset value, depends on the target platform.
In our experiments, where the target circuit is small enough
to fit into one FPGA LUT, choosing an all-zero, or all-one
vector as the reset value consistently leads to the best profile.
For ASIC circuits, which rely on less flexible atomic cells to
implement combinational logic, the best profile greatly differs
from design to design. So much that even for the same RTL
code synthesized under a different set of constraints, the best
reset value would change.

C. Reset Value

In the original work, Li et al. [20] use an all-zero vector
as the reset value. Although this is a natural choice, and
coincidentally often fruitful for the FPGA implementations,
we have shown that it is not necessarily the best one. In
our experiments we have seen that even when attacking the
unprotected implementations, the key can not be recovered for
all reset values. From the perspective of a practical attacker,
choosing an arbitrary reset value is not trivial and would at
best require the application of a well chosen input to achieve
the desired initial state of the circuit. On top of that, when
attacking a real life design it is not possible to exhaust all
input transitions in search of the best reset value. Therefore,
by choosing the best reset value, we are yet again giving
advantage to the attackers, only to see them fail.

VII. CONCLUSION

In this paper we investigated the resistance of masking
schemes against Fault Sensitivity Analysis attacks. We proved
both theoretically and experimentally that glitch-resistant
masking schemes featuring the non-completeness property are
secure against FSA, even under extremely favorable conditions
for an attacker. We strengthened our arguments through simu-
lations in both ASIC and FPGA environments. Our elaboration
showed that resistance against FSA comes directly from the
glitch-resistant nature of the schemes and explained why
Moradi et al. [21], [24] succeeded in breaking the masked AES
implementations, which were actually insecure in the presence
of non-ideal gates.
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