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Model
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Abstract—Harmonic models have to be both precise and fast
in order to represent the speech signal adequately and be
able to process large amount of data in a reasonable amount
of time. For these purposes, the full-band adaptive Harmonic
Model (aHM) used by the Adaptive Iterative Refinement (AIR)
algorithm has been proposed in order to accurately model the
perceived characteristics of a speech signal. Even though aHM-
AIR is precise, it lacks the computational efficiency that would
make its use convenient for large databases. The Least Squares
(LS) solution used in the original aHM-AIR accounts for most
of the computational load. In a previous paper, we suggested a
Peak Picking (PP) approach as a substitution to the LS solution.
In order to integrate the adaptivity scheme of aHM in the
PP approach, an adaptive Discrete Fourier Transform (aDFT),
whose frequency basis can fully follow the variations of the
f0 curve, was also proposed. In this article, we complete the
previous publication by evaluating the above methods for the
whole analysis process of a speech signal. Evaluations have shown
an average time reduction by four times using Peak Picking and
aDFT compared to the LS solution. Additionally, based on formal
listening tests, when using Peak Picking and aDFT, the quality of
the re-synthesis is preserved compared to the original LS-based
approach.

Index Terms—Fundamental frequency, voice model, harmonic
model, speech analysis/synthesis, peak picking

EDICS

SPE-ANLS: Speech Analysis
SPE-SYNT: Speech Synthesis and Generation

I. INTRODUCTION

HARMONIC models (HM) aim to represent the speech
signal with a set of parameters such as frequencies,

amplitudes and phases. These models can be used for speech
modeling [1], speech coding and synthesis [2], [3], voice
transformation [4], speech enhancement [5] for hearing aids
[6]. The parameters computed can be used to build higher-
level representations [7] (e.g. spectral envelopes) or to estimate
glottal source characteristics [8]. For this purpose, the accuracy
of the parameters is a key issue. Furthermore, a representation
that can produce sounds with sufficient perceived quality
is of high importance for applications in synthesis, which
need robust and precise estimates of f0. There are plenty of
real-time applications that need this high-quality synthesis,
such as text-to-speech applications, analysis and synthesis
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techniques for quiet environments, etc. Additionally, speech
signal analysis for voice production studies require a precision,
that is higher than what can be perceived. Finally, even
for offline computations, researchers need to test multiple
ideas and parameters, various methods and large databases
in a convenient time frame, hence, computationally efficient
algorithms are preferred.

Harmonic models are initially designed for representation
of the deterministic part of the speech. In order to model
the non-deterministic part of speech, these models, usually,
either employ a random component [9] or represent the
voiced speech spectrum by using multiple bands [10], [11].
Alternatively, simpler models have also been suggested in
which the spectrum is split into two bands separated by the so-
called maximum voiced frequency [12]. The lower and higher
bands are used for the deterministic and the non-deterministic
components, respectively. A reliable estimation of the voicing
frequency limit is critical for all multi-band models, in order to
avoid artifacts and provide a sufficient perceived quality of the
synthesized sound. However, the need of a frequency limit is
questionable. From the point of view of the voice production,
there is no reason to abruptly low-pass the deterministic
component of the voice, since the voiced source is made of
glottal pulses that are fundamentally wideband signals whose
amplitude spectrum is known to decrease smoothly [13], [14].
For this reason a full-band model called the adaptive Harmonic
Model (aHM) has been suggested which estimates frequency
components up to Nyquist [15]. A detailed explanation of aHM
can be found in Section II.

In voiced segments, the speech signal is usually assumed to
be stationary in a small analysis window (≈ 3 pitch periods).
This hypothesis is fairly acceptable at low frequencies, because
the variations of the fundamental frequency, f0, of the glottal
source are negligible compared to the stationary basis of the
usual frequency analysis tools (e.g. DFT). However, the varia-
tions of f0 are proportional to the harmonic number. The non-
stationarity of the voiced signal is, therefore, highly increased
as frequencies increase, making the validity of the stationarity
hypothesis questionable for mid and high frequencies up to
Nyquist. To alleviate this issue of modeling non-stationarities,
the Fan Chirp Transform (FChT), which uses a chirp related
frequency basis (i.e. linear frequency trajectories) adapted to
the input signal, has been suggested in [16]. For sinusoidal
models, the adaptive Quasi-Harmonic Model (aQHM), a quasi-
harmonic representation of the speech spectrum that does not
rely on a chirp frequency basis, has also been suggested
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in [17]. Instead of limiting the frequency tracks to linear
time evolution, as in FChT, aQHM relies on a more flexible
frequency model. The frequency basis is adapted to the f0
curve estimated from the speech signal. Thus, the adapted
frequency basis can follow any non-linear variations of the
frequency basis of the underlying signal. However, a proper
estimation of the sinusoidal parameters can be obtained only
if the input components of the frequency basis built from
the f0 curve are in a reasonable interval around the actual
frequencies. Therefore, tracking the harmonic structure up to
Nyquist can be easily compromised since any error on the f0
curve is multiplied by the harmonic number.

In [15], a strict harmonic model using adaptivity and full-
band representation, referred to as the adaptive Harmonic
Model (aHM), was presented. The aHM is a full-band model
which uses the adaptive scheme of the the adaptive Quasi-
Harmonic Model (aQHM) in order to represent a speech
signal. Also, an iterative algorithm, called Adaptive Iterative
Refinement (AIR), has been proposed in regard to the potential
error in f0 leading to erroneous localization of sinusoidal com-
ponents. The AIR algorithm begins with the lower frequency
components, where the error of f0 is considered to be small,
and iteratively increases the number of harmonics considered
up to the Nyquist frequency by successive refinement of the f0
curve at each iteration step. The Least Squares (LS) solution
was used for the computation of the sinusoidal parameters
of the harmonic model. However, even though aHM-AIR
allows for a robust estimation of the harmonic components,
the computational load of the LS solution does not allow
processing of large databases in a reasonable amount of time,
which is a serious drawback. This issue was addressed in
[18], by replacing the LS solution with a Peak Picking (PP)
approach [19]. In order to integrate the adaptivity scheme of
the aHM to the PP approach, the adaptive Discrete Fourier
Transform (aDFT) was also proposed in [18]. In contrast to
the constant basis of the DFT, the frequency basis of the aDFT
is fully adapted to the input f0 curve of the signal, as the
aHM basis is adapted to the signal. In [18], we used this
approach for the refinement of the f0 curve. In the present
article, this approach is, also, used in order to estimate the
sinusoidal parameters used for the synthesis. Consequently,
this article expands the research done in [15] and presents a
detailed study on the reduction of the computational load of
aHM-AIR, by proposing and evaluating several approaches
for performing this task for both aforementioned steps of
the analysis process, using either aDFT or FChT and PP
in the previously proposed aHM approach [18]. We carried
a new evaluation procedure in order to assess the accuracy
of the model parameters, using synthetic signals in order to
properly evaluate the advantage of these parameters before
building higher-level models (e.g. spectral envelope). Then,
the Signal-to-Reconstruction Error Ratio (SRER) is computed
for both voiced and unvoiced segments. Finally, the results of a
listening test and the Perceptual Evaluation of Speech Quality
(PESQ) are presented.

In the rest of the paper, Section II describes the necessary
mathematical background for aHM, Section III presents the
adaptive Discrete Fourier Transform and Section IV then pro-

vides all of the technical details of the AIR algorithm for aHM
with the Peak Picking approach replacing the LS solution. The
evaluation follows in Section V with the necessary discussions
and conclusions in Section VI.

II. ADAPTIVE HARMONIC MODEL (AHM)

The main difference between the Harmonic Model (HM)
and the adaptive Harmonic Model (aHM) is that the first uses
random noise components (i.e. HNM [9]) or multiple bands in
order to represent the non-deterministic part of speech while
aHM is a full-band model that uses the adaptive scheme of
aQHM. Given the speech waveform s(t), it is first assumed
that the values of its fundamental frequency curve f0 are
known a priori, though a potential error on this curve is taken
into consideration in this work. Then, the following aHM
model of s(t) is used in a single window of 3 pitch periods:

x(t) =

H∑
h=1

ah(t) · ejhφ0(t) (1)

where ah(t) is a complex function of time representing both
the amplitude and the instantaneous phase of the hth harmonic
and φ0(t) is a real function defined by the integral of f0(t):

φ0(t) =
2π

fs

∫ t

0

f0(τ) dτ (2)

where the time reference t = 0 is the center of the window,
and fs is the sampling frequency. According to the adaptive
scheme proposed in [20], ah(t) and f0(t) are obtained by lin-
ear and spline interpolation of anchor values aih and estimated
f i0 at specific instants ti, respectively. The estimation of these
anchor values is described in the rest of the current section.
Therefore, aHM will provide estimates of these parameters,
which are sufficient for the complete representation of the
speech signal. A sequence on anchor time instants, ti is created
during the aHM analysis using the provided f0(t) curve. These
anchors derive from:

ti+1 = f0(ti)
−1 + ti (3)

where t0 = 0. Even in the unvoiced segments, where the
estimated f0 does not hold a particular meaning, its value is
used to generate these time instants. However, the number of
anchors has to be properly chosen, since too many anchors
may overfit the signal and represent variations that are not
related to a deterministic component in voiced segments. A
behavior like that has no true meaning for statistical modeling
and may even cause the voice characteristics to be difficult to
control in voice transformation. On the other hand, underfitting
the signal with too few anchors should also be avoided. For
speech, it can safely be assumed that the frequency modulation
is related to a change of pulse duration and not to any
modulation inside a single pulse. Hence, one anchor per period
should suffice and in this article, a pitch synchronous analysis
in which the distance between anchors respects an input f0
curve, is assumed.

For the aHM parameter estimation with the presence of
potential errors in the f0 curve, the frequency correction
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mechanism of aQHM is used [20]. Within a single window,
this model is similar to:

x(t) =

H∑
h=1

(ah + tbh)e
jhφ0(t) (4)

where φ0(t) is still defined by Eq. 2 and ah, bh are complex
values that are constant in the window, in contrast to ah(t) in
Eq. 1. To estimate ah and bh the following squared error is
minimized by discrete sampling between the windowed speech
segment s[n] and its model x[n]

ε =

N−1∑
n=0

(s[n]− x[n])2 (5)

where N is the number of samples in the analysis window.
Moreover, the model parameters are estimated via the LS
solution, given the samples of the input signal in a vector
s: [

â

b̂

]
= (EHWHWE)−1EHWHWs (6)

where W is the diagonal matrix containing the window values
in the diagonal, s is the input signal vector and E = [E0, E1]
is the adapted frequency basis, which have elements given by

E0 = (E0)n,h = ejhφ0(tn) (7)

E1 = (E1)n,h = tn(E0)n,h = tne
jhφ0(tn) (8)

III. ADAPTIVE DISCRETE FOURIER TRANSFORM (ADFT)

In order to increase the computational speed, the replace-
ment of the LS solution (Eq. (6)) with a Peak Picking approach
was suggested in [18], in order to estimate the above aHM
parameters in a more efficient way.

The core of this faster approach lies in the adaptive Discrete
Fourier Transform (aDFT) [18]. In order to properly describe
the aDFT and emphasize the importance of adaptivity for the
AIR algorithm, a comparison between the DFT, FChT and
aDFT is first presented in this section. In Fig. 1, the frequency
basis for the three transformations mentioned above for a
single analysis window and the respective spectrogram, are
made visible. The results obtained by these three methods for
a longer time period are depicted in Fig. 2.

In order to compare all three transforms, we need to start
with the frequency basis of the DFT. For a windowed signal
x[n] of length N , the DFT is defined as

X[k] =

N−1∑
n=0

x[n]e−j2π
k
N φ[n] (9)

where N represents the DFT length, k = 0, 1, ..., N − 1
(first row of Fig. 1). In the DFT, there is the assumption of
stationarity in the analyzed signal, since the frequency basis
φ[n] used to compute the DFT is constant inside the analysis
window:

φ[n] = n (10)

with time derivative:
φ′[n] = 1 (11)

However, in speech signals, this assumption of stationarity
is valid only when the variations of the fundamental frequency,
f0, are negligible compared to the stationary basis of the DFT.
Moreover, the variations of the harmonics are proportional to
those of f0 multiplied by the harmonic number. Hence, as
frequencies increase so does the non-stationarity of the voiced
signal, making the validity of the stationarity hypothesis
questionable for mid and high frequencies. The first row of
Fig. 2 presents the DFT spectrogram. One can see that the
frequency content is highly blurred around 2.5kHz.

To alleviate this issue, the Fan Chirp Transform (FChT)
has been proposed in [16]. In this method, a chirp related
frequency basis (i.e. linear frequency trajectories) is used, with
its slope adjusted to the average slope of the f0 curve in the
analysis window. For a windowed signal x[n] of length N , the
FChT is defined as

Xa[k] =

N−1∑
n=0

x[n]ξ∗(n, k, a) (12)

where N also stands for the FChT length, k = 0, 1, ...N−1, ∗

denotes the complex conjugate and ξ(n, k, a) is the frequency
basis of the FChT defined as

ξ(n, k, a) =
√
|φ′a[n]|e−j2π

k
N φa[n], (13)

where φa[n] rules the time dependence of the frequency basis
exponent

φa[n] =
(
n+

1

2
an2
)

(14)

whose time derivative is:

φ′a(n) = (1 + an) (15)

where the parameter a is the chirp rate of the f0 slope (second
row of Fig. 1). It can be observed that with the linearly
adapted frequency basis of FChT, the harmonics become
clearer compared to the ones produced by the DFT. In the
second row of Fig. 2, one can notice that even around 2.5kHz
the harmonics can be easily traced, especially compared to the
results of the DFT spectrogram shown in the first row. Hence,
there is a regularity in the frequency content even in mid/high
frequencies when the FChT is used, which was not visible by
using the DFT. Still, even though the FChT basis adapts to
the frequency modulations better than the DFT, the frequency
basis is constrained to linear trajectories only.

In [18], in order to better follow the non-linear variations
of f0, the adaptive Discrete Fourier Transform (aDFT), based
on the adaptivity scheme of aQHM [17] and aHM [15], was
proposed. The frequency basis used for the aDFT follows
completely the f0 curve variations. Since the tracking of real
sinusoids needs only the positive frequencies, the following
representation is limited to the positive part of the aDFT. For
a windowed signal x[n] of length N , the aDFT of the positive
frequencies, is defined as

X[k] =

N/2∑
n=0

x[n]e−j2π
k
N φ0[n] (16)

where N , also, refers to the aDFT length, k = 0, 1, ..., N/2
and φ0[n] is the ”fundamental phase” of the frequency basis,
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whose values are obtained from the discrete sampling of the
continuous real function, φ0(t), defined by the normalized
integral of the fundamental frequency f0(t):

φ0(t) =

∫ t

0

f0(τ)

f0(0)
dτ (17)

where the time reference t = 0 is the center of the window and
fs denotes the sampling frequency. In (17), f0(0) normalizes
the frequency basis so that in the center of the window, where
t = 0, it corresponds to that of the DFT as shown through the
time derivative:

φ′0(t) =
f0(t)

f0(0)
(18)

According to the adaptivity scheme, f0(t) is obtained by linear
interpolation of the anchor values f i0 at specific instants ti. The
third row of Fig. 1, shows an example of the results of aDFT
and its respective frequency basis of the central frame. It can
be noticed that the frequency basis of aDFT compared to the
other two methods is fully adapted on the variations of the
f0 curve, hence, it can produce more accurate time-frequency
representation.
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Fig. 1. Three different transforms and their respective frequency bases for a
single analysis window. First row depicts the spectrogram and frequency basis
of the central frame of DFT, second row of FChT and third row of aDFT.

As mentioned above, in the second row of Fig. 2 the
harmonics around 2.5kHz can be more easily traced compared
to the ones in the first row. This creates a regularity in the
frequency content even in mid/high frequencies when FChT
is used. In the third row of Fig. 2, where the aDFT is used, this
regularity can be noticed even more in mid/high frequencies.

In Fig. 2 some discontinuities can be observed, especially
in the first and second row, between time instants. However,
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Fig. 2. Spectrograms produced by DFT, FChT and aDFT depicted in the first,
second and third row, respectively.

aHM always forces harmonicity, as it is a purely harmonic
model, even if there is none in the signal. Thus, possible
discontinuities are always smoothed during the synthesis.
Additionally, when there is an erroneous f0 curve as an input,
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if the error is less than an octave, the spectrogram should
be correct because the frequency basis is normalized by the
central f0 in aDFT.

IV. PARAMETER ESTIMATION METHOD

In this section, the method for estimating the aHM parame-
ters up to Nyquist is described, namely the Adaptive Iterative
Refinement (AIR) algorithm which uses the proposed Peak
Picking (PP) approach on the adaptive Discrete Fourier Trans-
form (aDFT) [18]. The global structure of the original AIR
algorithm has been already described in [15] and is basically
kept the same. In general, the AIR algorithm is used to refine
the incorrect localization of sinusoidal components due to the
potential error in f0, in order to allow a robust estimation
of harmonic components up to the Nyquist frequency. In the
present article, three different estimation methods (based on
LS, FChT, aDFT) were used for the AIR algorithm and the
refinement of the f0 curve. These three methods were, then,
used in the last analysis step for the estimation of the final
sinusoidal parameters used during the re-synthesis process. In
the rest of this paper, the analysis process will be separated
in the two aforementioned steps and, for clarity purposes,
they will be referred to as the Refinement of f0 step and the
Final Sinusoidal Parameters Estimation step. Combining these
methods (LS, FChT, aDFT) for the two different steps of the
analysis process results in the five methods of Table I that will
be later on discussed in the Evaluation Section V, one of them
having the desired results for both the computational load and
the re-synthesis quality.

TABLE I
METHODS USED FOR BOTH STEPS OF THE ANALYSIS PROCESS

Analysis Process Steps

Method Refinement Sinusoidal Parameters
Name of f0 Estimation

LS-LS LS LS

aDFT-aDFT aDFT aDFT

aDFT-LS aDFT LS

FChT-FChT FChT FChT

FChT-LS FChT LS

The AIR algorithm is used for the Refinement of f0 step
of the analysis process. The basic idea of this algorithm is to
begin by modeling the lower harmonics, where the error in the
f0 measurements can easily be corrected. Then, a refinement
of the f0 trajectory is evaluated based on the refinements of
the f i0 values for each frame and the harmonic order of the
model is iteratively increased until the Nyquist frequency is
reached. In the original version of the AIR algorithm [15],
the refinement of the f0 trajectory was computed by using
the Least Squares (LS) solution, while in this paper, instead
of the LS solution a Peak Picking approach is used. Every
other aspect of the AIR algorithm was kept the same. A
full description of the AIR algorithm and a more detailed
explanation of the methods used follows.

During analysis, a parametrization of the speech signal at
time instants ti takes place, as mentioned in Section II. Using
a rough estimate of the input f0 curve, a sequence of instants
ti is first created, with distance of one pitch period between
each of them. A Blackman window of 3 local pitch periods
is then applied to the speech signal centered around each ti,
with the aDFT length (N ) being defined as twice this window’s
length in order to make the main lobes appear in the aDFT.
Consequently, voices with high pitch (e.g. female voices) will
need a smaller aDFT length than voices with low pitch (e.g.
male voices).

The AIR algorithm works first for each time instant ti
separately, estimating the value of the f0 at that time instant,
namely the f i0, where the original estimate of the f0 curve is
provided by the SWIPEP [21] algorithm. At the end of each
iteration, the f0 curve is updated by all the refined values. The
algorithm begins at a low harmonic level, Hi = 8, for each
time instant, meaning that only harmonics up to the 8th one
will be taken into account for the refinement of the f0 curve
during the first iteration. For each iteration, the corrected f̂ i0
is estimated for each time instant ti from the Peak Picking
on the aDFT computed from the segment created around that
time instant. For the computation of f̂ i0, the harmonic peaks,
f ih, computed by PP, where h corresponds to the harmonic
number, are taken into account. More specifically, the value of
f̂ i0 derives from the median of those harmonic peaks, divided
by each peak’s harmonic number. It was assumed that some
peaks are representing noisy components. Thus, some peaks
might be unreliable and the median value is an efficient way
to discard outliers in the computation of the mean.

f̂ i0 = median(f ih/h) (19)

At the end of each iteration, all f i0 values are replaced by
the new f̂ i0. Before the next iteration begins, Hi is updated
for each time instant ti, as in the original AIR algorithm [15].
Eventually, this process is repeated for all frames until the
Nyquist frequency is reached for all of them. Algorithm 1
describes this analysis procedure:

Algorithm 1 AIR for aHM using Peak Picking

Create a sequence of time instants ti according to f0(t)
Initiate each f i0 = f0(ti)
Initiate each Hi = 8
while ∃i such as f i0 ·Hi < fs/2

for each i for which f i0 ·Hi < fs/2
Create a segment of 3 periods around ti
Compute the aDFT of the segment
Pick the harmonic peaks f ih up to Hi from aDFT
Compute f̂ i0 = median(f ih/h)
if f̂ i0 ·Hi < fs/2

Compute f icorr = f̂ i0 - f i0
Update Hi = b0.5Ni/|f icorr|c

end if
end for
Set f i0 = f̂ i0 ∀i

end while
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In Algorithm 1, f icorr is the correction of f i0 estimated in
each iteration (i.e. f icorr = f̂ i0−f i0) and Ni is the aDFT length
of frame i. The updated value of Hi has as upper limit the
Nyquist frequency.

A brief comparison with the previous version of aHM-
AIR [15] can clarify the ways in which this new version
(i.e. Algorithm 1) should be more computationally efficient.
Originally, in the algorithm proposed in [15], in every iteration
for each time anchor ti, where the frequency still hadn’t
reach the Nyquist frequency, the LS solution was used for
the minimization of Eq. (5) in order to compute the ak and
bk parameters of aQHM (i.e. Eq. (6)). On the other hand, in
this article, with the substitution of the LS solution with a
Peak Picking method, this computationally heavy estimation
becomes unnecessary. In Algorithm 1, instead of computing
the aHM parameters in each iteration, the f0 refinement for
each time instant ti, namely f̂ i0, is computed via Peak Picking
in an aDFT transform and Eq. (19). This substitution reduces
the computational load, making the new version of the AIR
algorithm more efficient timewise, as shown in Section V-A.

Taking into account that the main reason behind the replace-
ment of the LS solution with Peak Picking and aDFT approach
is to improve the computational load of the aHM-AIR method
while preserving the quality of the re-synthesis, a few more
modifications were made. The following subsection, IV-A,
presents all these modifications used during the aHM-AIR to
reduce the computational load, describes a faster version of the
process, using a limited-aDFT method and explains how the
use of this function affects our proposed Peak Picking scheme.
Furthermore, a more detailed description of our proposed Peak
Picking scheme and the techniques used for the unvoiced
segments follows in IV-B and IV-C, respectively.

A. Reduction of Computational Load using Limited-aDFT

When the aHM-AIR method begins, the harmonic level
is set for each time instant ti, at a low count. For the
next iterations, this level is always limited until the Nyquist
frequency is reached. The core of the limited-aDFT idea is that
only the part of the aDFT containing the necessary harmonics
needs to be calculated. Hence, the computation of any bins
above the current harmonic level Hi can be avoided. This
optimization cannot be done using the LS solution, because the
corrections computed from aQHM are not meaningful when
not applied for the full band, up to the Nyquist frequency.

Another improvement regarding the method’s complexity is
based on the fact that the f i0 values refined in each iteration,
eventually converge. It can be noted that the frequency basis
remains almost the same for the low frequencies, as the
harmonic level, Hi, increases. Hence, the aDFT in low fre-
quencies is very similar between iterations and the correction
of the frequency basis for lower frequencies becomes more
and more negligible. Thus, it can be assumed that below a
specific extent of correction for each f i0, the peaks estimated
during the previous iteration would remain almost the same
in the lower frequencies, so they can be maintained for all
following iterations. In order to implement this idea in the
proposed method, a threshold, Bi, in the frequency bins of

the aDFT, needs to be decided upon. The use of following
relation is suggested:

Bi =

⌊
tol · f i0 ·Ni
|f icorr| · fs

⌋
(20)

where f i0 is the frequency at the time instant ti, Ni is the aDFT
length for frame i, f icorr is the correction of f i0 computed from
the previous iteration (i.e. f icorr = f̂ i0−f i0). A tolerance factor
of 10% of the f i0 value (i.e. tol = 0.1f i0) was chosen, which
provided an important reduction of the computational time
without altering drastically the results. This tolerance factor
of 10% roughly means that 10% of the previously computed
lower peaks, depending on the correction f icorr made during
this step, can be kept the same in the next aDFT. Hence, it
is assumed that refining the new values of these lower peaks
in the next iteration will have a negligible influence in the
computation of the new f̂ i0 value.

Utilizing Bi, the bins of the aDFT below this threshold
would be kept the same for the following iterations, thus,
the aDFT is only computed for the rest of the bins and
still only until the upper harmonic limit Hi. Hence, Bi can
be considered as the lower harmonic limit for the aDFT
computation. Fig. 3 shows an example of what the aDFT for
a single window looks like in the third iteration. It can be
observed that the lower bins of the aDFT were obtained during
the two previous iterations. Each time there was an upper limit
Hi and a lower limit Bi considered during the computations.
Hence, only the part of aDFT containing harmonics between
these two limits was estimated.

Fig. 3. Illustration of how the limited-aDFT idea works through iterations.
Each part of the aDFT is computed in a different iteration, marked at the
bottom of the figure.

It becomes apparent that, by using the limited-aDFT, thus,
keeping part of the aDFT intact from iteration to iteration,
the harmonic peaks inside that part, also, remain the same.
This has an interesting affect on the PP approach. The Peak
Picking method can adapt to keep the harmonic peaks obtained
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from the frequency bins below the threshold and only compute
the peaks in the rest of the frequencies. Later on, both the
peaks from the previous iterations and the ones obtained in
the current one are used for the computation of f̂ i0, that will
replace f i0 at the end of each iteration.

B. The Proposed Peak Picking Scheme

In this section a detailed explanation of our proposed Peak
Picking scheme follows. Algorithm 2 describes our Peak
Picking scheme and the conditions used to determine whether
a peak obtained by the aDFT representation can be considered
harmonic or not, and which harmonic count it corresponds to.
Hence, which aDFT peaks will be taken into account in the
refinement of the fundamental frequency of a window i (Eq.
(19)).

Algorithm 2 Peak Picking for an analysis window i

Find all peaks
for each harmonic count h = 1 : Hi

Search for closest peak to h · f i0
if (peak’s distance from h · f i0) > f i0/2

Dismiss
else if peak is previously identified as harmonic

Dismiss and find second closest peak to h · f i0
if (peak’s distance from h · f i0) > f i0/2

Dismiss
else if peak is previously identified as harmonic

Dismiss
else

Identify peak as harmonic of count h: f ih
end if

else
Identify peak as harmonic of count h: f ih

end if
end for

The harmonic peaks are defined as integer multiples of the
fundamental frequency of a window i, f i0, with the harmonic
order h (h = 1, 2, ...,Hi). In order to determine which of
the aDFT peaks have to be considered in the f̂ i0 computation,
the minimum distance between each harmonic peak and the
peaks measured in the aDFT is computed, thus, finding the
closest peak to that harmonic peak similarly to [22]. However
since not all frames have a strict harmonic structure (e.g. high
frequencies, unvoiced frames, etc.), in order for Peak Picking
to find the better fitted harmonic structure of the window, a few
more restrictions were placed for the harmonic identification,
as shown in Algorithm 2. At the end of the proposed Peak
Picking scheme a set of harmonics, f ih, is produced for each
analysis window. This set of harmonics is, then, used in the
estimation of the refinement of the fundamental frequency of
each window following Eq. (19). In future works, this part
of the method could be improved by using peak classification
criteria as suggested in [23].

The results of this method produce a resynthesis that has
almost identical perceived quality compared to the one given
by the LS solution for the Refinement of f0 step, but its

robustness is based on the assumption that the input f0 curve
is fairly correct. That is not the case when there is a substantial
amount of noise in the curve. More precisely, in the first
iteration the harmonic base derives from the input f0 curve
which, as mentioned above, could have some noise. During
the first iteration of the PP method only the first harmonic
(h = 1) is obtained, namely f i1. Based on the input frequency
basis, PP will look for f i1 around the frequency value 1 · f i0.
Then, in the following iteration, PP will search for the second
harmonic f i2 around the frequency value 2 · f i0 and so forth.
Consequently, at the end of PP all the harmonics collected
will be almost multiples of the frequency basis, f i0, hence
its error will be carried in all the following estimations,
too, which may lead to skipping harmonics and wrongly
recognizing others. In order to solve this problem and make
the method more robust, instead of computing the refinement,
f̂ i0, at the end of the PP method, f̂ i0 is evaluated whenever
a new harmonic peak is identified, following (Eq. 19). After
the first couple of harmonic peaks are identified, the value
used for the first harmonic base changes (i.e. f i0 = f̂ i0 =
median(f ih/h)). Additionally, with every new harmonic peak
identified by our proposed Peak Picking scheme, the harmonic
base is recomputed. Hence, the influence of noise in the f i0
value lessens through iterations, resulting to a more precise
estimation of the rest of the harmonics, and finally, of the
fundamental frequency of the window. This is based on the fact
that not all harmonics are an exact multiple of the harmonic
base, hence with each recomputation of the harmonic base its
value will converge to the actual one. However, as a drawback,
the algorithm becomes a little slower but the results become
more robust.

C. Unvoiced Segments

In unvoiced segments, no harmonic structure exists, hence
using a harmonic model in those parts becomes questionable.
However, as it has been shown in [15], it is possible to use
aHM for both voiced and unvoiced segments, thus providing
a uniform representation across time which does not need any
voicing decision. Nevertheless, often, while using the sug-
gested PP approach in unvoiced segments, either substantial
deviations from the input f0 curve occurred or the f̂ i0 value
computed for an unvoiced segment ended up not converging.
This is caused by the lack of harmonic structure in addition to
the low harmonic level used during the first steps (e.g. Hi = 8
for the first iterating step), which prevent convergence of the f̂ i0
values. However, it was observed that using a higher harmonic
level this was not the case, even for unvoiced segments.

The original estimate of the f0 curve for the unvoiced
frames is provided by the SWIPEP [21] algorithm, as it was
the case with the voiced frames. Ideally, while dealing with
unvoiced frames, an estimator should favour low frequencies,
so that there is enough frequency resolution for representing
the noise. In this paper, the estimator considers a higher
harmonic count than the original Hi = 8 in the unvoiced
frames, thus, it doesn’t favour the lower frequencies, but it
tries to fit the most harmonic structure it can find closer to
the initial f0 curve values. We suggest to discard f̂ i0 values
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with any substantial deviations from the previous f i0 values of
each time instant ti. Additionally, when a value is discarded, a
forced increase of the harmonic level, before the next iteration,
is used. In the current implementation, a deviation threshold
of 8% from f i0 is used to decide whether or not each f ′i0
will be discarded. It was observed, after experimentation, that
any f ′i0 value that surpassed the 8% threshold either ended
up converging in a extremely erroneous value or did not
converge at all. In the case of a discard, the forced increase
of the harmonic level takes place according to the following
equation:

H ′i = |f̂ i0 − f i0| ·Hi (21)

This allows to force the harmonic level for the next iteration
high enough that even the unvoiced frames will have enough
pseudo-harmonic peaks to converge towards a stable f i0 value.

V. EVALUATION

For the following evaluations, three different implementa-
tions of aHM-AIR were taken into account, namely the AIR
algorithm can use either the LS solution [15], our proposed
Peak Picking approach using FChT or our proposed Peak
Picking approach using aDFT, for the Refinement of f0 step of
the analysis process. From this refined f0 curve, the sinusoidal
parameters of the harmonic model are, then, evaluated in the
last step of the analysis process, namely the Final Sinusoidal
Parameters Estimation step of analysis. For this step, all three
methods mentioned above were, again, applied. This led to
the comparison of the 5 methods from Table I, depicted by
the line styles of Fig. 4 in the following evaluations.

01020
−10010   LS−LS

aDFT−aDFT
aDFT−LS
FChT−FChT
FChT−LS

Fig. 4. Line styles for all methods shown in Fig. 5, Fig. 6 and Table I. The
first term in all line styles denotes the method used for the Refinement of f0
step and the second one denotes the method used for the Final Sinusoidal
Parameters Estimation step.

All the evaluations, except for the parameter estimation error
evaluation, were applied on a small database of 32 utterances
(16 male and 16 female, originating from 16 different lan-
guages, between 2s and 4s length, with sampling frequency
varying between 16kHz and 44kHz). The different phonemes
and origins of these languages are assumed sufficient to
provide a voice variability for supporting the validity of the
results. For FChT, the chirp-factor a for each time instant
ti, was estimated based on the slope factor of the linear
interpolation of the two neighboring f0 values, f i−10 and f i+1

0 ,
around ti.

A. Computational Time

For each method, the running time has been measured for
each recording and the time reduction ratios, with respect to
the LS-based method (Table II and Table III), were averaged
among all sentences. Table II presents the ratios for the
Refinement of f0 step of the analysis process. While, Table
III displays the ratios for the Final Sinusoidal Parameters
Estimation step of the analysis, where the parameters are
estimated by all three methods.

TABLE II
AVERAGE TIME REDUCTION RATIOS FOR THE Refinement of f0 STEP

Methods Male Voices Female Voices All

FChT
LS 0.11 0.15 0.13

aDFT
LS 0.23 0.28 0.25

On Table II, it can be noticed that, on average, when
using FChT, aHM-AIR becomes 7.69 (i.e. LS

FChT = 1
0.13 ≈

7.69) times faster, while, with aDFT, it becomes 4 (i.e.
LS

aDFT = 1
0.25 = 4) times faster compared to the LS solution

approach. Among the used sentences, the maximum ratio of
time improvement observed was 21.67 for FChT and 7.67 for
aDFT compared to the LS solution. The reason why there is
such a difference between the improvement caused between
FChT and aDFT is due to the fact that the frequency basis for
FChT is less flexible than for aDFT and the slope parameters
of FChT converge quicker than the actual f0 values. On the
one hand, the aDFT keeps on changing as long as the f0 values
change. Thus, if the f0 values change from one iteration to the
next, the frequency basis of the aDFT will also be different,
hence, the peak picking will find different peaks and the next
f0 correction will be proportional to these changes. On the
other hand, for FChT, even though the f0 values can change
between two refinement iterations, the slope can be extremely
similar, since many different sets of f0 values have the exact
same linear regression. Thus, the FChT may not change, and as
a consequence the peaks remain the same and the f0 correction
can be almost zero for the next step. Thus, one can, indeed,
expect a faster convergence with FChT than with aDFT.

For the Final Sinusoidal Parameters Estimation step, all
three methods were also used. By studying Table III it can be
observed that using the LS solution is faster than using either
FChT or aDFT in the Final Sinusoidal Parameters Estimation
step. This is mainly due to the fact that in this step of the
analysis process, both FChT and aDFT are computed for each
frame up to the maximum harmonic level (i.e. Nyquist), while
during the Refinement of f0 step of analysis only parts of
them are computed in each iteration, as discussed in Section
IV-A. Moreover, the final parameter estimation using LS is
fairly faster than using LS during the refinement iterations.
Indeed, during the final estimation there is no need for the
correction factors obtained using the aQHM model (Eq. (4)).
Thus, computing only the aHM terms makes the use of the
LS solution more computationally efficient than before. In
conclusion, the approaches using transforms are, according to
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our experiments, not faster than the LS solution for the Final
Sinusoidal Parameters Estimation step. Table III shows that in
this step, on average, LS is 2.10 times faster than FChT and
3.27 times faster than aDFT.

TABLE III
AVERAGE TIME REDUCTION RATIOS FOR THE Final Sinusoidal Parameters

Estimation STEP

Methods Male Voices Female Voices All

FChT
LS 1.98 2.23 2.10

aDFT
LS 3.16 3.38 3.27

B. Parameters Estimation Error

The purpose of studying the parameter estimation error is to
evaluate the precision of the estimated parameters in terms of
a sinusoidal representation, compared to aHM-AIR using the
LS solution. In the following tests, the estimated frequency,
amplitude and phase values are compared to ground truth
values of synthetic signals. A synthetic signal, which is as
close as possible to a natural speech signal, is obtained by
using a Liljencrants-Fant glottal model [13] to synthesize the
glottal source. To obtain a realistic vocal tract filter, a digital
simulator is used [24] that allows production of 13 different
voiced phonemes, including nasalized sounds.

The synthetic signal is obtained as:

s(t) = 2<
( ∑
k∈R+

Gf0(t)(kf0(t)) · C(kf0(t)) · ejkφ0(t)
)

(22)

where Gf0(t)(f) is the spectrum of the Liljencrants-Fant
model, C(f) is the vocal tract filter representing a random
phoneme among the 13 covering the vocalic triangle, and
φ0(t) follows (2), except that, here, t = 0 corresponds to the
beginning of the signal. The pulse shape of the glottal model
is controlled by a random parameter Rd ∈ [0.3; 2.7] as in [13]
and its period is defined by f0(t).

The following test evaluates the robustness of the different
methods when the initial f0 curve has errors which should
be alleviated by the AIR algorithm. In the following tests,
the original f0(t), in (22), is synthesized by using 5 anchors
per second with random values in [80; 400] Hz. A zero-mean
Gaussian noise with various STandard-Deviation (STD) is,
then, added to this curve which results to the input f0 curve
to the methods. In Fig. 5 and Fig. 6, the estimation error
of the sinusoidal parameters is plotted as a function of the
STD of this additive f0 error. Using a sampling frequency
of 44.1kHz, 320 test samples of 500ms duration each are
generated. The samples are analyzed at regular intervals of
5ms and the differences between the estimated parameters
computed by each method and the reference parameters are
determined. Fig. 5 and Fig. 6 show the mean and the STD
(using a base-10 logarithmic scale) of the estimation error, in
the first three and the last three rows, respectively. The phase

error was computed by the wrapped difference between the
unwrapped real and estimated values of the phase for these
synthetic signals. For all figures, the same line style convention
is followed, which is shown in Fig. 4. In the line style names,
the first method mentioned denotes the method used for the
Refinement of f0 and the second one is the method used for
the Final Sinusoidal Parameters Estimation step, as shown in
Table I. The mean and the STD values were computed through
the median and the interquartile range, respectively, to avoid
the influence of outliers.

Overall, it can be observed that the results produced by the
five different methods used in Fig. 5 and Fig. 6 are, in some
cases, very similar. Thus, arises the question of whether or not
the difference between the different systems is significant. In
order to better understand their difference, the 95% confidence
intervals were computed for each method for both mean and
STD, prior to the parameter estimation error. The intervals
were computed by using 464,870 and 2,073,504 samples for
frequencies below 4kHz and above 4kHz, respectively. The
width of these intervals was approximately 0.1Hz, 0.01dB
and 0.003rad for the mean error of frequencies, amplitudes
and phases, and 0.0015Hz, 0.0015dB and 0.0015rad (base-10
logarithmic scale) for the STD error, respectively. Additionally,
in most cases, there was no overlap between the different
methods and even when there was, it occurred for intervals
of a very small width. From all the above we can conclude
that the difference between the curves shown in Fig. 5 and
Fig. 6 are relevant.

1) Refinement of f0: Full Adaptivity vs. Linear Adaptivity
(LS-LS vs. aDFT-LS vs. FChT-LS): In Fig. 5, the results
of the parameter estimation error for aHM-AIR, when the
LS solution is replaced by a Peak Picking method in the
Refinement of f0, are shown. These values are obtained by
the Final Sinusoidal Parameters Estimation performed by the
LS solution. In the last three rows, the differences between the
three methods can be observed more clearly. In the frequency
error, row four, it can be observed that for the lower additive
noise LS-LS has a smaller STD than the other two methods
and as the noise increases LS-LS becomes indistinguishable
from FChT-LS until 18Hz of additive noise STD is reached.
FChT-LS begins with the same STD as aDFT-LS but, as the
additive noise increases, its results are similar to the ones
produced by LS-LS, while aDFT-LS has a slightly higher
STD than the other two methods, below 18Hz STD of noise.
However, still for the same row, for the higher values of
additive noise (above 18Hz STD), LS-LS and aDFT-LS have
a smaller STD than FChT-LS. Finally, in the amplitude and
phase errors, rows five and six respectively, it can be observed
that FChT-LS has better results for the lower values of noise,
while the results of aDFT-LS and LS-LS become better than
those of FChT-LS as the noise increases. These two methods,
aDFT-LS and LS-LS, have very similar results to each other.
The behavior of FChT-LS in the higher values of the additive
error can be contributed to its linear frequency basis. The more
additive noise there is in the input f0 curve, the harder it
becomes for FChT-LS to find linear trajectories that can follow
the adaptations of the f0 values. On the other hand, this is not
the case for LS-LS and aDFT-LS that are fully adaptive.
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Fig. 5. Error of sinusoidal parameters with respect to a potential error on
the f0 curve provided to the analysis methods, comparing full adaptivity with
linear adaptivity during the f0 refinement steps.
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Fig. 6. Error of sinusoidal parameters with respect to a potential error on the
f0 curve provided to the analysis methods, comparing LS solution with Peak
Picking in the last analysis step.

2) Final Sinusoidal Parameters Estimation: LS Solution vs.
Peak Picking (aDFT-aDFT vs. aDFT-LS vs. FChT-FChT vs.
FChT-LS): The results shown in Fig. 6 can be studied in
order to better understand the influence of the method used
in the Final Sinusoidal Parameters Estimation step of the
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analysis process. For this test, either aDFT or FChT was used
for the Refinement of f0 step, while all three methods (LS,
aDFT, FChT) were combined with them, as shown in Table
I, for the Final Sinusoidal Parameters Estimation step. It can
be observed that, when using a Peak Picking method in the
Final Sinusoidal Parameters Estimation step instead of the
LS solution, the results of the parameter estimation are not
always the best. In the first row, displaying the frequency
mean error, it can be noticed that, in high frequencies, both
aDFT-aDFT and FChT-FChT present an erroneous behavior,
especially the latter with a mean error over 20Hz in most of
the cases. Another great deviation for FChT-FChT from the
results of the rest of the methods can be observed in the phase
error in third row. There, both in low and high frequencies,
FChT-FChT demonstrates a highly erroneous behavior, having
the highest error estimated in all four methods. In concern to
the STD of the parameters estimation error, aDFT-aDFT has
either almost the same or better results than aDFT-LS, while
FChT-FChT experiences some further difficulties. Namely, in
the fourth row, the STD of the frequency error is almost the
same for aDFT-aDFT and aDFT-LS while FChT-FChT has
the worst results out of all four of them. In the fifth row, the
amplitude error of aDFT-aDFT is the smallest one. Finally, in
the last row, the phase error of aDFT-aDFT is the smallest out
of all four methods in low frequencies and almost the same
as aDFT-LS in higher frequencies. The good results produced
by aDFT-aDFT are due to the PP which always catches the
summit of the peaks, whereas LS can miss the peaks leading
to higher amplitude and phase errors.

C. Signal-to-Reconstruction Error Ratio (SRER)

The segmental Signal-to-Reconstruction Error Ratio
(SRER) between the recorded utterances and their models
was computed using equation 23 in order to evaluate the
global reconstruction accuracy of the suggested methods. The
SRER between an original signal s(t) and its reconstruction
ˆs(t) can be written as

SRER = 20 log10

( σs(t)

σ(s(t)−ŝ(t))

)
(23)

where σs(t) denotes the standard deviation of a signal s(t). It
can also be observed that the results of SRER are converted
into decibel (dB). The higher the result of the above equation
the better similarity ŝ(t) has to the original signal s(t).

A sliding window of 10ms with 50% overlap was used. In
order to evaluate both the impact of the AIR algorithm, which
refines the fundamental frequency, and the best method to
compute the final sinusoidal parameters used for the synthesis,
all five previously mentioned methods are compared. The
SRER was computed using the full-band of the recordings
and its distribution of the voiced and unvoiced segments is
shown on the top and bottom plots of Fig.7, respectively. The
sole 32 sentences were sufficient to obtain more than 10,000
values for each distribution.

It can be observed that the distributions of all three methods
using the LS solution in the Final Sinusoidal Parameters
Estimation step are very similar to each other for voiced
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Fig. 7. Estimation of the full-band SRER distributions for voiced and unvoiced
frames.

segments. This means that the reconstruction quality is not
degraded by the refinement method and, as was shown in
Section V-A, the computation load has a considerable decrease
with Peak Picking on aDFT. On the other hand, both FChT-
FChT and aDFT-aDFT present some issues with both voiced
and unvoiced frames which can be explained by the higher fre-
quency errors when not using the LS solution. It is interesting
to notice the behavior of FChT-LS in the unvoiced segments,
where a smaller SRER is observed compared to the other
two methods using LS in the Final Sinusoidal Parameters
Estimation step. This is due to the fact that the frequency
basis in FChT is constrained to linear trajectories and does
not have the flexibility of the fully adaptive basis of aDFT.

D. Perceived Quality: Listening Test and PESQ

In this part of the evaluations, the perceived quality of the
reconstructed signals using the five methods was evaluated
subjectively and objectively, using listening tests and the PESQ
method [25] respectively.
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Fig. 8. Quality evaluation of the resynthesis quality by 24 listeners using 32
utterances of 16 different languages, with 95% confidence intervals.

1) Subjective Perceptual Evaluation: The purpose of this
listening test is to evaluate the methods which are used for
both steps of the analysis process (i.e. Refinement of f0 and
Final Sinusoidal Parameters Estimation). In order to do so,
the same 32 utterances of 16 different languages as in V-B
were used. Listeners were asked to evaluate the quality of
sound files compared to an original recording using a web
interface. Among the six files they had to rate, five of them
were synthesized with LS-LS, aDFT-aDFT, aDFT-LS, FChT-
FChT and FChT-LS, while the sixth file was the original
recording, which was added to the comparison set in order
to check the consistency of the answers. In this test, each
listener was asked to grade only 3 languages randomly selected
from the 16 languages. Each language was represented by
one male and one female voice, hence, each listener evaluated
the resynthesis of (6 recordings) × (the 6 different methods).
The following grading scale of quality was used: (5)Excellent,
(4)Good, (3)Fair, (2)Poor and (1)Bad. In order to optimize
the results of the listening test, the listeners were asked what
device they used to listen to the signals, and only the answers
from listeners who used headphones or earphones were kept.
Moreover, answers by listeners who did not rate the original
recordings systematically between 4 and 5 were discarded,
considering that they did not understand the instructions or
they were not focused enough. After all the above answers
were discarded, 24 remained. Since the sounds to evaluate
were selected randomly, the number of occurrences of each
sound was not uniform. In order to remove any possible
bias, the mean and confidence intervals of the results were
normalized according to the number of occurrence of each
sound. Fig. 8 shows the results of this listening test.

According to Fig. 8, it can be noticed that only three
methods have a global score under 4, aDFT-aDFT, FChT-
FChT and FChT-LS. This is caused by the fact that all three
methods cannot adapt adequately enough to the unvoiced parts
of a signal, as shown in Fig. 7, hence creating artifacts in the

resynthesis. On the other hand, aDFT-LS and LS-LS have very
similar overall scores, very close to the results of the Original
signal.

2) Objective Perceptual Evaluation of Speech Quality using
PESQ: It is expected that, since the results of SRER for the
LS-LS and aDFT-LS methods are very similar, an objective
measure of perception would give the same results. In order
to verify this, the PESQ method [25] is used to assess the
perceived quality of the reconstructed signals compared to
the originals. Table IV presents the PESQ scores for the five
methods of Table I, using the same database as in the previous
tests. Due to the fact that the sampling frequency for the
signals in the database varied from 16kHz to 44kHz, a re-
sampling of all signals to 16kHz was performed in order for
the PESQ measurement to be used. The results show that the
LS solution has the best PESQ score with aDFT-LS being a
close second. On the other hand, FChT-LS and FChT-FChT
have the worst results of them all, with aDFT-aDFT being
a little better than them, as is expected from the SRER and
listening test results.

TABLE IV
PESQ SCORES ASSESSING THE OVERALL QUALITY OF THE

RE-SYNTHESIZED SIGNALS OF THE METHODS COMPARED TO THE
ORIGINAL SIGNAL.

PESQ Ratings (up to 4.5)

LS -LS 4.18

aDFT - aDFT 3.92

aDFT - LS 4.15

FChT - FChT 3.73

FChT - LS 3.82

VI. CONCLUSIONS

Taking advantage of the good perceived quality provided
by aHM-AIR, a Peak Picking approach was suggested in a
previous publication to replace the LS solution for the f0
refinement, in order to reduce the computational time of the
AIR algorithm. In this article we extend the previous proposal
with a comprehensive study of the behaviour of our suggested
Peak Picking approach for the whole analysis process of a
speech signal. Two different transforms were used for Peak
Picking, namely FChT and aDFT. Evaluations have shown
that by performing this substitution, the computational load
of the AIR algorithm decreases, in average, by a factor of
7.69 and 4, for FChT and aDFT respectively. Moreover, using
synthetic signals, the accuracy and precision of the parameter
estimation of all versions of aHM-AIR was evaluated showing
that the results of aDFT-LS are almost as robust as those of the
original method, LS-LS, while all other methods experienced
problems. Also, a listening test was carried out in order to as-
sess the subjective perceived quality provided by the suggested
analysis/synthesis procedure. According to this listening test,
the resynthesis of aHM-AIR using Peak Picking and aDFT for
the f0 refinement and LS for the final sinusoidal estimation
(aDFT-LS), has globally the same high quality as aHM-AIR
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using the LS solution, which is also confirmed by an objective
measurement. Therefore, a Peak Picking approach can indeed
replace the original LS solution approach of aHM-AIR, while
reducing the computational load by four times and preserving
the high quality.
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