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Abstract

A new branch of astrophysics was born with the discovery of the first planet orbiting a
star other than the Sun. Since then, astronomers have developed techniques to detect and
characterise exoplanets. The two more successful techniques are the transit and radial
velocity methods. They allow us to measure the planetary radius and minimum mass,
respectively. By combining transit photometry with RV measurements, it is possible to
measure the true mass and determine the planetary mean density. This allows us to
study planets’ internal structure and composition and gives us important hints as to their
formation and evolution.

In its extended K2 mission, Kepler is surveying different stellar fields located along
the ecliptic, performing 80-day-long continuous observations of 10 000–20 000 stars per
campaign. The K2 mission is an unique opportunity to gain knowledge of transiting
exoplanets. K2 is targeting a number of bright stars (V. 13 mag) higher than the original
Kepler mission. This is a definitive advantage for any RV follow-up observations. The
opportunity for exoplanetary science is terrific!

We present an intensive high-precision radial velocity follow-up of bright K2 stars
(V.13 mag) hosting transiting planets. We developed numerical tools, which allowed us
to simultaneously model radial velocity measurements and transit light curves in order to
derive planetary masses and radii.

We derived the masses, radii, and bulk densities of the exoplanets transiting the stars
K2-19, K2-98, K2-139, K2-141, K2-111, HD 3167, GJ 9827 observed by K2, and πMensae
observed by TESS.

We were able to infer the internal structure, composition, dynamical evolution, tidal
interaction, architecture, and the existence/absence of atmospheres of the characterised
exoplanets. Some of the planets here presented join the small group of short-period planets
known to have rocky terrestrial compositions. The densities of the remaining objects are
indicative of planets with a composition comprising a solid core surrounded by a thick
atmospheric envelope. Because of the brightness of the host stars, most of the systems
here presented are highly suitable for a wide range of further studies to characterise the
planetary atmosphere and dynamical properties.

This thesis contributes to the exoplanet science by itself. It adds new well-characterised
planets to the relatively small sample of super-Earths and Neptunes whose masses and
radii are both well-determined. These results will contribute to solve many unanswered
questions about the nature of faraway worlds.
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CHAPTER 1

INTRODUCTION

1.1 Dancing stars

Since the dawn of time, humankind has been amazed by the mystery of the night. A
countless number of stars illuminated the clear nights of all the civilisations that populated
our World.

This immutable beauty was complemented by five dancing stars in the sky. Ancient
Greeks called those moving stars planets, which means wanderers. Planets were entities
of unknown nature, but of great interest for all cultures. Their dance around our World
should tell us something about the Universe we live in.

Later in time, observations driven by curiosity showed that the planets’ motion in the
sky is complex. Yet, they follow irregular patterns, an encrypted choreography. The
decoding of this motion taught us that planets move around the Sun. And something
more important, our World also revolves around the Sun, our World is a planet. This
realisation unveiled the true nature of those dancing stars: planets are worlds.

When we learned about the existence of other worlds, we changed our perception of
our place in the Universe. By unveiling their nature we will know if we are a common
manifestation of nature, or, if we are just a serendipitous instant in the Cosmos.

1.2 Towards the first faraway world

“Each Sun is the centre of as many worlds which are distributed in as many distinct series
in an infinite number of concentric systems”, those are the words of an Italian philosopher
from the XVI century called Giordano Bruno (Bruno & Williams, 1887). He probably
thought about this after he learned that our World is part of a system of worlds which
revolve around the Sun. The existence of faraway worlds persisted when we learned that
the motion of the planets around the Sun was a consequence of a physical phenomenon
called gravity. As Isaac Newton said: “if the fixed stars are the centres of other like
systems, these [...] must be all subject to the dominion of One; especially since the light
of the fixed stars is of the same nature with the light of the Sun ...” (see the translation
to English of Principia by Cohen et al., 1999). Therefore, if stars are faraway Suns, why
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should not exist faraway worlds?
A great step to understand the existence of other worlds came to us when the first

models of the Solar System formation appeared in the XVIII century. Swedenborg (1734)
devised that the Solar System – including the Sun, planets and minor bodies – originated
from the same structure. This idea was taken by Kant (1755) and Laplace (1976) to
suggest that the Solar System formed from a large cloud of gas. Nowadays, the formation
of the Solar System via the collapse of nebula is accepted. The currently accepted idea
is called the solar nebular disc model (SNDM, Safronov, 1972). This model suggests that
stars are formed from the collapse of dense clouds in star nurseries inside the galaxy.
When such clouds become unstable, matter collapse to dense clumps. If the cloud has
angular momentum, this collapse generates a rotating disc. The central region of such a
structure, also called circumstellar disc, becomes a star, while planets may form in the
disc. If stars formed in a similar way than the Sun, they may have planets.

All the evidence about the existence of planets around faraway stars was there: galaxies
have regions with gas and molecules; gas collapses in these zones to create circumstellar
discs; from these structures stars and planets form. But the final piece in the puzzle was
still missing: the detection of a faraway planet.

At the beginning of the XX century, it was accepted that faraway planets should exist.
But, the first claimed discoveries were refuted with improved methods and observations
(e.g., Jensen & Ulrych, 1973; Reuyl & Holmberg, 1943; Strand, 1943). Struve (1952)
tried to answer the question: “How should we proceed to detect them?”. He argued
that close-in planet mass companions could be discovered indirectly by the detection of
periodic variations on the radial velocity of the hosting star. He also discussed the possible
indirect detection of planets by detecting the loss of light when the planet eclipses its host
star. Could astronomers be able to “translate” light variations into faraway worlds?

The nineties marked the first confirmed detection of extrasolar planetary mass objects
around the millisecond pulsar PSR 1257+12 by Wolszczan & Frail (1992). They confirmed
the existence of three Earth-mass bodies by measuring the nanosecond changes of the
pulsar period. This was the first irrefutable evidence of planet-mass objects orbiting
an extrasolar object. However, the community was still searching for planetary objects
around other Suns.

The wait for faraway worlds that lasted more than 400 years ended when Mayor &
Queloz (1995) detected a planet-mass object orbiting a main-sequence star. They discov-
ered the presence of a Jupiter-mass companion around the star 51 Pegasi. They detected
the oscillations of the radial velocity of the star induced by the planet, as predicted by
Struve (1952, for more details see Sect., 1.4.1). At this point in history we learned that
51 Pegasi is the centre of a system orbited by the faraway planet 51 Peg b, the first extra-
solar planet, or also called, exoplanet. This was the beginning of a new age in astronomy:
the era of faraway worlds.

1.3 What is an exoplanet?

The fist official definition of “planet” was established in 2006 at the International Astro-
nomical Union (IAU) assembly. According to the IAU resolutions B5 and B61, a solar
system body is a planet if fulfils the three requirements:

1. it orbits around the Sun.

2. it has sufficient mass for its self-gravity to overcome rigid body forces so that it
assumes a hydrostatic equilibrium (nearly round) shape.

1They can be consulted at https://www.iau.org/static/resolutions/Resolution_GA26-5-6.pdf.

https://www.iau.org/static/resolutions/Resolution_GA26-5-6.pdf
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3. it has cleared the neighbourhood around its orbit.

By following this definition, there are eight planets in the Solar System. The five bright
naked-eye planets (Mercury, Venus, Mars, Jupiter ans Saturn), the two planets discovered
by a telescope (Uranus and Neptune), and our planet Earth.

A formal definition of exoplanets has to expand the Solar System planet definition
to a more general context. This was done during the IAU general assembly in 2018,
when a general definition of planet – which includes exoplanets – was discussed. The
new resolution defines planets as objects with true masses below the limiting mass for
thermonuclear fusion of deuterium (currently estimated to be 13 Jupiter masses for objects
of solar metallicity) that orbits stars, brown dwarfs, or stellar remnants and that have
a mass ratio with the central object below the L4/L5 instability (M/Mcentral < 2/(25 +√

521) ≈ 1/25), no matter how they formed. The minimum mass required for an extrasolar
object to be considered a planet is the same as that used for the planets of our Solar System
(Mamajek, 2018).

1.3.1 Exoplanet nomenclature

The scientific nomenclature for the designations of exoplanets usually consists of two ele-
ments: 1) a proper noun or abbreviation, sometimes with associated numbers, 2) followed
by a lower-case letter2.

The first element can derive from a number of sources. A common source is an exo-
planet’s host star’s widely recognised, common or astronomical catalogue name. Alterna-
tively, exoplanets are often named after the scientific instrument or project that discovered
the exoplanet (such as WASP-, CoRoT-, Kepler- or K2-). However, it is preferred to use
stellar names already in existing catalogues (such as HD or GJ).

Unlike the proper noun, the letter has to be used universally in almost all nomenclature
styles. The letter indicates the order of the planet’s discovery around its host star. The
first exoplanet discovered in another system is designated with the letter b; the second,
c; the third, d; and so on. The letter does not indicate the planet’s orbital placement
around its host star, so Exoplanet-c can be closer to, or farther away from, the star that
it co-orbits with Exoplanet-b. For multiple systems, it is recommended to identify the
central system with parentheses when the planets orbit more than one star (e.g., Kelper-
16(AB) b), using upper cases for the central objects and lower case for the planetary
objects.

This thesis focuses on exoplanets discovered with the NASA’s K2 mission. For the
newly discovered planets, we adopt NASA exoplanet naming policy3.

1.4 Detection methods

In this work, we will focus only on the description and achievements of two methods
which detect exoplanets by the observable effects on their host stars: the radial velocity
and transit methods. We warn the reader about the existence of other techniques to
discover exoplanets, e.g., direct imaging (Boccaletti, 2011), pulsar timing (Wolszczan &
Frail, 1992), astrometry (Benedict et al., 2002), and microlensing (Bond et al., 2004). We
note that out of the 3823 exoplanets known to date4, 3601 have been discovered with the
RV and transit methods. Figure 1.1 shows the planet mass vs orbital period plot. The
different colours/symbols refer to the different detection methods.

2According to the IAU exoplanet name designation https://www.iau.org/public/themes/naming_exoplanets/.
3Available at https://exoplanetarchive.ipac.caltech.edu/docs/K2Numbers.html.
4As of Sept. 10, 2018, www.exoplanet.eu.

https://www.iau.org/public/themes/naming_exoplanets/
https://exoplanetarchive.ipac.caltech.edu/docs/K2Numbers.html
www.exoplanet.eu
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Figure 1.1: Planet mass vs orbital period plot. Different colours/symbols refer to a discovery technique.
The figure was created with data downloaded from exoplanets.org, as of Sept. 07, 2018.

1.4.1 Radial Velocity method

The radial velocity (RV) of a star is defined as the velocity component along the line-of-
sight of an observer. It can be measured through Doppler spectroscopy by comparing the
measured wavelengths of known spectral lines to wavelengths from laboratory measure-
ments. A positive RV indicates that the distance between the star and the observer is
increasing, whereas a negative RV indicates that the distance between the source and the
observer is decreasing.

If a star hosts a planet, then both objects orbit around their centre of mass – the so
called barycentre. Provided the plane of the orbit is not face-on (i.e., at right angle to the
line of sight), the stellar RV changes periodically as the the star moves around the centre
of mass of the system (Sect. 2.2). The RV variations induced by the unseen planet can be
measured by observing the periodic red and blue shift of the stellar spectral lines (Doppler
effect). By detecting the periodic RV variation, we can indirectly infer the presence of a
planet around a star (Hatzes, 2016).

The detection of the Doppler reflex motion induced by the presence of a planetary com-
panion requires spectrographs with precision ranging from ∼0.01 to 100 m s−1, depending
on the planetary mass and orbital radius (see also Chapter 4). The most massive planet
in the solar system, Jupiter, has an orbital period of P=11.9 years, corresponding to a
semi-major axis of a=5.2 AU. Jupiter induces a Doppler velocity variation in the Sun of
11.2 m s−1. If Jupiter were orbiting the Sun every 3 days, the RV semi-amplitude would
be ∼150 m s−1. For an Earth-mass planet, the reflex motion of the Sun is 0.01 m s−1 and
0.6 m s−1 for P=1 day and P=1 year, respectively.

The Doppler reflex motion induced by a planet is proportional to ∝ Mp/M
2/3
? , where

Mp is the mass of the planet and M? is the mass of the star. If the stellar mass is known
by an independent method (e.g., spectroscopy, astereoseismology), we can estimate the

exoplanets.org
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planet mass. However, the radial velocity technique provides only the velocity component
of the star along the line of sight. Therefore, this method allows us to measure only the
planet minimum mass defined as Mp sin i, where i is the orbital inclination with respect
the plane tangential to the celestial sphere at the location of the system’s centre of mass.
In order to determine the planet true mass it is necessary to measure the orbit inclination
using other methods, such as the transit method (see Sect. 1.4.2). The RV method allows
also to measure the orbital parameters such as period, eccentricity, and angle of periastron
(see Sect. 2.2).

We can rightfully argue that the RV technique has played – and it is still playing! – a
major role in exoplanet science. It is the method that started the quest for “exoworlds”and
it is the second most successful detection technique, with about 800 planet discoveries
announced so far5. The first “Doppler-evidence” of the presence of a planet orbiting a
star other than the Sun came between the end of the eighties and the beginning of the
nineties, when spectrographs reached the 10 m s−1 precision (Hatzes, 2016). The radial
velocity survey conducted by Campbell et al. (1988) suggested the presence of a planet
orbiting the sub-giant star γ Cep A. However, the claim was retracted in 1992 because
the quality of the data was not good enough to firmly establish the discovery. The
planet was later confirmed by Hatzes et al. (2003) by combining observations spanning 21
years. Latham et al. (1989) reported on the discovery of a sub-stellar companion with a
minimum mass of Mp sin i= 11MJ orbiting the solar-like star HD 114762 every 84 days.
Although the minimum mass of HD 114762 b is below the deuterium burning limit(13MJ),
the object was not classified as a planet because the orbit inclination, and thus the planet
true mass, were unknown.

The first confirmed extrasolar planet was announced by Mayor & Queloz (1995), who
discovered that the star 51 Peg hosts a Jupiter-mass companion on a 4.2-day. The discov-
ery was made using high-precision RV measurements collected with the ELODIE spectro-
graph installed at the 1.93 m telescope of the Observatoire de Haute-Provence in France.
Given the planet minimum mass of 0.47MJ, the probability that 51 Peg b is a brown
dwarf is less than 1%, suggesting that the unseen companion is actually a planet.

The discovery of 51 Peg b was followed by numerous other RV detections, making
exoplanet research one of the most vibrant and exciting field in modern astrophysics.
Although in the past 10 years the transit method (Sect. 1.4.2) has surpassed the RV tech-
nique in terms of number of planet discoveries, the RV method still plays a fundamental
role in transit discoveries as it provides the planetary mass and the orbit eccentricity (e.g.,
Hatzes, 2016, see also Sect 2.2).

Figure 1.1 shows the planet mass vs period diagram. It is clear how the RV method is
biased towards massive and short period planets. This is a consequence of the dependence
of the induced RV variation on the planetary mass and orbital period (∝ Mp P

−1/3;
see Chapter 4 for more details). Nevertheless, mass measurements have been possible
even for objects in the Earth-mass domain thanks to state-of-the-art spectrographs that
have allowed to measure stellar RV variation with a precision of ∼1 m s−1(e.g., HARPS,
HARPS-N, Mayor et al., 2003; Cosentino et al., 2012, see Sect. 4.3). Fortunately,
upcoming instruments will provide measurements with even higher precision (ESPRESSO,
SPIRou, Pepe et al., 2010; Donati et al., 2017); the future of Doppler spectroscopy is
promising!

5Source http://exoplanet.eu, as of Sept. 2018.

http://exoplanet.eu
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1.4.2 Transit method

An eclipse occurs when an astronomical body is obscured by a second one. A transit is
a special case of eclipse, in which a smaller object passes in front of a larger body. If
the orbit inclination is close to 90◦, the presence of a planet orbiting its host star can
be inferred by detecting the periodic drops of stellar flux caused by the planet partly
occulting the stellar disc.

The transit depth yields the planet-to-star radius ratio Rp/R?. If the stellar radius
is known via, e.g., spectroscopy combined with parallax and broad-band photometry,
transiting planets provide us with one of the fundamental parameter needed to investigate
the nature of these fascinating new worlds: the radius. The fraction of light occulted by a
planet during a transit is indeed proportional to its size, being about 1% for a Jupiter-size
object and 100 times smaller for an Earth-size planet transiting a Solar-like star.

If we assume random inclination of planetary orbits, the probability of a transit to
happen goes as ≈ 0.0046 (R?/R�) (1AU/a) , where R? is the host star radius and a is the
semi-major axis of the orbit of the planet (Cameron, 2016). The probability of observing
the transit of a planet with a = 1 AU in front of a Sun-like star is only 0.46%. The
probability drops to 0.09% if the planet is a Jupiter analogue (a= 5.2 AU). For short-
period exoplanets (P < 10 d), the transit probability ranges between 2 and 10% (Cameron,
2016).

The first exoplanets discovered by RV surveys were short-period, Jupiter-mass planets
orbiting main-sequence stars. Their radii were expected to be comparable to that of
Jupiter, implying a transit depth of ∼1% – a signal detectable using the photometric
detectors available at the end of the twentieth century. The small star-planet separation
translated into a transit probability of about 10%, implying that 1 out of 10 planets should
have transited its host star. Once the orbital solution of these planets were announced,
photometric follow-up observations were conducted around the time of inferior conjunction
in order to search for transits (Cameron, 2016). Shortly after the discovery of the first
∼10 close-in giant planets, Henry et al. (1999) and Charbonneau et al. (2000) were able to
detect a transit of the giant planet HD 209458 b across the surface of its host star, making
it the first known transiting extrasolar planet. Because the modelling of the transit light
curve provides the orbit inclination i (see Sect. 2.4.2), HD 209458 b was also the first
exoplanet with a measured true mass.

To overcome the low geometric probability of observing a transit, search programs on
field stars require the simultaneous observations of a large number of targets. The wide-
field photometric search for transiting planets around field stars became a reality at the
beginning of the XXI century with the improvement of photometric detectors (Cameron,
2016). The most successful transit surveys, such as the transatlantic exoplanet survey
(TrES, Alonso et al., 2004), the wide-angle search for planets (WASP, Pollacco et al.,
2006), the Hungarian automated telescope network (HATNet and HATSouth Bakos et al.,
2004, 2013) and the kilodegree extremely little telescope (KELT, Pepper et al., 2007)
entered in service and started publishing new discoveries of transiting planets. Together
they have surveyed about 80% of the sky, and published hundreds of confirmed discoveries
of short period (P< 10 days) gas-giant and ice-giant planets transiting stars brighter than
V < 13 mag.

The ground-based detection of planets smaller than Neptune (Rp < 4R⊕) is rendered
unfeasible by the Earth’s atmosphere (see also Sect. 3.1). Because the transit depth is
proportional to the square of the planet-to-star radius ratio, small transiting planets can
still be detected using ground-based facilities if one focus on small stars, such as M dwarfs.
The transit of an Earth-size planet around an M dwarf is hundred of times stronger than
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Figure 1.2: Planet radius vs orbital period plot for transiting exoplanets. Different colours/symbols
represent different detection surveys. This plot was created with data downloaded from exoplanets.org

as of Sept. 07, 2018.

around a G-type star (see Sect. 3.1). Ground-based searches for terrestrial-size planets
transiting M-type dwarfs are MEarth (Irwin et al., 2015; Nutzman & Charbonneau, 2008),
and the Transiting planets and planetesimals small telescope (TRAPPIST, Gillon et al.,
2011; Jehin et al., 2011). They have proved that small planets can be detected with
ground-based facilities (e.g., Charbonneau et al., 2009; Gillon et al., 2017).

Figure 1.2 displays the planetary radius vs orbital period plot for transiting exoplanets.
The figure shows that transiting planets discovered by ground-based surveys are mainly
short-period gas-giant planets. The few Earth-size planets found by ground-based surveys
are all transiting M dwarfs.

The detection of small planets (Rp < 4R⊕) transiting Sun-like stars requires space-
borne photometry (see also Chapter 3). The search for transiting exoplanets from space
started with the pioneering mission CoRoT (COnvection, ROtation et Transits planétaires,
Auvergne et al., 2009). The mission was operational from 2006 to 2012. CoRoT was re-
sponsible for the discovery of 36 new transiting exoplanets. One of its major achievements
was the discovery of CoRoT-7 b, the first transiting super-Earth with a measured radius
(Léger et al., 2009). More details about the legacy of the CoRoT mission can be found in
the A&A special issue about CoRoT (Vol. 506, 1, October IV 2009) and in the CoRoT
legacy book (CoRot Team, 2016).

The Kepler mission continued the search for transiting exoplanets from space (Borucki
et al., 2008) in 2009-2013. This mission monitored continuously more than 150,000 stars
during four years. Kepler has detected more than 4,600 exoplanet candidates, from which
more than 2,300 have been confirmed/validated. Further details about the Kepler mission
are presented in Chapter 3.

The Kepler spacecraft suffered a serious breakdown in its navigational system in May
2013, which compromised the precise pointing of the telescope. This ended the nominal

exoplanets.org
https://www.aanda.org/component/toc/?task=topic&id=9
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mission. A new mission concept, called K2, continued the Kepler ’s search for other worlds,
albeit in a modified fashion (Howell et al., 2014, see also Chapter 3). K2 has provided more
than 300 new transiting exoplanets6. A significant fraction of K2 exoplanets discoveries
represent the core of this thesis and are described in Chapter 6.

Exoplanets discoveries from the CoRoT and Kepler/K2 space missions are shown in
the planet radius vs orbital period diagram in Figure 1.2. It is worth noting that space-
based missions have led to the discovery of thousands of planets with different radii,
ranging from Earth-size to inflated Jupiter-size planets.

Future exoplanet transit-search survey conducted with both ground-based (e.g., SPECU-
LOOS, Gillon et al., 2013), and space-based (e.g., TESS, PLATO, CHEOPS ; Ricker
et al., 2015; Rauer et al., 2014; Broeg et al., 2013) facilities will provide us with a wealth
of photometric time-series data sets with thousands new exoplanets.

1.5 Exoplanets’ properties

The detection of planets orbiting stars other than the Sun is a fascinating result by
itself. But discovery is just the first step to understand the nature of faraway worlds.
Therefore, after an exoplanet is discovered, the next step is to characterise its physical
properties. The radial velocity and transit methods provide planetary masses, radii,
and thus densities. The analysis of these parameters helps us to unveil the nature and
properties of exoplanetary systems (see, e.g., Winn & Fabrycky, 2015).

1.5.1 The mass-radius diagram

Exoplanet masses and radii are fundamental quantities in order to understand their na-
ture. However, out of the almost 4000 exoplanets discovered so far, only 521 have both,
mass and radius measurements with a precision better than 50 per cent. Figure 1.3 shows
the mass-radius diagram for such planets (source: TEPCat, www.astro.keele.ac.uk/
jkt/tepcat/, as of Sept. 07, 2018; Southworth, 2011).

The first thing we note in the mass-radius diagram is that planets are clustered in
different region of the diagram, each region separated by a transition point. Planetary
masses and radii seem to follow different relations (with different dispersion). Hatzes &
Rauer (2015) found a transition in the mass-radius diagram at ≈ 0.3MJ, which separates
the exoplanet population in two classes: giant and low-mass planets. This division is
marked in Figure 1.3. Chen & Kipping (2017) studied this same break point with a more
robust statistical approach. They found that the break point happens at 0.41± 0.07MJ

(Figure 1.3). As Hatzes & Rauer (2015) and Chen & Kipping (2017) pointed out, this limit
has a physical origin caused by self-compression of the planet triggered by accumulation
of gas. According to planet formation theories, when a massive core forms, the planet
grows in radius as more gas is accreted. At some point, the planet mass is enough to
start self-compression. This stops the growth of the planet radius and accounts for the
almost-flat relation between mass and radius for Jovian planets (Figure 1.3).

In the low-mass regime of the mass-radius diagram (. 0.3MJ), a distinction between
terrain and volatile envelope planets was revealed once the sample of small planets with
mass and radius measurements increased. Weiss & Marcy (2014) found that, on average,
planets with radii below 1.5R⊕ increase in density with increasing radius. For planets with
radii above 1.5R⊕, the average planet density rapidly decreases with increasing radius,
indicating that these planets have a large fraction of volatiles by volume overlying a rocky
core. Chen & Kipping (2017) also studied this transition region with the same statistical

6As of Sept. 10, 2018, https://archive.stsci.edu/k2/published_planets.

www.astro.keele.ac.uk/jkt/tepcat/
www.astro.keele.ac.uk/jkt/tepcat/
https://archive.stsci.edu/k2/published_planets
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Figure 1.3: Mass-radius diagram for the 521 exoplanets whose masses and radii are known with a precision
better than 50%. The high-mass–low-mass planet division found by Hatzes & Rauer (2015) is shown with
a thick line. The self-compression and volatile envelope limits described by Chen & Kipping (2017) are
marked with a dot-dashed and dashed line, respectively. This figure was created with data retrieved from
www.astro.keele.ac.uk/jkt/tepcat/ as of Sept. 07, 2018.

approach that for the self-compression limit. They found that the transition to volatile
rich planets occurs at a mass transition point of 2.0± 0.7M⊕. Figure 1.3 shows this limit
for planets with volatile envelope.

The general picture that we have learned from the mass-radius diagram is that there
seems to be three kind of planets: Terrain or solid surface worlds, Neptunian planets with
volatile envelope, and H/He rich Jovian planets (Chen & Kipping, 2017).

1.5.2 Exoplanets’ internal composition

Masses and radii of exoplanets teach us about the general properties of faraway worlds.
Both quantities allows us to determine the planet bulk density – an important “ingridient”
needed to infer internal structure and composition of exoplanets. It is possible to infer
internal structure of exoplanets by comparing their masses and radii with theoretical
predictions that rely on composition models of multi-layer interior planets (Zeng et al.,
2016).

Zeng et al. (2016) created mass-radius relations of evolved multi-layer interior planets
which combine different fractions of iron (Fe), silicates (MgSiO3) and water (H2O). Fig-
ure 1.4 shows Zeng et al. (2016)’s composition models over-plotted on the mass-radius dia-
gram for small planets. The plot also displays small exoplanets (Mp < 10M⊕, Rp < 3R⊕)
whose masses and radii have been measured with a precision of at least 20%. The inter-
nal compositions of planets can be inferred by comparison the with different theoretical
compositional models from Zeng et al. (2016). Figure 1.4 shows that planets with masses
Mp . 2M⊕ are rocky objects that seem to follow a tight mass-radius relation, albeit with

www.astro.keele.ac.uk/jkt/tepcat/
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slightly different mixture of silicates and iron. This tight mass-radius relation of low-mass
exoplanets was analysed previously by Dressing et al. (2015). They found that the best
fit to those planets follows a composition which consists of 17% iron and 83% silicates.
Zeng et al. (2016) used exoplanets with masses and radii measurements with precision
better than 30% to find that the iron/silicates ratio is 0.26± 0.07. Both results indicate
that exoplanets with masses Mp . 2M⊕ may be solid bodies with a thin atmosphere or
no volatile envelope at all. On the other hand, planets with masses Mp & 2M⊕ tend to
have different radii (Figure 1.4). Some of them fall on theoretical models rich in iron and
silicates, while others are better explained with models containing lighter materials. This
suggests that the latter might have volatile-rich envelopes.

Fortney et al. (2007) computed different planetary radii models for a wide range of
planet masses. Their models also considered the planet-star distance and the system age.
Figure 1.5 shows the mass-radius diagram for gas-giant planets (Mp > 0.3MJ) with semi-
major axes ∼0.1 AU, and mass and radius measurements with a precision better than
20%. The plot also displays Fortney et al. (2007) models for different core masses for
planets with semi-major axes of ∼0.1 AU in 4.5 Gyr old systems. The mass of the cores of
gaseous exoplanets can be inferred by comparing their positions with theoretical models
(see, e.g., Sect., 6.2).

The knowledge of the core’s mass can shed insights into the planet’s formation mech-
anism. Boley et al. (2016) suggested that massive cores (Mcore & 20M⊕) can be built
up from the merging of tightly packed inner planets formed at the early stages of the
circum-stellar disc. Huang et al. (2016) suggested that these cores can initiate runaway

www.astro.keele.ac.uk/jkt/tepcat/
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Figure 1.5: Mass-radius diagram for gas-giant planets (Mp > 0.3MJ) with semi-major axes ∼0.1 AU and
mass and radius measurements with a precision better than 20%. Dashed lines correspond to different
solid core masses (assuming semi-major axis of the orbit equal to 0.1 AU and a system age of 4.5 Gyr,
Fortney et al., 2007). This image was created with data downloaded from www.astro.keele.ac.uk/

jkt/tepcat/ as of Sept. 07, 2018.

accretion if they are formed in a region with enough gas around them, while those with-
out enough volatiles remain super-Earths and represent the population of massive rocky
planets unveiled by Kepler around solar-like stars (e.g., Demory, 2014).

In this section we have described some models that can be used to infer the properties
of planet interiors. We warn the reader that alternative models exist in the literature.

1.5.3 The radius gap and photo-evaporation

Using precise radii for 2024 Kepler planets with Porb < 100 d, Fulton et al. (2017) found
a deficit of objects with 1.5.Rp . 2R⊕. This gap divides close-in small planets into
two distinct classes: one population comprises planets with Rp . 1.5R⊕, the other sub-
Neptunes with 2. Rp . 3.0R⊕. Theoretical models suggest that the observed gap might
be due to photo-evaporation (e.g., Lopez & Fortney, 2014; Owen & Wu, 2013). According
to these models, close-in (a. 0.1 AU) planets in the sub-Neptunes regime would lose their
atmosphere within a few hundred Myr due to the intense level of photo-ionising radiation
from their host stars, forming bare rocky cores.

Van Eylen et al. (2018a) revised the presence, location, and shape of such a valley
using a small sample of exoplanets transiting stars with highly accurate stellar parameters
determined from asteroseismology. They also detected a clear bimodal distribution, with
super-Earths (Rp = 1.5R⊕) and sub-Neptunes (Rp = 1.5R⊕) separated by a deficiency
around 2R⊕. They found that the valley is characterised as a power law R ∝ P γ with
γ ≈ −0.09. The negative slope further suggests that photo-evaporation is the main
mechanism behind the radius gap.

www.astro.keele.ac.uk/jkt/tepcat/
www.astro.keele.ac.uk/jkt/tepcat/
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1.6 Objective of this thesis

Space-based transit surveys have given us ground-breaking new insights into the demo-
graphics of exoplanets in our Galaxy. Kepler has unveiled a cornucopia of small planets
that have no counterpart in the Solar System. About 25 % of Sun-like stars in our galaxy
host super-Earths (Rp=1-2 R⊕, Mp=1-10 M⊕) and sub-Neptunes (Rp=2-4 R⊕, Mp=10-
40 M⊕) with orbital periods shorter than 100 days (Batalha et al., 2013; Marcy et al.,
2014; Mulders et al., 2016; Silburt et al., 2015). Although the superb photometry of
Kepler has given us access to the small-radius domain, our knowledge on the composi-
tion of super-Earths and sub-Neptunes is still quite limited. Mass determinations with
a precision (better than 20–25 %) that allows us to distinguish between different inter-
nal compositions have been possible only for a few dozen super-Earths and Neptunes.
This is because of the small RV variation induced by such planets and the faintness of
most of Kepler host stars (V> 13 mag). Precise masses and mean densities are especially
important for small planets, since a wide diversity of compositions are possible a priori.

The Kepler -K2 mission is a unique opportunity to gain knowledge on small close-in
planets. K2 observes stars that are on average 3 magnitudes brighter than
those targeted by the original Kepler mission. The opportunity for exoplanetary
science is terrific! K2 allows us to detect close-in (a≤0.1 AU) super-Earth- and Neptune-
size transiting planets around bright stars, a definitive advantage for any RV follow-up.

By focusing on bright K2 stars (V < 13 mag), and by combining the exquisite transit
space-borne photometry form K2 with high-precision RV measurements (1 m s−1), we
now want to tackle ambitious planet detections. The main objective of this thesis is to
characterise in terms of mass, radius, and bulk density transiting exoplanets
discovered by the K2 space mission around bright stars. The main object
is to infer their internal structure and composition, gaining precious insights
into their formation and evolution.

We focus on the RV follow-up of bright (V < 13 mag) stars observed by K2. We do
this using state-of-the-art high-precision spectrographs around the world. This allows us
to estimate planetary masses with a precision better than (< 20 − 25%). We want to
address the following key questions at the frontier of exoplanet science:

• What are the composition and structure of exoplanets?

• Do exoplanets migrate or form in situ?

• Do exoplanets in multi-planet system share the same composition?

• What is behind the so-called “small planet radius gap”?

The specific goals we want to achieve are:

• To carry-out Doppler follow-up observations of K2 planet candidates.

• To develop a robust data analysis tool that is able to deal with any exoplanetary
system configuration and architecture, handling large amounts of transit and RV
time-series data.

• To perform a joint data analysis once the K2 and RV data have been acquired.

• To report the discoveries in high-impact factor, peer-reviewed journals.
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1.7 Contents

This thesis is divided as follows:

1. Chapter 2 is devoted to the theoretical derivation of the RV and transit equations.
Those equations are needed to model the RV and transit data, and infer the planetary
system parameters. We begin with the solution of the two-body problem to introduce
orbital motion. We proceed with the description of the planetary motion in three
dimensions, as observed by a faraway observer. We show how the projections of a
three-dimensional orbit lead to the RV and transit equations. We also describe the
generalisation for multi-planet systems.

2. Details about space-borne, time-series photometry are given in Chapter 3. We first
briefly describe the challenges on transit detection and describe the different param-
eter spaces probed by ground- and space-based surveys. We continue describing the
general aspects of the Kepler mission, and later introduce the K2 mission.

3. Chapter 4 provides the technical details about the RV method. The chapter starts
with a description of the technique and provides an overview of the difficulties of the
method. We then describe the general aspects about high-precision spectrographs.
The chapter continues with the description of observations carried out using different
spectrographs as part of the work presented in this thesis.

4. The data analysis methods used in this thesis are described in Chapter 5. Basic
concepts about Bayesian statistics are handled at the beginning of the chapter. We
then follow with a description of the Markov chain Monte Carlo technique used to
estimate posterior distributions with emphasis on the ensemble sampler algorithm.
After this, we describe the code pyaneti, a fast, powerful, and robust software suite,
which combines transit and RV equations to infer exoplanet parameters. This code
was developed during the course of the work here presented and is freely available
to the community.

5. Chapter 6 presents the results obtained in this thesis. They consist on the charac-
terisation of significant number of exoplanets revealed by K2 in different campaigns.

6. Chapter 7 summarises the main results and conclusions of this work.
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CHAPTER 2

RADIAL VELOCITY AND TRANSIT
EQUATIONS

I deduced that the forces which keep the planets in their orbs must [be] reciprocally as the
squares of their distances from the centres about which they revolve: and thereby compared
the force requisite to keep the Moon in her Orb with the force of gravity at the surface of
the Earth; and found them answer pretty nearly. Issac Newton (see the English translation
of Isaac Newton’s Principia by Cohen et al., 1999).

2.1 Orbital motion

The motion of a planet around a star is a natural consequence of gravity1. According
to Newton’s universal law of gravitation, the attraction between two bodies is directly
proportional to the product of their masses m1 and m2 and inversely proportional to the
square of the distance r between their centres. The magnitude of this force is given by

F = − Gm1m2

r2
, (2.1)

where G = 6.67428× 10−11m3 kg−1 s−2 (Prša et al., 2016) is the universal gravitational
constant.

Let us consider the motion of two masses m1 (the star) and m2 (the planet) with
position vectors r1 and r2 referred to an inertial frame whose origin is the point O. This
configuration is displayed in Figure 2.1. The relative motion of the planet with respect to
the star is given by the vector r = r2 − r1. By following Newton’s second law of motion,
the gravitational forces acting on both bodies are

F1 = m1r̈1 = +
Gm1m2

r3
r, (2.2)

and

1In this thesis we follow the derivation of the orbital motion described by Murray & Correia (2010).

15
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r1

r2

r

m1

m2F1

F2

O

star

planet

Figure 2.1: Diagram of forces acting on a star (m1) and on a planet (m2) with position vectors r1 and
r2, respectively. (from Murray & Correia, 2010).

F2 = m2r̈2 = −Gm1m2

r3
r. (2.3)

Now let us consider the motion of the planet (m2) with respect to the star (m1).
We can combine equations (2.2) and (2.3) to write an equation for the relative motion
acceleration r̈ = r̈2 − r̈1 as

r̈ + G (m1 +m2)
r

r3
= 0. (2.4)

This is the equation of relative motion. In order to solve it and find the path of m2

relative to m1 we must first derive the constants of the motion. If we compute the vector
product of r with equation (2.4), we obtain

r×
(
r̈ + G (m1 +m2)

r

r3

)
= r× r̈ = 0, (2.5)

since r× r = 0. We can now integrate equation (2.5) with respect to time to have

r× ṙ = h, (2.6)

where h is a constant vector which is simultaneously perpendicular to both r and ṙ.
Therefore the motion of the planet with respect to the star lies in a plane (hereafter called
“the orbit plane”) perpendicular to the direction defined by h. This also implies that the
position and velocity vectors always lie in the same plane. Equation (2.6) is commonly
referred to as the angular momentum integral and h is a constant quantity of the two
body problem.

Since r and ṙ always lie in the same plane (the orbit plane) it is natural that we now
restrict ourselves to considering motion in that plane. In order to describe the relative
motion of the planet with respect to an origin centred on the star, we will use the polar
coordinate system (r, θ) with an arbitrary reference line corresponding to θ = 0. The polar
coordinates r and θ are related to the Cartesian coordinates x and y from equations:

x = r cos θ and y = r sin θ. (2.7)

Given that vectors are invariant under coordinate transformations, we can calculate r,
ṙ, r̈ using the transformation

xi =
dxi

dxj
xj. (2.8)
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By combining Eq. (2.7) with Eq. (2.8), the position r, velocity ṙ, and acceleration r̈
vectors can be written in polar coordinates as

r = rr̂, (2.9)

ṙ = ṙr̂ + rθ̇θ̂, (2.10)

r̈ = (r̈ − rθ̇2)r̂ +

[
1

r

d

dt

(
r2θ̇
)]

θ̂, (2.11)

where r̂ and θ̂ denote unit vectors along and perpendicular to the radius vector, re-
spectively. By combining Eqs (2.9) and (2.11) with Eq. (2.4) we have

(r̈ − rθ̇2)r̂ +

[
1

r

d

dt

(
r2θ̇
)]

θ̂ + G (m1 +m2)
r

r3
r̂ = 0. (2.12)

In order to solve Eq. (2.12) we need to separate its r̂ and θ̂ components. If we substitute
Eqs. (2.9) and (2.10) in Eq. (2.6) we obtain

h = r× ṙ = r2θ̇ẑ, (2.13)

where ẑ is a unit vector perpendicular to the orbital plane forming a right-handed
triad with r̂ and θ̂. Following Eqs. (2.6) and (2.13), the magnitude of the vector h is a

constant of the motion given by h = r2θ̇. The derivative of h appears in the θ̂ component
in Eq. (2.12). This implies that the θ̂ component in Eq. (2.12) has to be zero. Therefore
the orbital motion is described by the following equation

(r̈ − rθ̇2) = −G (m1 +m2)
1

r2
. (2.14)

Equation (2.14) can be solved following the procedure described by Murray & Correia
(2010). If we define u = 1/r, we can rewrite r̈ as

r̈ = −(r2θ̇)2u2 d2u

dθ2
= −h2u2 d2u

dθ2
, (2.15)

where h = r2θ̇. This allows us to rewrite Eq. (2.14) as

d2u

dθ2
+ u =

G(m1 +m2)

h2
. (2.16)

Equation (2.16) is called Binet’s equation. Its general solution is

u =
G(m1 +m2)

h2
[1 + e cos (θ −$)] , (2.17)

where e and $ are two constants of integration. If we rewrite Eq. (2.17) in terms of r,
we have

r =
h2

G(m1 +m2)

1

1 + e cos (θ −$)
. (2.18)

Equation (2.18) defines the relative orbital motion of the planet in the two body prob-
lem in function of the polar coordinates r and θ. In order to understand the implication
of Eq. (2.18) on the shape of the orbit, we define the quantity p as
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p ≡ h2

G(m1 +m2)
, (2.19)

to rewrite Eq. (2.18) as

r =
p

1 + e cos(θ −$)
. (2.20)

Equation (2.20) is equivalent to Eq. (2.18) but it is written following the general equa-
tion of a conic section curve in polar coordinates. For this set of curves, the variable
e is called eccentricity and p is the semi-latus rectum. If e = 0 the curve is a circle, if
0 < e < 1 an ellipse, if e = 1 a parabola, and if e > 1 a hyperbola. For planetary systems,
we are interested in cases where the planet and star are gravitationally bound, i.e., the
orbit is closed (e < 1). Consequently, throughout this thesis we concentrate on elliptical
motion. In this case the semi-latus rectum relates with the ellipse properties as

p = a(1− e2), (2.21)

where the constant a is the semi-major axis of the ellipse (see Fig. 2.2). We can now
use Eq. (2.21) to rewrite r in terms of the orbital geometry as

r =
a (1− e2)

1 + e cos(θ −$)
. (2.22)

In celestial mechanics it is customary to use the term longitude when referring to any
angle that is measured with respect to an arbitrary reference line fixed in inertial space.
The angle θ – called the true longitude – is the angle on the orbital plane between the
reference line and the planet’s position. The angle $ is called the longitude of periastron.
It is defined as the angle on the orbital plane between the reference line and the periastron,
i.e., the point of closest approach between the two orbiting bodies2. It is usually more
convenient to refer the angular coordinate to the periastron rather than to the arbitrary
reference line. This leads to the introduction of the angle ν ≡ θ−$ (see Fig. 2.2), which
is called the true anomaly3. Equation (2.20) can now be rewritten as

r = a
(1− e2)

1 + e cos ν
. (2.23)

2.1.1 Kepler’s laws

For a gravitationally bound system, Eq. (2.23) describes the relative orbit of a planet
about a star, with the latter occupying one of the two foci of the ellipse. Kepler’s first
law of planetary motion, i.e., the planets move in ellipses with the Sun at one focus, is
a consequence of the inverse square law of the gravitational force. Figure 2.2 show a
diagram of the elliptical orbit of the planet.

Let us consider the motion of the mass m2 during the time interval dt. The areal
velocity Ȧ, i.e., the area dA swept out by the radius vector r in time dt, is given by

Ȧ ≡ dA

dt
=

1

dt

∫ r

0

rdrdθ (2.24)

2Analogously, the apoastron is defined as the orbital point of greatest separation between the star and the planet. The
orbital radius at periastron and apoastron are rp = a(1− e) and ra = a(1 + e), respectively.

3The periastron is at ν = 0, wheres the apoastron is at ν = π.
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ν

ν

Figure 2.2: The geometry of the ellipse of semi-major axis a, semi-minor axis b, eccentricity e and
longitude of periapse $ (from Murray & Correia, 2010) .

If we integrate Eq. (2.24) with respect to r and use h = r2θ̇, we have

Ȧ =
1

2
r2θ̇ =

1

2
h. (2.25)

Since h is a constant this implies that equal areas are swept out in equal times and
hence Eq. (2.25) is the mathematical form of Kepler’s second law of planetary motion: a
radius vector from the Sun to a planet sweeps out equal areas in equal times. Note that
this does not require an inverse square law of force, but only that the force is directed
along the line joining the two masses.

We have demonstrated that, for a bound system, the planet orbits the star in a closed
orbit. We thus expect a periodicity in the planetary motion. Based on Eq. (2.23), the
planet occupies the same position after the radius vector r has turned through an angle of
2π. The time P needed by the planet to complete a full orbit is called the orbital period.
By integrating Eq. (2.25) over the orbital period P we obtain

A =
1

2
hP. (2.26)

where A is the area enclosed by the ellipse. We know that the area of an ellipse is also
given by A = πab, where the semi-minor axis b is related to the semi-major axis a and
the eccentricity e through b2 = a2(1− e2). If we combine this with Eq. (2.21) we obtain

A2 =
1

4
h2P 2 = π2a4

(
1− e2

)
. (2.27)

If we combine Eq. (2.19) with Eq. (2.27) we derive

P 2 =
4π2

G(m1 +m2)
a3. (2.28)
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Equation (2.28) gives a relation between the orbital period P and the semi-major axis
a of the orbit. Note that P is independent of e and is a function of the sum of the two
masses m1 +m2 and the semi-major axis a only.

In the case of planets orbiting their host star, we have m2 � m1 and m1 + m2 ≈ m1.
The term (4π2)/ (Gm1) is therefore constant, implying that for any orbiting planet, the
square of the orbital period P 2 is directly proportional to the cube of the semi-major axis
a3, which corresponds to Kepler’s third law of planetary motion.

2.1.2 Orbital position as a function of time

In the previous sections we solved the equation of motion of the two-body problem to
describe the path of the planet with respect to the star. We showed that, given the value
of the true anomaly ν, we can calculate the orbital radius r of the planet provided that
we know the eccentricity e and the semi-major axis a of its orbit. However, in practice we
usually want to calculate the location of the planet as function of time and our solution
to the two-body problem (Eq. 2.23) does not contain the time explicitly.

In order to describe the planetary orbit as function of time we need two complementary
angles4 called the eccentric anomaly ε and the mean anomaly µ. The true and eccentric
anomalies are related as

ν = 2 arctan

[√
1 + e

1− e
tan
( ε

2

)]
, (2.29)

whereas the eccentric anomaly relates to the mean anomaly µ as

µ = ε− e sin(ε). (2.30)

The explicit dependence on time t is given by the mean anomaly definition

µ =
2π

P
(t− Tp) . (2.31)

Equation (2.31) depends explicitly on time t and on a given “zero time” Tp. Following
the definition of ν, this “zero time” has to be the time of periastron passage. The true
anomaly can then be obtained in terms of t by solving Eqs. (2.31), (2.30), and (2.29). In
this way we can obtain the orbit position as function of time. We note that Eq. (2.30) can-
not be solved analytically for cases where e 6= 0. We have to use either series expansions,
or iterative methods (e.g., Newton-Raphson).

In the case of a circular orbit, i.e., e = 0, the problem simplifies. The true anomaly
can be obtained directly as

ν =
2π

P
(t− Tp) . (2.32)

However, for this case Tp remains undefined because any point along the orbit can be
used to define a “zero time”. The time of the planet minimum conjunction T0 is commonly
adopted for circular orbits5.

4The derivation of the relations between these angles is out of the scope of the present work. We refer the reader to
Murray & Dermott (2000) for details.

5The time of planet minimum (or inferior) conjunction T0 occurs when the planet passes between the observer and the
reference star



2.1. ORBITAL MOTION 21

periapse
reference

plane

reference
direction

ascending
node

orbit

x

y

z

X

Y

Z

i

Ω ω

Figure 2.3: The relationship between the (x,y,z) and (X,Y,Z) coordinate systems and the angles ω, i
and Ω (from Murray & Correia, 2010).

2.1.3 Orbit in three-dimensions

Let us define a three-dimensional coordinate system (x, y, z) centered on the star. The
x-axis lies along the major (long) axis of the ellipse in the direction of periapse, the y-axis
is perpendicular to the x-axis and lies in the orbital plane, while the z-axis is mutually
perpendicular to both the x- and y-axes forming a right-handed triad (Fig. 2.3). By
definition the orbital motion is confined to the x-y plane. The planet’s position vector is
given by

r = (x, y, 0) = x x̂ + y ŷ + 0 ẑ (2.33)

where x̂, ŷ, and ẑ are three orthogonal unit vectors.
Let us consider now a second standard coordinate system centered on the star where

the direction of the reference line in the reference plane forms the X-axis. The Y-axis is
in the reference plane at right-angles to the X-axis, while the Z-axis is perpendicular to
both the X- and Y-axes forming a right-handed triad. (Fig. 2.3).

The orbital plane does not have a preferred projection and intersects the reference plane
X-Y in a line called line of nodes. The orbit crosses the line of nodes in two points, the
ascending and descending nodes. They are the points where the planet goes from below
to above and from above to below the reference plane X-Y, respectively. The longitude of
ascending node Ω is the angle in the reference plane X-Y between the reference line of the
XYZ system and the radius vector from the star to the ascending node. The argument
of periapse ω is the angle on the orbital plane between this same radius vector and the
periapse of the orbit. The orbit inclination i the angle between the reference plane X-Y
and orbital plane. The inclination is always in the range 0 ≤ i ≤ 180◦. An orbit is said
to be prograde if i < 90◦, while if i ≥ 90◦ the motion is said to be retrograde. Figure 2.3
shows the ascending node, the three angles (Ω, ω and i), the reference plane X-Y, and the
reference direction X.

It is clear that coordinates in the (x, y, z) system can be expressed in terms of the
(X, Y, Z) system by means of a series of three rotations: (i) a rotation about the z-axis
through an angle ω so that the x-axis coincides with the line of nodes, (ii) a rotation
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about the x-axis through an angle i so that the two planes are coincident and finally (iii)
a rotation about the z-axis through an angle Ω. This is written in a matrix form as

XY
Z

 =

cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1

1 0 0
0 cos i − sin i
0 sin i cos i

cosω − sinω 0
sinω cosω 0

0 0 1

xy
z

 . (2.34)

Simplifying equation (2.34) and using the Cartesian form of the orbit solution (x =
r cos ν, y = r sin ν), the coordinates on the reference frame are

X = r [cos Ω cos(ν + ω)− sin Ω sin(ν + ω) cos i] , (2.35)

Y = r [sin Ω cos(ν + ω) + cos Ω sin(ν + ω) cos i] , (2.36)

Z = r sin(ν + ω) sin i. (2.37)

The reference plane X-Y is usually taken to be the plane of the sky perpendicular to
the line of sight, with the Z-axis oriented towards the observer. The reference X axis is
usually oriented towards the celestial North pole. For this case we do not have a preferred
direction and for concreteness we can assume Ω = π. Equations (2.35), (2.36) and (2.37)
can thus be rewritten as

X = −r cos(ν + ω), (2.38)

Y = −r sin(ν + ω) cos i, (2.39)

Z = r sin(ν + ω) sin i. (2.40)

Equations (2.38), (2.39) and (2.40) form the basis to describe the orbital motion in the
two-body system as seen from Earth.

2.1.4 Barycentric motion

In order to determine the observable effects of an orbiting planet on a star it helps if we
consider the motion in the centre of mass or barycentric system (see Fig. 2.4). For a given
inertial frame centred in O, the position vector of the centre of mass of the system is

R =
m1r1 +m2r2

m1 +m2

. (2.41)

By combining equations (2.2) and (2.3) we have

R̈ = r̈(m1 +m2) = 0. (2.42)

If we integrate equation (2.42) with respect to time, we see that the velocity of the

centre of mass is constant, i.e., Ṙ = V = constant. This implies that either the centre
of mass is stationary (the case when V = 0), or it is moving with a constant velocity
(the case when V 6= 0) in a straight line with respect to the origin O. Then, if we define
R1 = r1 −R and R2 = r2 −R, we have

m1R1 +m2R2 = 0. (2.43)

This implies that R1 is always in the opposite direction to R2, and hence that the
barycentre is always on the line joining the two bodies m1 and m2. By definition the sum
of the magnitudes of the vectors R1 and R2, namely R1 and R2, has to satisfy
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Figure 2.4: The position vectors of star and planet with respect to the origin, O, and with respect to the
centre of mass of the star- planet system, O′ (from Murray & Correia, 2010).

R1 +R2 = r, (2.44)

where r is the separation between the masses m1 and m2. From Eq. (2.43) we know
that the distances of the star and planet from their common centre of mass are related
by m1R1 = −m2R2. Hence

R1 =
m2

m1 +m2

r, (2.45)

and

R2 = − m1

m1 +m2

r, (2.46)

which are the positions of the two bodies with respect to the barycentre. We note that
equations (2.45) and (2.46) depend linearly on r. Therefore each object will orbit the
barycentre of the system in an ellipse with the same eccentricity but the semi-major axes
is reduced in scale by a factor

a1 =
m2

m1 +m2

a, (2.47)

and

a2 =
m1

m1 +m2

a, (2.48)

The orbital periods of the two masses must each be equal to the period P , although the
semi-major axes are not. Each mass then moves on its own elliptical orbit with respect to
the common centre of mass, and the periapses of their orbits differ by π (i.e., the argument
of periapse of the star is ω? = ωp +π, where ωp is the argument of periapse of the planet).

2.2 Radial velocity equations

Since R1 = r1−R (Sect. 2.1.4), the position vector of the star r1 from the observer in O
is
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Figure 2.5: The relation between the star’s velocity around the centre of mass, ṙ, and its radial component
along the line of sight, vr (from Murray & Correia, 2010).

r1 = R + R1. (2.49)

The velocity of the star as seen by the observer is then obtained by deriving Eq. (2.49)
with respect to time, i.e., ṙ1. The stellar velocity vector has three components along the
three axis X, Y, and Z. We remember that our reference plane X-Y is the plane of the sky
perpendicular to the line of sight (i.e., the plane tangential to the celestial sphere at the
centre of mass position), with the Z-axis oriented towards the observer. The projection of
the star velocity in the X-Y plane generates changes of position in the sky-plane, which can
be measured with astrometry techniques (e.g., Benedict et al., 2002). The Z-component
of the velocity vector, i.e., the component along the line of sight to the star, causes a
Doppler shift of the stellar light, which can be measured with spectroscopic techniques
(see Chapter 4). We will now derive the analytical expression of the Z-component of the
star’s velocity vr, also known as radial velocity (RV). Figure 2.5 shows a scheme of the
relation between the star’s velocity around the barycentre and vr. Since r1 = R+R1 this
gives

vr = ṙ1 · Ẑ = vz +
m1

m1 +m2

Ż, (2.50)

where vz = Ṙ · Ẑ is the proper motion of the barycentre along the line of sight and the
term Ż is calculated from Eq. (2.40) as

Ż = sin i [ṙ sin(ν + ω?) + rν̇ cos(ν + ω?)] , (2.51)

where ω? = ωp + π is the argument of periastron of the stellar orbit. In order to
eliminate the dependence on ṙ and ν̇, we first calculate the time derivative of Eq. (2.23)

ṙ = a1e
1− e2

(1 + e cos ν)2
sin νν̇ = r

e sin ν

1 + e cos ν
ν̇. (2.52)
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If we combine Eqs. (2.26) and (2.27) and given that h = r2θ̇ and θ̇ = ν̇, we have(
1

2
r2ν̇P

)2

= π2a4
1

(
1− e2

)
. (2.53)

Simplifying Eq. (2.53) we get

rν̇ = 2π
a2

1

√
1− e2

rP
, (2.54)

and using Eq. (2.54) in Eq. (2.52) we obtain

ṙ =
2πa1e sin ν

P
√

1− e2
. (2.55)

We now use Eq. (2.23) in Eq. (2.54)

rν̇ =
2πa1(1 + e cos ν)

P
√

1− e2
. (2.56)

If we combine Eqs. (2.55) and (2.56) with Eq. (2.51), we have

Ż = sin i
2πa1

P
√

1− e2
[e sin ν sin(ν + ω?) + (1 + e cos ν) cos(ν + ω?)] . (2.57)

Simplifying Eq. (2.57), we can rewrite Eq. (2.50) as

vr = vz +K [cos(ν + ω?) + e cosω?] (2.58)

where

K ≡ m2

m1 +m2

2π a1

P
√

1− e2
sin i, (2.59)

is called the RV semi-amplitude. Equations (2.58) and (2.59) give the RV of the star
in terms of the parameters that we presented in the previous sections, namely, the two
masses m1 and m2, the orbital period P , the eccentricity e, the orbit inclination i, and
the semi-major axis of the stellar orbit a1.

The curve that shows how the stellar velocity along the line of sight changes over time
as the star orbits around the centre of mass is called radial velocity curve. Figure 2.6
shows different RV curves for different values of ω? and e. The RV is plotted as a function
of the orbital phase, which is defined as (t− T0)/P , where 0 ≤ t ≤ P and T0 is the time
of minimum conjunction of the planet.

2.2.1 Multi-planet case

We demonstrated that the change of the stellar velocity component along the line of sight
to the host star, induced by the presence of the orbiting planet, is described by Eq. (2.58).
However, a planetary system may contain more than one planet orbiting the star. It is
well known that for cases where more than two bodies interact gravitationally, there is no
analytical solution. In such cases, numerical integration are needed.

In special cases where there is a gravitational dominating body (the star) being orbited
by a given number Np of minor bodies (the planets), the gravitational interaction between
the low mass bodies can be neglected. Therefore, the Doppler reflex motion induced by
each small mass can be solved independently using the equations derived for the two body
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Figure 2.6: Radial velocity curves for different values of e and ω?. The barycentric velocity vz is fixed to
zero. The plase is defined as (t− T0)/P , where 0 ≤ t ≤ P and T0 is the time of minimum conjunction of
the planet.

problem, by using a Keplerian orbit for each planet. By following this approximation, if
a star is orbited by Np planets the general expression for Eq. (2.58) is then

vr = vz +

Np∑
j=1

Kj [cos(νj + ω?,j) + ej cosω?,j] , (2.60)

where each planet j has its own set of parameters T0,j, Pj, ej, ω?,j, Kj. The term γi
depends on the spectrograph i and accounts for possible instrumental offsets. We show
in Fig. 2.7 an example of the RV curve computed with Eq. (2.60) for a star orbited by
three planets.

2.2.2 Planet mass

The RV semi-amplitude K can be determined from RV measurements. Equation (2.59) re-
lates K with the orbital elements and the masses of both bodies. If we combine Eq. (2.28)
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Figure 2.7: Synthetic RV curve of a star orbited by three planets (thick black line), and RV curves of the
individual components (dashed lines). The three orbits have different parameters. The total RV curve is
the sum of the three RV curves.

with Eq. (2.59) we can eliminate a from Eq. (2.59) to get

K =

(
2πG

P

)1/3
m2

(m2 +m1)2/3

1

(1− e2)1/2
sin i. (2.61)

Equation (2.61) depends on the orbit inclination i, which cannot be determined from
RV observations. If we can measure the stellar mass with an independent method – such
as spectroscopy or astereoseismology – Eq. (2.61) provides the planet mass multiplied by
sin i, also known as the planet minimum mass. In order to determine the planet true
mass, we need to measure the orbit inclination using complemetary methods, such as the
transit method (see Sect. 2.3).

Given that Eq. (2.61) is transcendental in terms of m2, there are two approaches to
calculate the planet minimum mass. Since m1 � m2, we can assume that m1 +m2 ≈ m1.
This gives

m2 sin i ≈ K

(
2πG

P

)−1/3

m
2/3
1

(
1− e2

)1/2
. (2.62)

Equation (2.62) can be used to estimate m2 sin i directly but it fails when m2 gets
comparable with m1. We can also define the function

f(m2) =

(
2πG

P

)1/3
m2

(m2 +m1)2/3

1

(1− e2)1/2
sin i−K, (2.63)

We can then solve Eq. (2.63) numerically using iterative methods to find the solution
for m2. This approach does not fail when m2 increases.

2.3 Transit equations

In Section 1.4.2 we described how the presence of a planet orbiting its host star can
be inferred by detecting the periodic drops of stellar flux observed when the planet is
transiting its host star. An useful quantity to describe planetary transits is the projected
distance in the sky (plane X-Y) between the planet and star centres. If we combine
equations (2.23), (2.39), and (2.38), this distance is written as
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d =
√
X2 + Y 2 =

√
r2 cos2(ν + ω?) + r2 sin2(ν + ω?) cos2 i. (2.64)

We note that d depends on the true anomaly ν(t), which in turn is a function of time
according to Eqs. (2.29), (2.30), and (2.31). Following Eastman et al. (2013), we define
the projected distance δ using the argument of periastron of the star ω? instead of the
argument of periastron of the planet ωp. Following the definition of r given in Eq. (2.23),
we can now define the scaled projected distance as the ratio of the distance d and the
stellar radius R?, as6

δ =
a

R?

1− e2

1 + e cos ν

√
1− sin2(ν + ω?) sin2 i. (2.65)

If we define

rp ≡
Rp

R?

, (2.66)

as the planet-to-star radius ratio, from equation (2.65), the transit of an exoplanet
occurs only when δ < 1 + rp and sin (ν + ω?) > 0 (star behind the planet). On the other
hand, the planet’s occultation – also known as secondary eclipse – occurs if δ < 1 + rp

and sin (ν + ω?) < 0 (planet behind the star).
In order to analytically describe how the total flux F (t) changes as a function of time

due to the presence of a transiting planet, we need to account for the disc-integrated
stellar flux F?(t), the planet flux Fp(t) (both, reflected light and thermal emission), and
the loss of light when transits/occulations occur λ(δ, rp). The total flux F (t) is given by

F (t) = F?(t) + Fp(t)− λ(δ, rp). (2.67)

We will assume that the stellar flux F?(t) is constant and equal to 1, and that any
variation can be expressed as a fraction of the stellar light. We also assume that the planet
contribution to the light curve is negligible (Fp = 0), i.e., we assume that occulations
and phase curve have no effect on the observed light curve. Under these assumptions,
Eq. (2.67) can be re-written as

F (t) = 1− λ(δ, rp). (2.68)

By definition λ = 0 when δ > 1 + rp. For cases where δ < 1 + rp, the change of light
depends on the analytical form of λ, which accounts for the loss of light as the planet
crosses the stellar disc. There are different approaches to define the analytical form of
λ(δ, rp).

2.3.1 Star as an uniform source of light

To a first approximation, we can think of the star as an uniform source of light (Seager
& Mallén-Ornelas, 2003). The stellar flux is described by a constant function I = I0. For
this case, an analytic instructive model solution for λ is (Mandel & Agol, 2002)

λ(δ, rp) =


0 : δ > 1 + rp

1
π

[
r2

pκ0 + κ1 −

√
4δ2−(1+δ2−r2

p)
2

4

]
: 1− rp < δ < 1 + rp

r2
p : δ < 1− rp

, (2.69)

6The semi-major axis of the relative orbit is defined as a = a1 + a2, where a2 and a2 are respectively the semi-major
axes of the planet’s and star’s orbit with respect to the centre of mass.
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Figure 2.8: Synthetic transit light curves for a star assumed an uniform source of light. Transits were
calculated for planets with radii of 10% (red, λ(δ, 0.1)), 5% (green, λ(δ, 0.05)) and 1% (blue, λ(δ, 0.01))
the stellar radius.

where κ0 = cos−1
[
(r2

p + δ2 − 1)/(2rpδ)
]

and κ1 = cos−1
[
(1− r2

p + δ2)/(2δ)
]
. Let us

examine Eq. (2.69) to infer the main properties of a transit. First, when the planet does
not occult the stellar disc (δ > 1+rp) there is no light decrease. Second, during the transit
ingress and egress (1 − rp < δ < 1 + rp), the light decreases and increases continuously.
Third, once the planet’s disc is entirely in front of the stellar disc (δ < 1 − rp), the loss
of flux is constant and equal to the planet-to-star area ratio, r2

p = (Rp/R?)
2. Figure 2.8

shows the stellar flux for different values of rp as function of δ.

2.3.2 Star as a non-uniform source of light

Real stellar discs are not uniform sources of light. Variations in temperature and opacity
make them look brighter in the centre and fainter at the edge (the limb), a phenomenon
known as limb darkening (see, e.g., Claret & Bloemen, 2011). This crucially affects the
shape of the transit signature a planet imprints in the observed stellar flux when passing
in front of its host star. For instance, the intensity of the occulted light does not remain
constant when δ < 1 − rp (i.e., when the planet is entirely in front of the stellar disc).
A larger flux decrease is observed when the planet transits close to the star centre than
near the edge.

To account for the effects of limb darkening, the intensity of the stellar disc I can be
parametrized by laws I = I(µ) which depend on µ = cos θ, where θ is the angle between
the line of sight and the normal to a given point of the stellar surface. Some of the most
widely used limb darkening laws in exoplanet transit light-curve fitting are given by linear,
logarithmic or exponential equations (see, e.g., Claret & Hauschildt, 2003; Espinoza &
Jordán, 2015). In this work we adopt the quadratic limb darkening model as described
by Mandel & Agol (2002).

2.3.3 Quadratic limb darkening model

The flux in the stellar disc can be parametrized as a quadratic function in terms of µ as
(see, e.g., Mandel & Agol, 2002)
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Figure 2.9: Theoretical light curves of a Sun-like star transited by a planet 10% its size. Different colours
show a different Johnson-Cousins’ filter.

I = 1− u1(1− µ)− u2(1− µ)2, (2.70)

where u1 and u2 are limb darkening coefficients constrained to u1 + u2 < 1. These
coefficients depend on the stellar type and wavelength. Following this approach, the light
curve function has the form

F = F (δ, rp, u1, u2), (2.71)

for a given wavelength bandpass. The parameters rp, u1 and u2 are different for different
bandpasses. The analytic solution for F is described in terms of complete elliptic integrals
of the third kind. This mathematical treatment is out of the scope of this thesis and we
refer the reader to Mandel & Agol (2002) for more details.

Figure 2.9 shows synthetic transit light curves at different wavelengths for a Jupiter-size
planet passing in front of a Sun-like star. The adopted bandpass correspond to those of
the U, B, V, R, U, J, H, and K Johnson-Cousins filters. The limb darkening coefficients
for each bandpass are extracted from Claret & Bloemen (2011). The adopted stellar
parameters are Teff = 5800 K, log(g) = 4.5 (cgs), and [Fe/H]=0.0 (dex). Note how a
“real” transit light curve does not have a flat bottom, as in the case of an uniform source
(cfr. Fig. 2.8). Note also how the effects of limb darkening are remarkably stronger at
shorter wavelengths (Claret & Bloemen, 2011).

2.3.4 Multiple transiting planets

Multi-planet systems exist and more than one planet may transit its host star (e.g.,
Gandolfi et al., 2017; Guenther et al., 2017; Gillon et al., 2017). For a system where there
are Np transiting planets, the relative flux of the star is

F (t) = 1−
Np∑
j=1

λj(δ, rp). (2.72)
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Figure 2.10: Synthetic light curve of a star with two exoplanets. Two different signals with different
depth and period are present in the light curve. A multi-transit event is observed at time 1.

According to eq. (2.72), F (t) = 1 if no planet transits the star; it reduces to the
one-transiting-planet case when there is a single planet crossing the stellar disc. Equa-
tion (2.72) takes also into account multi-planet transit events. We note that this approach
does not take into account occultations between planets that may occur.

Figure 2.10 shows an example of the flux computed with eq. (2.72) for a star with
two transiting exoplanets. From this figure we can see that the two planets have different
period and radii. A multiple transit event is visible for the second planet of the smaller
signal.

2.3.5 Planet radius and orbital parameters

Transits can reveal the presence of exoplanets orbiting stars. However, we can also learn
about the physical properties of them. In section 2.3.1 we discuss how the transit depth
is directly related with the planet-star ratio rp = Rp/R?. Therefore, we can estimate the
planet physical radius if we know the stellar size from an independent method, such as
spectroscopy or astereoseismology. Even in the non-uniform disc case, the planet radius
can be determined from the implemented limb darkening model.

Seager & Mallén-Ornelas (2003) showed that in the case of a planet in a circular orbit
around an uniform source, there exist analytic relations to obtain the orbital parameters
of the system. In a realistic case, in which limb darkening effects are present and the orbits
may not be circular, we can compare theoretical models with data to estimate system’s
parameters (See Chapter 5).

Equation (2.68) shows that the light dimming depends on the scaled projected distance
between the planet and star centres δ. This quantity depends on a/R?, e, ω, i and ν.
Observations are given as photometric time-series, for instance, the dependence on ν has
to be changed to the temporal parameters Tp and P . For a transiting planet, the time
of minimum conjunction is also the mid-transit time T0. Therefore, in transit analysis is
common to estimate T0 instead of the time of periastron Tp. They both are related via
the true anomaly as ν(T0) = ν(Tp) +π/2−ω?. If this planet has a Keplerian orbit, it will
cross T0 each period P . This implies that a time-series with multiple transits of the same
planet lead to a precise determination of T0 and P .

If we have a estimation of the stellar temperature T?, we can compute the planet
equilibrium temperature as

Teq = T? (1− α)1/4

√
R?

2a
, (2.73)
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where α is the planet albedo. We can also estimate the insolation received at the planet
as

Fp =

(
R?

R�

)2(
T?
T�

)4(
AU

a

)2

F⊕ (2.74)

where T� = 5772 K and R� = 6.957 × 108 m are Sun’s equilibrium temperature and
radius, respectively (Prša et al., 2016); a is the orbit semi-major axis in astronomical
units AU; and F⊕ is the insolation Flux received at Earth.

2.3.6 Stellar density from transits

Transits also provide the stellar mean density. If we divide Kepler’s third law (Eq. (2.28))
by the stellar volume V? = 4/3πR3

? we obtain

ρ? + r3
pρp =

3π

G

1

P 2

(
a

R?

)3

, (2.75)

where ρ? and ρp are the stellar and planetary densities, respectively. The term r3
p is

of the order of 10−3 for a Jupiter-size planet around a Sun-size star, and 10−6 for an
Earth-size planet around a Sun-like star. Therefore, we can assume that the second term
of the left-hand part of Eq. (2.75) is negligible. This gives

ρ? ≈
3π

G

1

P 2

(
a

R?

)3

. (2.76)

Equation (2.76) can be used as a diagnostic tool in photometric transit surveys given
that a planetary transit signal should yield a value of ρ? that is consistent with the
spectroscopically-derived stellar density (Winn, 2010). Alternatively, a high signal-to-
noise ratio transit light curve can be used to better constraint the fundamental parameters
of the host star (Sozzetti et al., 2007).

2.4 Science with transit light curve and radial velocity measure-
ments

The transit and RV methods are powerful tools to detect exoplanets. They also allow
us to estimate planetary and orbital parameters. When both methods are used together,
they provide valuable and unique information about planetary systems.

2.4.1 Planet surface gravity

If we have transit photometry and RV measurements, we are able to extract eight im-
portant parameters, namely, T0 (or Tp), P , e, ω? (or ω), rp = Rp/R?, a/R?, i and K. If
we combine these parameters, we can estimate the planet surface gravity as (Southworth
et al., 2007)

gp =
2π

P

√
1− e2K

R2
p/a

2 sin i
. (2.77)

The surface gravity can also be calculated as

gp =
Gm2

R2
p

, (2.78)
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where m2 and Rp are the planet mass and radius, respectively, calculated assuming a
given set of stellar parameters. We can compare the two estimates of the gravity derived
using equations (2.77) and (2.78) to verify that the stellar parameters have been correctly
derived (Southworth et al., 2007).

2.4.2 Planet’s true mass

In Sect. 2.2.2 we discussed how the RV method can provide only the planet’s minimum
mass (if the stellar mass is known). This is because the method does not allow us to
measure the inclination of the orbit with respect to the line of sight.

The orbit inclination is well constrained by the transit method. For systems for which
we have both RV and transit data, we can use the orbit inclination obtained from the
modeling of the transit to estimate the planet’s true mass.

2.4.3 Planet composition and structure

The transit method allows us to measure the planet’s radius. Doppler spectroscopy yields
the planet’s true mass if combined with the orbit inclination derived from the transit
modeling. The mass and radius can be used to derive the planet’s mean density. By
comparing the position of the planet on a mass-radius diagram with composition models,
we can infer the planet’s composition and internal structure (see Sect. 1.5.2).
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CHAPTER 3

K2 TIMES-SERIES PHOTOMETRY

A clear night gives us an instantaneous snapshot of the Universe. At first sight celestial
bodies seem immutable, but they are not. Their apparent immutability disappears if
we measure the intensity of their emitted or reflected light as a function of time. The
variability of their light – the so-called light curve – carries a wealth of precious information
about the physical phenomena happening in faraway astronomical bodies. In Sect. 1.4.2
we discussed how the periodic stellar flux drop caused by the passage of a planet in front
of the parent star can be used to detect “alien” worlds. In the following sections we will
describe the challenges of detecting planetary transits in stellar light curves. We will also
talk about the exquisite photometry of the space-based telescope Kepler.

3.1 Transits in stellar light curves

In order to detect transiting exoplanets in stellar light curves, two important “ingre-
dients” are needed: high-precision photometry and continuous observations (Cameron,
2016). The required photometric precision depends on the depth of the transit we want
to detect. Figure 3.1 displays the transit depth vs. the planet-to-star radius ratio for
different stellar radii. To detect a Jupiter-size planet transiting a Sun-size star, we need
a photometric precision of ≈ 1% (104 ppm; Fig. 3.1). This precision was only reached at
the end of the last century, when the first transit of the extrasolar planet HD 209458 b was
discovered (Henry et al., 1999; Charbonneau et al., 2000). The required photometric pre-
cision increases for Earth-size planets transiting Sun-size stars, for which a precision better
than 0.01% (100 ppm) is needed. The transit depth is inversely proportional to the square
of the stellar radius. A planet transiting a very late-type M dwarf star (R? ≈ 0.1R�)
produces a transit 100 times deeper than it would induce if it were transiting a G-type
star (R? ≈ 1R�).

For ground-based transit observations, the photometric precision is ultimately limited
by the Earth’s atmosphere. The best photometric precision achievable from the ground
is ∼0.1% (1000 ppm; Fig. 3.1), owing to the atmospheric transparency fluctuations and
scintillation noise (Cameron, 2016). Ground-based transit observations can easily detect
gas-giant planets transiting Sun-like stars, but cannot detect the signal caused by an
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Figure 3.1: Transit depth vs planet-to-star radius ratio. Limb darkening effects have been neglected.
The diagonal lines refer to different stellar radii (see the legend in the upper left corner). The vertical
dashed and dash-dotted lines refer to the Earth’s and Jupiter’s size, respectively. The black horizontal
line marks the best photometric precision (1000 ppm; 0.1%) achievable from the ground.

Earth-size planets passing in front of a G- or K-type star. Such planets can only be
detect from the ground if they transit M-type stars.

Earth’s rotation also limits the planet detections that are attainable from the ground.
Long period transiting exoplanets have relatively long transit duration compared to the
observing window of a star in a single night. The diurnal cycle of the Sun precludes
reliable detection of transits of more than 5 or 6 h duration (Cameron, 2016).

While ground-based transit surveys have allowed us to detect short-period (P < 10 d)
transiting giant planets (Rp ≈ 10R⊕) around relatively bright stars (V < 13 mag; see,
e.g., Bakos et al., 2010; Pollacco et al., 2006), the discovery of small (Rp < 4 R⊕) and
long-period (P > 10 d) transiting planets has been possible thanks to space-based transit
search missions, such as CoRoT (Auvergne et al., 2009) and Kepler (Borucki et al., 2008).

The work presented here is based on time-series photometry collected during the so-
called “Kepler ’s second light”, namely, the K2 space-mission. We will therefore describe
the Kepler space telescope, as well as the observations carried out during the nominal
Kepler mission (2009 - 2013) and the extended K2 mission (2014 - today).

3.2 The Kepler mission

In 2009 the Kepler spacecraft (Borucki et al., 2008) was launched to continue the search for
transiting planets in our Galaxy – a hunt started in 2006 by the European space-telescope
CoRoT (Auvergne et al., 2009), which was the first mission to demonstrate the pioneering
science that would result from ultra-precise, long duration and continuous space-based
photometric measurements. The primary science objective of the Kepler mission was
the transit-driven exoplanet detection of small planets, with an emphasis on terrestrial
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(Rp < 2 R⊕) planets located within the habitable zone of Sun-like stars (Borucki et al.,
2008; Koch et al., 2010). In order to achieve this goal, Kepler collected high precision,
continuous time-series photometry of more than 150,000 stars in the Cygnus-Lyra region.

3.2.1 The spacecraft

The Kepler spacecraft was built to obtaine high precision and continuous photometry of
a large sample of stars (Koch et al., 2004, 2010). The Kepler telescope optical design
consist of a 0.95 m Schmidt telescope with a field of view (FOV) of 116 square degrees,
which allows for a simultaneous observation of more than 150,000 stars. The photometric
detector consist of 42 charged coupled devices (CCDs) mounted in the focal plane of the
telescope (Koch et al., 2004). Each CCD consists of arrays of 2200× 1024 pixels, with
a sky-projected pixel size of 3.98′′. The point-spread-function (PSF) for each star has
95% of its light within 2.5 to 5 pixels depending on its location in the FOV. Such CCDs
detect visible light between 4200-9000 Å (the Kepler bandpass) with a median quantum
efficiency of 40%. This allows for a dynamic range which goes from magnitude 9 to 15
in the Kepler bandpass. With this detector configuration, the telescope reached typical
noise levels of ∼15 ppm in 6.5 h. for a V = 12 mag solar-like star.

An important aspect of the Kepler spacecraft is the telescope stability needed to reach
high precision photometry. The spacecraft was built with four reaction wheels and twelve
thrusters which can be shoot to ensure correct pointing. Such instrumentation was de-
signed to roll the spacecraft to optimise solar power and to correct for solar wind pressure
(Koch et al., 2004). The spacecraft is also equipped with ten coarse Sun sensors, two
star trackers, and two three-axes inertial measurement units for initial acquisition, roll
manoeuvres and safe-survival modes (Koch et al., 2004).

3.2.2 Kepler observations

Kepler mission was launched on March 6, 2009 and started science operations on May 13 of
the same year. The spacecraft was placed in an Earth-trailing orbit to ensure a thermal
stability and to provide precise pointing towards the same FOV (Koch et al., 2010).
The telescope was pointed towards the Cignus-Lyra region (the centre of the field had
coordinates R.A. = 19h 22m 40s and DEC = 44◦ 30′ 00′′) which is just off of the galactic
plane and 55◦ above the ecliptic plane (Koch et al., 2010). Kepler observed this field for
almost 4 continuous years with the objective of detecting at least three-four transits of
an Earth-size planet with an orbital period of one year in the habitable zone of a Sun-like
star (Koch et al., 2010).

3.2.3 Kepler ’s light curves

Kepler ’s detector1 acquires one exposure every 6.5 s. Such exposures are integrated
and stored in long and short cadence formats. Long cadence corresponds to a summed
integration of 1765.5 s (29.4 min), while short cadence refers to 58.89 s (1 min). Kepler ’s
recorder can store only 5.4 million of the 95 million pixels available. Therefore, postage
stamps have to be chosen strategically to collect data centred on targets of interests. The
average number of postage stamps was around 166,000 targets per month for Kepler.
Each target pixel file (TPF) packages these pixels as a time series of images in a binary
flexible image transport system (FITS) file (Thompson et al., 2016).

Light curves are derived from TPFs files. There is a one-to-one correspondence between
the files and timestamps and quality flags within the two products are identical. The

1The information about Kepler light curves are taken from https://keplerscience.arc.nasa.gov/data-products.html.

https://keplerscience.arc.nasa.gov/data-products.html


38 CHAPTER 3. K2 TIMES-SERIES PHOTOMETRY

4965 4970 4975 4980 4985 4990 4995
Time (BJD  2,450,000)

523000

524000

525000

526000

527000

528000

F
lu

x 
(e

/s
ec

)

Figure 3.2: Light curve of Kepler-10 (KOI-72) observed by Kepler between May 13 and June 15, 2009 in
long-cadence mode (Texp = 1765.5 s). The photometry has been downloaded from the MAST archive.

primary data within the light curve file is Simple Aperture Photometry - a summation
of the calibrated pixels in the TPF. These light curves have intrinsic artefacts due to the
spacecraft drift of typically 20 mas (milli-arcsec) over 6.5 hours and artefacts coming from
the spacecraft itself, such as temperature changes. The Kepler team offered as final data
products light curves coming from a pipeline designed to mitigate all these artefacts.

The spacecraft had to roll 90 degrees every three months to optimise solar panel effi-
ciency. Whence, the spacecraft operations were divided in four sections each year called
quarters. Kepler long cadence images and light curves are stored in files that span one
quarter, i.e. three months. While short cadence data are saved in files that contain one
month time-series.

The TPFs are the rawest form of target-specific data available from the Kepler archives.
TPFs files together with light curves are available at the Mikulski Archive for Space
Telescopes (MAST, https://archive.stsci.edu/kepler/). Figure 3.2 shows paer of
the light curve of Kepler-10 as observed by Kepler. The shallow transit signals occurring
every 0.84 d are caused by the the transiting planet Kepler-10 b (Batalha et al., 2011).
The long term photometric variation is due to intrinsic flux changes of the star (see
Appendix. A.1 for more details).

3.3 The K2 mission

Kepler observed the Cignus-Lyra region for almost 4 years until May 11, 2013, when the
second reaction wheel failed2, causing the end of Kepler ’s primary mission.

In 2014 the Kepler project team proposed a new mission concept named K2 (Howell
et al., 2014). The K2 mission entails a series of sequential observing Campaigns of fields
distributed around the ecliptic plane and offers a photometric precision approaching that
of the original Kepler mission. Operating in the ecliptic plane minimises the torque
exerted on the spacecraft by solar wind pressure, reducing pointing drift to the point
where spacecraft attitude can effectively be controlled through a combination of thrusters
and the two remaining reaction wheels. Each campaign is therefore limited by Sun angle

2On July 14, 2012, one of the four reaction wheels used for fine pointing of the spacecraft failed. As for any other
spacecraft, three reaction wheels are needed to point the telescope.

https://archive.stsci.edu/kepler/
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constraints to a duration of approximately 80 days. K2 campaigns last approximately
80 days observing towards the same sky region in the ecliptic plane. The details of each
campaign are given in the Kepler science web-page (https://keplerscience.arc.nasa.
gov/k2-fields.html).

3.3.1 K2 light curves

As for the nominal Kepler mission, on board storage and bandwidth are limited. Con-
straints imposed by onboard storage and communications dictate that at most 6 per cent
of the data from the full focal plane are saved and downloaded. Therefore, data for specific
pre-selected targets is stored and transmitted to Earth. Such targets are proposed by the
community via the NASA’s Guest Observer program3. Each Campaign observe between
10,000 to 20,000 long cadence and between 50 and 100 short cadence targets. Each target
is identified with an unique number stored in the Ecliptic Plane Input Catalog (EPIC).
Final data products available to the community include original and calibrated pixel files,
and light curves for each individual target.

The light curves from K2 contain larger systematics than the original Kepler mission,
due to the reduction in pointing precision as a result of having to rely on only two reaction
wheels. The nominal Kepler pipeline is not able to remove all the artefacts of the light
curve, such as those caused by the thruster firing. Vanderburg & Johnson (2014) created a
technique to correct for the pointing-dependent nature of the pixel-level fluxes. The basic
idea is to correlate the non uniform pixel response of the detectors with the spacecraft’s
pointing. In this way it is possible to remove the artefacts due to the spacecraft “shaking”.
Vanderburg & Johnson (2014) demonstrated this correction improves the photometric
precision by typical factors of 2-5, and results in median photometric performance of K2
targets to within a factor of two of the original, four-wheeled mission. Figure 3.3 shows
the raw and corrected K2 light curve of the target EPIC 218916923, that was observed
by K2 in campaign 7. The raw light curve (red points) exhibits abrupt changes of flux
caused by the spacecraft thurster firing. Once the photometric data are corrected (blue
points), the light curve shows flux variations due to physical effects (planetary transits
and magnetic activity; see Barragán et al., 2018a, and Section 6.2).

As of September 2018, there are a handful of public pipelines that provides corrected
light curves, such as K2SC (Aigrain et al., 2016), EVEREST (Luger et al., 2016) and K2SFF

(Vanderburg & Johnson, 2014). The data are made available to the community through
the MAST web-page.

3.3.2 Follow-up observations of K2 targets

The nominal Kepler mission targets were typically faint stars (13 < V < 15). This was
done with the propose of building a large sample of stars to check for long period planets.
This helped us to understand planetary populations in the galaxy. However, such targets
are not easy to follow-up from ground-base observations, which are required to perform
further exoplanet characterisations.

K2 focuses on stars brighter than the nominal Kepler mission (V < 13). Transiting
exoplanets detected around bright stars observed by K2 can be monitored with ground-
base instruments. Between them are ground-base spectrographs to perform high-precision
spectroscopy (see Chapter 4). This allows us to measure the induced Doppler effect on the
stellar light caused by the orbiting planets, hence to estimate the planet true mass and
density. This give us hints on the planet composition. Another advantage about observing

3See https://keplerscience.arc.nasa.gov/k2-observing.html.

https://keplerscience.arc.nasa.gov/k2-fields.html
https://keplerscience.arc.nasa.gov/k2-fields.html
https://keplerscience.arc.nasa.gov/k2-observing.html
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Figure 3.3: Raw (red dots) and corrected (blue dots) light curves of the K2 target EPIC 218916923 (K2-
139). This plot was created using data from Vanderburg & Johnson (2014, https://www.cfa.harvard.
edu/~avanderb/k2c7/ep218916923.html).

K2 bright stars is that they can be characterised better that faint ones. High resolution
spectroscopy and imaging, parallaxes, proper motion, among other techniques, allow for
precise stellar characterisations. This has a direct consequence a better characterisation of
the hosted exoplanets. Our results on radial velocity follow-up of K2 targets are presented
in Chapter 6.

https://www.cfa.harvard.edu/~avanderb/k2c7/ep218916923.html
https://www.cfa.harvard.edu/~avanderb/k2c7/ep218916923.html


CHAPTER 4

HIGH-PRECISION RADIAL VELOCITY
MEASUREMENTS

Spectroscopy is the study of the interaction between electromagnetic waves and matter.
The intensity of the light emitted/reflected from/by a body at different wavelengths is
called spectrum. Astrophysics was born when humankind started to use the spectra of
astronomical objects to understand their physical and chemical nature. The elements in
the atmospheres of cool stars absorb and remit the light at specific wavelengths, producing
a forest of spectral lines. Given its wave behaviour, light experiences the Doppler effect.
If we are able to measure the Dopper shift ∆λ of the atmospheric absorption lines, we can
measure the radial velocity of a star and search for the tiny signal induced by an orbiting
planet.

4.1 Planet-induced radial velocity variation

The equations that describes the RV variation of a star orbited by a second body are
known since more than a century (see, e.g., Vogel, 1873). However, the first detection of
an exoplanet made via the RV method is relatively recent (Mayor & Queloz, 1995). This
is because of the small RV variation induced by planets. Figure 4.1 shows the expected
reflex motion for a Sun-mass star induced by planets with different masses as a function
of the semi-major axis (see Eq. 2.59). As already briefly described in Sect. 1.4.1, the Sun’s
RV variation due to the presence of Jupiter (P = 11.9 years, a = 5.2 AU) is only 11.2 m s−1.
However, Jupiter would induce a stronger Doppler shift if its orbit were closer and/or the
Sun were less massive. An Earth-mass planet with an Earth-like orbit causes a reflex
motion of a mere ∼10 cm s−1. The same planet would induce a RV variation of 1 m s−1

if its orbit had a radius of 0.05 AU. Therefore, in order to detect exoplanets with the
RV method we need spectrographs with exquisite RV precision and long-term stability
(Hatzes, 2016).
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Figure 4.1: Sun’s RV semi-amplitudes induced by Earth-, Neptune-, and Jupiter-mass planets at different
orbital radii. The RV amplitudes are calculated assuming an inclination of 90 deg. RV variation induced
by the Earth, Neptune and Jupiter are marked with blue, green, and red circles, respectively.

4.2 Spectrographs

A spectrograph is an instrument which breaks the light into its component wavelengths
and spreads them apart (dispersion) using a dispersing element, such as a prism or a
diffraction grating (Hatzes, 2016). In order to obtain spectra of astronomical bodies, the
spectrograph has to be combined with a telescope – the light collector. Typically, the
light from the telescope mirror converges to a focus at the entrance slit (or fibre) of the
spectrograph. The light is then collimated, directed onto the dispersing element, and
dispersed into its wavelength components. Finally, the dispersed light can be stored on
photographic plates or in electronic detectors.

Most RV measurements are made at optical wavelengths using charge coupled devices
(CCDs) detectors. We note that a spectrograph does not produce directly wavelength vs
flux data. It does produce an image of the stellar spectrum, i.e., electron counts in a 2D
pixel array. Details on the data reduction to convert CCD data into spectra are out of
the scope of this work. For more details we refer the reader to more specific literature
(see, e.g., Hatzes, 2016, and references therein).

The spectral resolution ∆λ of a spectrograph is defined as the smallest difference in
wavelengths that can by resolved by the instrument at a given wavelength λ. It sets “the
size” of the smallest spectral features that can be studied in the spectrum. The resolving
power is defined as

R =
λ

∆λ
. (4.1)

Following Hatzes (2016), the RV precision that can be achieved using a spectrograph
of resolving power R is given by the following equation
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σtot[m s−1] ∝ (S/N)−1R−3/2N
−1/2
lines σ (4.2)

where (S/N) is the signal-to-noise ratio of the spectrum, Nlines the number of spectral
lines, and σ the Doppler shift error of a single line. We note that the RV precision depends
also on the spectral type of the observed star, as well as on its projected rotational velocity
v sin i? (see Sect. 1.3.2 of Hatzes, 2016).

Equation (4.2) tells us that in order to achieve high-precision RV measurements it
is necessary to use spectrographs with a large range of wavelengths and high-spectral
resolution. Echelle spectrographs are designed with this propose. They disperses the light
in two orthogonal directions using two dispersion stages (see, e.g., Gray, 2005; Hatzes,
2016).

4.3 High-precision spectrographs

The development of precise and stable high-resolution spectrographs is at the heart of the
success of the RV method to detect extra solar planets. Nowadays, many spectrographs
allow us to achieve the 1-5 m s−1 precision. In this Chapter we will briefly describe
the three spectrographs that have significantly contributed to the success of our K2 RV
follow-up program. Results will be presented in Chapter 6.

4.3.1 FIES

The Fibre-fed Echelle Spectrograph (FIES, Frandsen & Lindberg, 1999; Telting et al.,
2014) is mounted at the 2.56 m Nordic Optical Telescope, which is located at the Roque
de los Muchachos observatory in the Canary Island of La Palma (Spain).

The spectrograph is fed by an octagonal fibre. This improves the light scrambling
inside the fibre link and reduces the effects of illumination variations of the fibre pupil
(Bouchy et al., 2013). In order to ensure long-term stability of the spectrograph, FIES
is installed in a heavily insulated building separate from, and adjacent to, the telescope
dome. The instrument is kept to a constant temperature within 0.02 ◦C. FIES has a
high efficiency and can reach an RV precision of less than 2-3 m s−1 on slowly rotating
late-type stars with V=9 mag in Texp = 20 min (Gandolfi et al., 2017).

FIES covers the wavelength range from 3700 to 8300 Å without gaps in a single, fixed
setting. The instrument allows for three different resolving powers of R = 25, 000, 46, 000
and 67, 000 called LOW-RES, MED-RES, and HIGH-RES, respectively.

The detector consists of one CCD of 2k× 2k 15µm pixels. Data are stored as flexible
image transport system (FITS) files containing the CCD data. The observing strategy
and data reduction techniques for FIES are described in Buchhave et al. (2010) and Gan-
dolfi et al. (2013, 2015). Briefly, the observing strategy consists of taking three consecutive
exposures per observation epoch – to remove cosmic ray hits – and acquire long-exposed
(Texp ≈ 30-60 s) ThAr spectra immediately before and after the three sub-exposures – to
trace the RV drift of the instrument. The spectra are reduced using standard procedures
specifically designed for Echelle spectrographs. The radial velocity measurements are de-
rived via multi-order cross-correlation with the spectrum of an RV standard star observed
with the same instrument set-up as the target of interest.

4.3.2 HARPS

The High Accuracy Radial velocity Planet Searcher spectrograph (HARPS, Mayor et al.,
2003) is mounted at the ESO-3.6 m telescope at La Silla observatory (Chile). The instru-
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ment is a fibre-fed cross-dispersed Echelle spectrograph, providing a resolving power of
R≈ 115 000 in the wavelength range ∼3800 – 6900 Å. The detector consists of two CCDs
with pixel size of 15µm. The spectrograph is fed by two fibres (A and B): fibre A is the
target fibre, while fibre B is the reference fibre that can be fed by a wavelength calibration
unit, such as a Th-Ar or Fabry-Perot lamp. Alternatively, it can be used to monitor the
sky background. (Hatzes, 2016).

The most important characteristic about HARPS is its stability. The spectrograph is
placed inside a vacuum vessel in an insulated room below the telescope, enabling very
accurate control of its temperature (within 0.01 ◦C). HARPS is kept in vacuum with
a pressure always below 0.01 mbar. This ensures that the daily instrument RV drift is
well below 1 ms. This makes HARPS is a state-of-the-art spectrograph in terms of RV
precision, a fundamental requirement for RV planet search surveys.

HARPS data products consist of FITS files with extensions containing the data from
both CCDs. The HARPS acquisition software is connected with the Data Reduction
Software (DRS) at the telescope to perform an almost instantaneous data reduction.
Every HARPS frame is processed by the online DRS pipeline, which delivers the extracted
spectra. The RV measurements are measured by cross-correlating the observed spectra
with numerical masks.

4.3.3 HARPS-N

The HARPS-N spectrograph (Cosentino et al., 2012) is mounted at the 3.6 m Telescopio
Nazionale Galileo (TNG) of Roque de los Muchachos Observatory (La Palma island,
Spain). HARPS-N is a copy of the HARPS spectrograph. It has been designed to be the
most precise spectrograph in the Northern hemisphere. The instrument characteristics,
including, the achieved RV stability, spectral resolution, and spectral coverage, are very
similar to those of HARPS. The HARPS-N data are reduced using a dedicated HARPS-N
pipeline. Radial velocities are extracted by cross-correlating the observed spectra with
numerical masks.

4.4 RV observations conducted as part this thesis

As part of the work presented in this thesis, I performed high-resolution spectroscopic
observations of K2 bright stars (V . 13 mag). Specifically, the FIES RV follow-up was
conducted on five nights, from January 30 to February 2, 2016, and from February 3 to
February 5, 2018. Additional FIES spectra were collected in service mode, and in visitor
mode by collaborators.

I also conduced intensive follow-up observations with the HARPS spectrograph. I car-
ried a total of 33 nights of observations as follows: April 29 - May 3, 2016; November
21-29, 2016; August 18-27, 2017; March 13-17, 2018; April 10-14, 2018; May 10-14, 2018.

The HARPS-N observations were performed in service-mode.

The data collected during these observing have been published in Barragán et al. (2016,
2018a,b); Dai et al. (2017); Gandolfi et al. (2017); Guenther et al. (2017); Johnson et al.
(2018); Palle et al. (2018); Prieto-Arranz et al. (2018); Persson et al. (2018); Trifonov
et al. (2018); Van Eylen et al. (2018b).



CHAPTER 5

DATA ANALYSIS

In this chapter we describe the software suite pyaneti1, which was developed in the course
of this thesis project. pyaneti is a powerful and robust tool to perform multi-planet fit to
RV and/or transit data sets. It combines the MCMC technique with the computational
power of FORTRAN and the versatility of PYTHON. The code pyaneti is stored in the web
repository github at https://github.com/oscaribv/pyaneti and is also indexed in the
Astrophysical Source Code Library with the registration number 1707.003. Details about
pyaneti can be found in Barragán et al. (2019).

This code has already been used for the analysis of several planetary systems (see, e.g.,
Barragán et al., 2016, 2018a,b; Chakraborty et al., 2018; Fridlund et al., 2017; Gandolfi
et al., 2017, 2018; Guenther et al., 2017; Li et al., 2017; Livingston et al., 2018; Palle
et al., 2018; Persson et al., 2018; Prieto-Arranz et al., 2018).

5.1 Bayesian analysis

The aim of data analysis is to extract information from experiments and/or observations.
In this work, we are interested in extracting planetary physical parameters by comparing
parametric models with astronomical observations. From a probabilistic point of view, we

want to estimate the probability that a physical parametric model M = M(~φ), function

of some parameters ~φ, describes the data D. Such probability is called the conditional
probability of M given D and it can be written as P (M |D).

Bayes’ theorem (Bayes & Price, 1763) provides a simple and robust mathematical
framework to compute P (M |D) as

P (M |D) =
P (D|M)P (M)

P (D)
. (5.1)

In a context of a fixed data set, P (D|M) is a function of the model called the likelihood
of observing the data set D if the model M is true, while P (M) is the prior probability

1From the Italian word pianeti, which means planets.

45

https://github.com/oscaribv/pyaneti
http://ascl.net/1707.003


46 CHAPTER 5. DATA ANALYSIS

associated to the model M , and P (D) is the model evidence. P (M |D) is called the joint
posterior distribution and it gives the probability that a model M is true given D is true.

5.1.1 Likelihood

For a given data set D composed of N measurements D1,...,N , we can generate a set of
N predicted points M1,...,N from a parametric model. The likelihood of a point Di being
described by a point Mi is written as P (Di|Mi). The likelihood of the whole data set D
to be described by the model M is given by the product of each probability P (Di|Mi) as

P (D|M) =
N∏
i=1

P (Di|Mi). (5.2)

In order to compute P (D|M) using eq. (5.2), we need to find out which likelihood
functions describes better our data. If we assume that our measurements are normally
distributed, independent, and that only contain uncorrelated noise σi, the likelihood of
the data point Di being true, assuming Mi is also true, is written as

P (Di|Mi) =
1√

2π(σ2
i + σ2

j )
exp

{
−1

2

(Di −Mi)
2

σ2
i + σ2

j

}
, (5.3)

where the terms σj are used to normalise the likelihood in the case the nominal uncer-
tainties σi are underestimated (see e.g., Sharma, 2017). If we use eq. (5.3) for a data
set, its likelihood is given by using eq. (5.2) as

P (Di|Mi) =
N∏
i

 1√
2π(σ2

i + σ2
j )

 exp

{
−1

2
χ2

}
, (5.4)

where

χ2 =
N∑
i=1

(Di −Mi)
2

σ2
i + σ2

j

. (5.5)

Pyaneti uses the likelihood given by eq. (5.4), but we acknowledge that more general
likelihoods exist, in which possible correlated noise between data points is taken into
account (see, e.g., Parviainen, 2017; Sharma, 2017). We also note that for numerical
reasons, it is better to treat P (M |D) in a logarithmic way (See Sect. 5.3.3).

5.1.2 Priors

Priors contain previously known information about a given model parameter, e.g., some
physical range in which a parameter has equal probability to lie. Alternatively, the pa-
rameter’s probability can be given by a distribution based on previous estimates. Widely
used priors are the uniform and Gaussian priors.

A uniform prior is called a weakly informative or uninformative prior. It is used when
the only available information about a given parameter φi is that it lies inside a range
[a, b]. For example, we know that the eccentricity of an elliptical orbit ranges between 0
and 1. If the parameter φi lies between a and b with equal probability, its uniform prior
is given by
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Figure 5.1: Posterior distributions (solid red line) for a fixed likelihood (blue dashed lines) and different
priors (green dot-dashed lines). All quantities have been normalised for comparison purpose. Upper left:
Uniform prior with limits [−3, 3]. Upper right: Uniform prior with limits [−3, 0]. Lower left: Gaussian
prior with mean 1.5 and standard deviation 1.5. Lower right: Gaussian prior with mean 1.5 and standard
deviation 0.3.

U(φi; a, b) =

{
(b− a)−1 : a < φi < b

0 : otherwise
(5.6)

A Gaussian prior is called an informative prior. This prior is useful when, for a given
parameter, we have a previous measurement and its 1-σ uncertainty, and we want to use
this information to weight the probability. For instance, if we have asteroseismology-
derived mass and radius of a star hosting a transiting planet, we can use these quantities
together with the orbital period to set a Gaussian prior on the semi-major axis of the
planet’s orbit through Kepler third law.

A Gaussian prior of a given parameter φi with median a and standard deviation b is
given as

N (φi; a, b) =
1√

2πb2
exp

[
−(φi − a)2

2b2

]
. (5.7)

In this work we describe only the uniform and Gaussian priors, as those are currently
implemented in pyaneti. We acknowledge the existence of other priors in the literature
(see, e.g., Dı́az, 2018; Sharma, 2017). Figure 5.1 shows how priors can affect the final
posterior distribution for a fixed likelihood. For instance, the upper and lower limits of a
flat prior may truncate or exclude the maximum of the likelihood function. The influence
of a Gaussian prior on the posterior distribution depends on the prior’s centre and width,
as well as on the number of data points (e.g., Gelman et al., 2004).
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5.1.3 Model evidence

The term P (D) in equation (5.1) is called model evidence or marginal likelihood. It has
the function to normalise the posterior distribution. By definition P (D) is calculated by
integrating the likelihood and prior distributions in the parameter space as

P (D) =

∫
P (D|M(~φ))P (M(~φ))d~φ. (5.8)

5.1.4 Marginal posterior distribution

We now have a mathematical description of all the components to calculate P (M |D) from
equation (5.1). In order to derive the parameters, we are interested on the shape of the
posterior distribution of each parameter φi more than in its normalised probability. The
parameter estimation can be extracted from the non-normalised posterior distribution, i.e.
the term P (D|M)P (M), ignoring the evidence term P (D). We note that the evidence
term has an important role when doing Bayesian comparison between different models
(see, e.g., Gelman et al., 2004). Since M is a parametric model, we can marginalise
the parameter φi by integrating P (D|M)P (M) over the remaining φj 6=i parameters. This
leads to a marginal posterior distribution for each parameter φi from which we can infer
the model parameters.

5.2 Markov chain Monte Carlo

The calculation of a marginal posterior distribution can be done analytically or numeri-
cally. However, in some cases it may not have an analytic solution. For instance, numeri-
cal iterative methods are widely used to sample the parameter space in order to generate
marginal posterior distributions from a collection of data points.

An efficient method to generate a set of data points in a parameter space is by using
a Markov chain. Following the definition of Sharma (2017), a Markov chain is a sequence
of random variables X1, . . . , Xn such that, given the present state, the future and past are
independent. If random numbers are used to generate the Markov chains, this method is

called Markov chain Monte Carlo (MCMC). These random variables can be the points ~φ
in the parameter space that we want to sample. For instance, if we start a point in the

parameter space ~φ1, we can generate a set of different models ~φi via Markov chains. In

this way, we can create a set of N models from an initial ~φ1.
There is a large variety of MCMC sampling methods, which ensure that the Markov

chains converge to the optimal solution where the posterior has a static solution. For a ba-
sic MCMC algorithm, we refer the reader to the Metropolis-Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970). In the next section we will describe the ensemble sampler
algorithm (Goodman & Weare, 2010) that is used by pyaneti for the parameter esti-
mations. This algorithm was first used by Hou et al. (2012) to infer parameters from
time-series RV measurements.

5.2.1 Ensemble sampler algorithm

The ensemble sampler algorithm uses a group of Markov chains to explore the parameter

space. Each chain j starts with a point in the parameter space ~φj,t and is evolved using
the complementary chains of the ensemble.

Christen (2007) found that it is possible to evolve the chain φj,t to the state t+ 1 via
a walk move using a complementary chain of the ensemble. Goodman & Weare (2010)
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used the idea of the walk move to construct an affine invariant move called stretch move.
The stretch move for the chain ~φj,t is defined as

~Φj = ~φk,t + z
(
~φj,t − ~φk,t

)
, (5.9)

where ~φk,t is a complementary chain of the ensemble, such that j 6= k and z is a
scaling variable that regulates the step. This scaling variable has to come from a density
distribution g with the symmetry condition (Christen, 2007)

g

(
1

z

)
= z g(z). (5.10)

A distribution that follows this condition is

g(z) ∝
{

1√
z

: z ∈
[

1
a
, a
]

0 : otherwise,
(5.11)

where a > 1. There is no optimal value for a, but we set a = 2 to be consistent with
ensemble sampler algorithms in the literature (e.g., Goodman & Weare, 2010; Hou et al.,
2012). To ensure the invariant distribution we have to compute the ratio

q = zN−1 P (M(~Φ)|D)

P (M(~φj,t)|D)
. (5.12)

The term zN−1 ensures detailed balance (for more details see Goodman & Weare,
2010). To decide whether we accept or not the proposed state we use

~φj,t+1 = ~Φj : q > U
~φj,t+1 = ~φj,t : q ≤ U,

(5.13)

where U is a random number between [0, 1]. After a number N of iterations and L
chains, we will have N×L samples for each parameter from which we can create posterior
distributions. A general overview of a single step of the ensemble sampler method is given
in Algorithm 1.

Figure 5.2 shows an example of the evolution of an ensemble sampler algorithm using
six chains. The latter start at a different point in the parameter space. After a finite
number of iterations (in this case a few hundreds), the chains converges to a stable region
of the parameter space. Details on how we create marginal posterior distributions from
chain’s samples are provided in Section 5.2.3.

Another advantage of this approach is that, since each Markov chain evolves indepen-
dently, this algorithm can be parallelized (Foreman-Mackey et al., 2013).

5.2.2 Convergence

In order to infer the parameter values based on a MCMC sampling we need to use chains
that have converged. A widely used convergence test has been developed by Gelman &
Rubin (1992). This test compares the “between-chain” B and “within-chain” W variance

via the scaled potential factor R̂ =
√

[W (n− 1)/n+B/n]/W , where n is the length of

each chain. We define convergence as when chains have R̂ < 1.02 for all the parameters
(Gelman et al., 2004).
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input : Initial ensemble of N states ~φj,t
output: Ensemble of N states ~φj,t+1

1 for j = 1 to N do
2 Select a complementary state from the ensemble such that j 6= k
3 Sample the scaled variable z from the density distribution g

4 Propose the new state via a walk move ~Φj = ~φk,t + z
(
~φj,t − ~φk,t

)
5 Compute q from eq. (5.12) using likelihood and priors for the states ~φj,t and ~Φj

6 Sample an uniform random variable U between 0 and 1
7 if q > U then

8 ~φj,t+1 = ~Φj

9 else

10 ~φj,t+1 = ~φj,t
11 end

12 end

Algorithm 1: One iterations of the ensemble sampler algorithm.

5.2.3 Marginal posterior distribution from parameter sampling

Chains that have converged to a static solution represent a sample of the marginal poste-
rior distribution from which they were sampled. The frequencies of the chains can be used
to create the posterior distribution of the sampled parameters. A common way to draw
the sampling frequency is with a histogram, as shown in Figure 5.2. The final marginal
posterior distribution for each parameter is also called credible interval.

The median and the 68% limits of the credible interval are commonly used to define the
parameter’s best estimate and its uncertainty (see, e.g., Hogg & Foreman-Mackey, 2018).
When the marginal posterior distribution follows a Gaussian distribution, the median and
the 68% limits of the credible interval correspond to the mean and standard deviation of
a normal distribution. When the posterior distribution is skewed, the 68% limits are not
symmetric with respect to the median, and they give an “first-order” idea of the shape of
the marginal posterior distribution that describes a given parameter.

5.3 pyaneti

In Chapters 3 and 4 we describe how we can obtain transit and RV measurements. These
measurements are the data D that we can compare with the parametric models M de-
scribed in Chapter 2 using the Bayesian analysis and MCMC techniques previously dis-
cussed in this Chapter. The implementation of these ideas were put together in the code
pyaneti (Barragán et al., 2019) which we will describe in this section.

5.3.1 Parametric models

The planet effects on the stellar light can be described by analytical functions which

depends on a set of parameters. The general parametric function fRV(~φ; t) which describes
the induced RV of a star orbited for multi-planets has the form (see eq. (2.58))

fRV(~φ; t) = f({T0, P, e, w?, K}α, γβ; t), (5.14)

in which the set of parameters {T0, P, e, w?, K} repeats for each planet α and γβ is for

each instrument β. While the general parametric function ftr(~φ) which describes transit
events in a light curve is (see eq. (2.72))
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Figure 5.2: Example of the evolution of an ensemble sampler algorithm using six chains. Upper panel:
Parameter value for each chain from iteration 0 to 5000 in logarithmic scale. Lower left panel : Chains
behaviour for the last 4000 iterations. Lower right panel: Histogram created using all the information
contained in all the chains the last 4000 iterations.

ftr(~φ; t) = f({T0, P, e, w?, Rp/R?, a/R?, i}α, {u1, u2}ε; t). (5.15)

The set of parameters {T0, P, e, w?, Rp/R?, a/R?, i} repeats for each planet α. Each
{u1, u2} repeats for each band ε of the light curve.

For cases where RV and light curve data of a system are available, the best approach
to perform the analysis is via a joint fit. By comparing equations (5.14) and (5.15) we
see that T0, P , e and ω? are shared parameters between RV and transit equations. For
this case the orbital parameters of the planet will be fitted simultaneously for the RV and
transit data. Generally speaking, transit data improves the values of T0 and P while RV
data constrains better e and ω?. The parameters involved in a joint fit are then

~φ = ({T0, P, e, w?, Rp/R?, a/R?, i,K}α, γβ, {u1, u2}ε), (5.16)

Where {T0, P, e, w?, Rp/R?, a/R?, i,K} repeats for each planet α, {u1, u2} for each
band ε and γ for each instrument β. Equations (5.14), (5.15) and (5.16) can be used in
eq. (5.4) to compare with a given data set D composed of RV, transit of a joint data
set. Together with priors for the parameters of eq. (5.16), we can estimate a posterior
distribution for each parameter using MCMC methods.

5.3.2 Parametrizations

Equation (5.16) defines the general set of parameters that can be extracted by modelling
RV and photometry measurements. It is possible to use a set of convenient parametriza-
tions to improve the exploration of the parameter space and avoid biases due to priors.
In the following sub-sections we provide a brief description of the parametrizations used
in pyaneti.
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Eccentricity and angle of periastron

The posterior distribution of the eccentricity is not well sampled for orbits with small
eccentricities (Lucy & Sweeney, 1971). A practical solution is to define e and ω? using a
polar form. pyanetiadopts the parametrization proposed by Anderson et al. (2011)

ew1 =
√
e sinω?, ew2 =

√
e cosω?. (5.17)

This parametrization has two advantages: a) it is not truncated when the eccentricity
is close to zero; b) uniform priors on ew1 and ew2 imply uniform priors on the eccentricity.

Impact factor

As presented in Sect. 2.3, the transit of a planet can described using the scaled projected
distance between the planet and star centres. It is then convenient to parametrize the
stellar inclination using a parameter that takes into account the projected distance. A
practical approach is via the impact parameter defined as (Winn, 2010)

b =
a

R?

cos i

(
1− e2

1 + e sinω?

)
. (5.18)

The advantage of using the impact factor is that b can be compared directly with the
projected distance δ (eq. (2.65)). In this way it is easy to set priors to exclude orbits for
which there are no transits, i.e., when b > 1 + rp.

Limb Darkening coefficients

For the limb darkening coefficients pyaneti uses the parametrization proposed by Kipping
(2013), who showed that an optimal way to sample the parameter space for the Mandel
& Agol (2002)’s limb darkening coefficients is via the parametrization

q1 = (u1 + u2)2, q2 =
u1

2(u1 + u2)
. (5.19)

The advantage of this approach is that it fully accounts for our ignorance about the
intensity profile and explores physical solutions by sampling uniformly q1 and q2 between
0 and 1. This yields robust and realistic uncertainty estimates. It is possible to recover
the original u1 and u2 coefficients via

u1 = 2q1
√
q2, u2 =

√
q1(1− 2q2). (5.20)

Stellar density

From Kepler’s third law we obtain that

ρ? + r3
pρp =

3π

GP 2

(
a

R?

)3

. (5.21)

where ρ? is the star’s mean density, ρp the planet’s mean density, rp the planet-to-star
radius ratio, P the orbital period, R? the star’s radius, and a the semi-major axis of the
relative orbit. Since r3

p is relatively small, the second term of the left side of eq. (5.21)
can be neglected (Winn, 2010). There is thus a relation between the stellar density and
the orbital parameters P and a/R? that can be used to compare stellar density derived
from the modelling of the transit light curves with an independent determination (e.g.,
from spectroscopy).
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It is convenient to parametrize a/R? with ρ?. If precise stellar parameters have been
calculated, it is possible to set tight priors on the stellar density and hence on a/R?. For
a multi-planet system, it is convenient to parametrize the scaled semi-major axis aj/R? of
all planets j using the same stellar density. In this way the stellar density is constrained
for all planets and Kepler’s third law is not violated within planets orbiting the same star.

pyaneti uses the parametrization ρ
1/3
? instead of ρ? because a/R? and ρ

1/3
? are linearly

related assuming rp ≈ 0 (eq. 5.21).

5.3.3 Numerical treatment of the posterior

Equation (5.4) may lead to very small/big numbers which generate numerical overflows.
Therefore it is convenient to use the logarithmic of probability densities. Bayes’ theorem
is rewritten as

lnP (M |D) = lnP (D|M) + P (M)− P (D). (5.22)

We note that this treatment of the posterior does not affect the MCMC method. Since
the ratio between the actual and proposed states can be calculated easily as

P (D|~Φ)P (~Φ)

P (D|~φ)P (~φ)
= exp

[
lnP (D|~Φ) + lnP (~Φ)− lnP (D|~φ)− lnP (~φ)

]
(5.23)

By following this approach, the general form of the Gaussian likelihood for an RV and
transit fit is given using eq. (5.4) as

P (D|M) =

NRV∏
i

 1√
2π(σ2

i + σ2
j )


RV

×
NLC∏
i

 1√
2π(σ2

i + σ2
j )


LC

× exp

{
−1

2
χ2

Tot

}
, (5.24)

where

χ2
Tot =

NRV∑
i

(Di,RV −Mi,RV)2

σ2
i + σ2

j

+

NLC∑
i

(Di,LC −Mi,LC)2

σ2
i + σ2

j

. (5.25)

The RV and LC sub-indexes refers to RV and light curve data and models, respectively.
The logarithmic form of the likelihood given in eq. (5.4) is rewritten as

lnP (D|M) = −1

2

[
NRV∑
i

ln 2π(σ2
i + σ2

j ) +

NLC∑
i

ln 2π(σ2
i + σ2

j ) + χ2
Tot

]
. (5.26)

We note that eq. (5.26) can be used too model pure RV or transit data.

5.3.4 Code’s algorithm

Light curve and RV time-series can be passed to computational programs as arrays. This
brings the advantage to manipulate data numerically. RV and transit equations can be
used to compute models at the same time stamps of the time-series. This can be exploited
to iterate MCMC methods using computers to perform parameter’s estimation.

If we combine the MCMC analysis described in Sect. 5.1 along with the multi-planet
equations presented in Chapter 2, we can develop a powerful tool to estimate planet
parameters from Doppler and transit observations. We used this approach together with
the computational speed of FORTRAN and the versatility of PYTHON to write the software
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suite pyaneti. The computation-demanding routines, such as orbital solutions, likelihood
calculations, etc., are calculated by FORTRAN subroutines. The input and output routines,
such as data preparation, plot creations, etc., are handled by PYTHON. FORTRAN subroutines
are wrapped to PYTHON using F2PY inside the numpy package (Van Der Walt et al., 2011)2.
The code make use of FORTRAN, PYTHON, and OpenMP to run in parallel. It requires the
PYTHON libraries MATPLOTLIB (Hunter, 2007), NUMPY (Van Der Walt et al., 2011), and
SEABORN.

One of the main advantages of pyaneti is that all the code controls are given inside a
PYTHON-based input file. Priors, fitted parameters, and data files are controlled via flags
and python objects. This allows one to run the code with only one command line. A
general overview of the algorithm of the code is given in Algorithm 2.

input : RV and/or light curve time-series, correct input file for star-name
output: Posterior distributions, plots, parameter inference of RV and/or transit models from

data

1 ./pyneti.py star-name (start of the run)
2 Read initial files (functions, default values)
3 Read input file with parameters for the current run (number of planets, priors, flags)
4 Read time-series data
5 Pass data and variables to FORTRAN routines
6 Start FORTRAN execution
7 Create random chains inside the prior ranges
8 Calculate likelihoods and priors for the initial state
9 Set iteration control variable continua to True

10 Initialise iterations count variable i=0

11 while continua do
12 Evolve chains following Algorithm 1 ! This line can also run in parallel
13 check for convergence after N iterations !N is calculated as niter × thin factor

14 if i == N then
15 Check convergence using Gelman & Rubin (1992) criteria
16 if chains converged == False then
17 continua = True !Chains have not converged: Keep iterating
18 i = 0 ! restart iteration counter

19 else
20 continua = False !Chains have converged: save posteriors
21 end

22 end

23 end
24 Write posterior distributions with the converged chains taking into account the thin factor
25 End of FORTRAN execution
26 Run PYTHON output routines
27 Read posterior from posterior file
28 Automatic calculation of parameters and creation of plots
29 Save data in the outpy/star-name out directory
30 End of run for star-name

Algorithm 2: General algorithm of pyaneti.

The advantage of using the ensemble sampler algorithm described in section 5.2.1 is
that it can be parallelized. This speed-up the global solution of the MCMC run. The
parallelization is done following the procedure described in Foreman-Mackey et al. (2013),
in which we divide the ensemble in two sub-samples and evolve each group taking a chain
from the complementary set of chains. We use Open Multi-Processing (OpenMP) to perform
the parallelization inside the FORTRAN routines.

2More documentations are available at http://www.f2py.com/.

http://www.f2py.com/
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There are some physical effects that are not included in the current version of the
code. Transit timing variations (TTVs), mutual interaction between planets, multi-band
photometry, Rossiter-McLaughlin effect, planet’s occultations, planet’s phase curve fitting
have not been implemented yet. pyaneti currently uses likelihood and priors as described
in Sect. 5.1. More general likelihoods, such as Gaussian Process, have not been included
yet. Nevertheless, the code is written in a modular way making it easy and straightforward
to implement additional physical effects or equations. We plan to keep maintaining and
upgrading pyaneti.

5.4 Code’s tests

5.4.1 A toy model

Setup

We created a set of synthetic RV and transit data to check the performance of pyaneti.
The simulated planetary system includes three planets: the two innermost planets transit
the star, whereas the outer planet can only be seen in the RV data set.

Synthetic data points were created assuming a star with a mass of 0.66M� and radius
of 0.67R�. The planets have periods of 1.21321, 5.61122, and 12.12349 days with con-
junction times of 1.0, 2.21529, and 4.63963 days, respectively. Their radii and masses are
1.5, 3.0, and 7 R⊕, and 5, 10, and 62 M⊕, respectively. The orbits of the two innermost
planets are circular, whereas the outer planet has a non-zero eccentricity of ec = 0.1 with
the star’s argument of periastron ω?,c = 204 deg. We assumed inclinations of ib = 87 deg,
ic = 88 deg, and id = 84 deg, so that the two innermost planets transit the star while
planet d does not. We assumed that gravitational interaction between the three planets is
negligible. We imposed limb darkening coefficients of u1 = 0.43 and u2 = 0.31. We used
these values to calculate the scaled parameters used by pyaneti. Details of the whole set
of fitted parameters are given in Table 5.1.

The synthetic light curve covers a range of 30 days starting at an arbitrary 0 point. We
created the instantaneous normalised flux due to the transiting planets using eq. (2.72)
with continuous time stamps separated by 5 minutes. We added Gaussian noise at the
5 × 10−5 level to simulate high precision photometry, such as that provided by Kepler.
The synthetic light curve is displayed in the upper panel of Fig. 5.3.

The simulated RV measurements cover the 30 days simultaneous to the light curve
data. Time stamps were taken from a random uniform distribution and the corresponding
RVs were calculated using eq. (2.60). We simulated data for two spectrographs called
instrument A and B. For spectrograph A, we created 50 absolute RVs with Gaussian noise
of 1 m s−1 assuming a systemic velocity of 10 km s−1. For instrument B, we simulated 50
time stamps with Gaussian noise of 5 m s−1, but we assigned error bars of 3 m s−1 to each
point to simulate a jitter term of σj = (52 − 32)1/2 m s−1 = 4m s−1. We assumed that
the RVs of instrument B are relative and arbitrarily centred around 0 km s−1. The lower
panel of Fig. 5.3 shows the synthetic data-points following the correction for the RV offset
between the two instruments.

We performed a joint fit setting uniform priors for all the parameters (details are
given in Table 5.1). We used 100 independent Markov chains started randomly inside
the uniform prior ranges. Once all chains converged, we used the last 5000 iterations
and saved the chains’ states every 10 iterations. This approach generated a posterior
distribution of 50,000 points for each parameter.
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Figure 5.3: Upper panel: Thirty-day-long synthetic light curve. We assumed a relative flux of 1 with
no trends. There are two transiting planets with different periods and sizes, marked with dashed lines.
Lower panel: Synthetic RV measurements. The RV signal consists of three planets with different masses
and periods. Instrument A (blue circles) has a precision of 1 m s−1, whereas instrument B (red squares)
has a precision of 5 m s−1. The nominal error bars of instrument B were set to 3 m s−1 to simulate a
jitter term (gray extensions to the nominal error bars). The best fitting model is shown as a thick black
line. Offsets were subtracted to both data sets.

Results

Table 5.1 contains the medians and 68% credible intervals of the posterior distributions
of the fitted parameters. We note that the system parameter’s true values are inside the
posterior distribution of each parameter. In most cases, the true values are inside the 68%
credible interval. This shows the power of pyaneti to infer real parameters from data.

The lower panel of Fig. 5.3 shows the simulated RV data and the inferred best-fitting
three-planet model. Figure. 5.4 displays the phase-folded transit and RV curves. Fig-
ure 5.5 displays the posterior distributions of some of the fitted parameters. These his-
tograms are useful diagnostic plots to check the goodness of the MCMC output. We
note that our analysis provides unimodal posterior distributions. Their shapes are either

Gaussian (T0,b and Pb), or skewed (ρ
1/3
? and Rp,c/R?). The 68% credible intervals are over

plotted on each histogram; they corresponds to the error bars reported in Table 5.1.

5.4.2 The multi-planet system K2-38

Setup

We also tested pyaneti with a real planetary system. We modelled the transit photometry
and radial velocities of K2-38 and compared our results with those published by Sinukoff
et al. (2016). K2-38 is G2 V star transited by two planets whose masses have been
measured via Doppler spectroscopy. The inner planet, K2-38 b, orbits the star every
4 days. It has a mass of 12 M⊕ and a radius of 1.55 R⊕. The outer transiting planet,
K2-38 b, has an orbital period of 10.5 days, a mass of 9.8M⊕, and a radius of 2.4R⊕.

K2-38 was photometrically observed by the K2 mission (Howell et al., 2014) during its
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Table 5.1: System parameters.
Parameter Real value Prior(a) Inferred value
Model Parameters planet b

Orbital period Porb (days) 1.21321 U [1.2122, 1.2142] 1.2132028± 0.0000097
Transit epoch T0 1.0 U [0.9965, 1.0035] 1.00010± 0.00012
Scaled planet radius Rp/R? 0.020525 U [0, 0.1] 0.0204479+0.00027

−0.00015

Impact parameter, b 0.33 U [0, 1] 0.25+0.13
−0.15

e 0 F [0] 0
ω? 0 F [0] 0
RV semi-amplitude variation K (m s−1) 3.95 U [0, 50] 4.16± 0.23
Model Parameters planet c

Orbital period Porb (days) 5.61122 U [5.6012, 5.6212] 5.611254± 0.000041
Transit epoch T0 2.21529 U [2.2143, 2.2163] 2.21530± 0.00010
Scaled planet radius Rp/R? 0.04105 U [0, 0.1] 0.04058+0.00057

−0.00030

Impact parameter, b 0.60 U [0, 1] 0.57+0.06
−0.03

e 0 F [0] 0
ω? 0 F [0] 0
RV semi-amplitude variation K (m s−1) 4.74 U [0, 50] 4.86± 0.33
Model Parameters planet d

Orbital period Porb (days) 12.12349 U [11.8235, 12.4235] 12.142± 0.028
Transit epoch T0 4.640 U [4.1396, 5.1396] 4.592± 0.052
e 0.1 U [0, 1] 0.096± 0.012
ω? 3.57 U [0, 2π] 3.60± 0.14
RV semi-amplitude variation K (m s−1) 22.75 U [0, 50] 22.99± 0.24
Other Parameters

Cubic root of stellar density ρ
1/3
? 1.458 U [0.05, 2] 1.496+0.039

−0.072

Systemic velocity γA (km s−1) 10 U [9, 11] 9.99991± 0.00017
Systemic velocity γB (km s−1) 0 U [−1, 1] 0.00107± 0.00084
Jitter term σA (m s−1) 0 U [0, 100] 0.25+0.24

−0.18

Jitter term σB (m s−1) 4 U [0, 100] 4.09+0.77
−0.68

Parametrized limb-darkening coefficient q1 0.55 U [0, 1] 0.60±0.05
Parametrized limb-darkening coefficient q2 0.29 U [0, 1] 0.25+0.05

−0.04

Note – (a) U [a, b] refers to uniform priors between a and b and F [a] to a fixed value a.
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Figure 5.4: Upper panels: Phase-folded light curves for planet b and c of the simulated planetary system.
Synthetic data points are plotted with the red circles. The best fitting transit models are over-plotted
with thick black lines. Middle and lower panels: Phase-folded RV curves for planet b, c and d of the
simulated planetary model. Synthetic data for instrument A is shown with blue circles, whereas for
instrument B with red diamonds. The best fitting RV models are over-plotted with thick black lines.
Gray error bars account for the jitter term for each instrument.
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Figure 5.5: Posterior distributions for T0,b (upper left), Pb (upper right), ρ
1/3
? (lower left), and Rp,c/R?

(lower right) of the toy model fit. The solid red lines mark the medians of the distributions, whereas the
dashed red lines mark the limits of the 68% credible intervals. The mode are shown with the dot-dashed
yellow lines.

campaign 2. The RV measurements were gathered with the HIRES spectrograph (Vogt
et al., 1994) mounted at the Keck I 10 m telescope, at Keck Observatory (Mauna Kea,
Hawai’i). Sinukoff et al. (2016) detected a linear trend in the RV measurements, indicative
of the presence of an additional companion in the system. While modelling the RV data,
the authors added a jitter term to the nominal uncertainties to account for instrumental
velocity noise not included in the nominal uncertainties and/or possible sources of stellar
variability. Because of its complexity, this system is an ideal test-bench for pyaneti.

We used the EVEREST processed light curve (Luger et al., 2016) to perform the transit
light curve analysis. We de-trended the K2 data with exotrending (Barragán & Gandolfi,
2017, see Appendix A.1) by fitting a second-order polynomial function to the 5-hour out-
out-transit data centred around each transit. The RV measurements were taken from
Sinukoff et al. (2016).

We used the general form of the likelihood given in eq. (5.3) to account for the RV jitter
term. We added a linear trend term γ̇ to equation (2.60) taking as zero point the time of
conjunction of planet b. We super-sampled the transit model by a factor of 10 to account
for the K2 long-cadence data (Kipping, 2010, see Appendix A.2). We fixed q2 to 0.5 to
recover the linear limb darkening case and set Gaussian priors on q1 with 1-σ uncertainty of
0.1. We set uniform priors for the remaining parameters (details are provided in Table 5.2)
and assumed circular orbits as adopted by Sinukoff et al. (2016). The sampling of the
parameter space follows the procedure described in Sect. 5.4.1. Briefly, we initialised 100
independent chains created randomly inside the prior ranges. Once all chains converged,
we created posterior distributions with 50,000 independent points for each parameter.
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Table 5.2: System parameters.
Parameter Sinukoff et al. (2016) Prior(a) Fitted value
Model Parameters planet b

Orbital period Porb (days) 4.01593± 0.00050 U [4.0134, 4.0184] 4.01632+0.00032
−0.00034

Transit epoch T0 (BJD - 2,450,000) 6896.8786± 0.0054 U [6896.8486, 6896.9086] 6896.8734+0.0038
−0.0034

Scaled semi-major axis a/R? 10.7+1.3
−3.7 U [1.1, 50] 11.3+1.0

−2.3

Scaled planet radius Rp/R? 0.01281+0.00105
−0.00064 U [0, 0.1] 0.01247+0.00087

−0.00045

Impact parameter, b 0.48± 0.30 U [0, 1] 0.35+0.33
−0.25

e 0 F [0] 0
ω? (deg) 90 F [90] 90
RV semi-amplitude variation K (m s−1) 4.6± 1.1 U [0, 100] 4.6± 1.1
Model Parameters planet c

Orbital period Porb (days) 10.56103± 0.00090 U [10.5565, 10.5655] 10.56155± 0.00049
Transit epoch T0 (BJD - 2,450,000) 6900.4752± 0.0033 U [6900.4552, 6900.4952] 6900.4740± 0.0018
Scaled semi-major axis a/R? 26.3+5.4

−16.1 U [1.1, 50] 31.3+2.1
−5.1

Scaled planet radius Rp/R? 0.02004+0.0024
−0.0013 U [0, 1] 0.01841+0.0010

−0.0005

Impact parameter, b 0.640.23
−0.41 U [0, 1] 0.34+0.27

−0.25

e 0 F [0] 0
ω? (deg) 90 F [90] 90
RV semi-amplitude variation K (m s−1) 2.8± 1.3 U [0, 1000] 2.8± 1.3
Other Parameters

RV value at T0,1 γ (m s−1) (b) −1.7± 0.9 U [−1000, 1000] 0.034± 0.010
Linear trend slope γ̇ (km s−1 d−1) −0.101± 0.030 U [−1, 1] −0.103± 0.029
HIRES jitter term σHIRES (m s−1) 2.4+1.0

−0.7 U [0, 1000] 2.4+1.0
−0.7

Parametrized LDC q1 0.38± 0.1 (c) N [0.38, 0.1] 0.42± 0.1
Parametrized LDC q2 0.5 (c) F [0.5] 0.5

Note – (a) U [a, b] refers to uniform priors between a and b, N [a, b] to Gaussian priors with median a and standard
deviation b, and F [a] to a fixed value a. (b) Our results and Sinukoff et al. results do not agree because the instant at
which the intercept is calculated is not the same. (c) We transform the values reported by Sinukoff et al. to the q1 and
q2 parametrization to perform the comparison.

Results

The final estimates and their 1-σ uncertainties are taken as the median and the 68 %
of the credible interval of the posterior distributions. Values are reported in Table 5.2.
Photometric and RV data, along with the best fitting transit and RV models are displayed
in Figure 5.6.

We compare our results with those from Sinukoff et al. (2016) in Table 5.2. The
parameter estimates agree well within their 1-σ uncertainties. However, we note that the
largest discrepancies are found for the parameters derived from the K2 data. This is very
likely due to the different extracted light curve used in our analysis, as well as on the
different transit de-trending algorithm. As for the RV-derived parameters, our results are
in excellent agreement with those reported by Sinukoff et al. (2016).

This test confirms the correct implementation of the MCMC method and multi-planet
equations. Sinukoff et al. (2016) used the widely used ensemble sampler package emcee

(Foreman-Mackey et al., 2013).

5.5 Execution performance

We show here that pyaneti is able to produce scientific results within a few minutes in
a personal laptop. We ran the test case presented in section 5.4.2 (2 planet system, 435
data points, 10 000 iterations with 100 independent Markov chains) with different CPU
configurations. We used a machine with an Intel i7-6500U CPU (Four 2.50GHz cores) and
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Figure 5.6: Upper panel : HIRES RV measurements of K2-38 (blue circles). The best-fitting solution
is shown with a thick black line. A linear trend is visible in the data. The fitted stellar jitter is shown
as a gray extension to the nominal error bars. Middle panels: Phase-folded RV curves for K2-38 b (left)
and K2-38 c (right). Lower panels: Transit light curve folded to the orbital period of K2-38 b (left) and
K2-38 c (right), and residuals. The red points are K2 data. The thick black lines mark the best fitting
transit models.
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with Linux (Fedora 64-bit) operating system. We compiled the code with gfortran 8.1.1
and used 1, 2, and 4 CPUs. The respective execution times were 10m 11s, 5m 56s and
4m 22s. These results prove the power of the code to perform a full run in a personal
laptop. However, we stress that the execution time depends on the analysed data set.
Based on our experience with pyaneti, the modelling of only RV data is carried withing
a few minutes. For demanding fits requiring longer execution time (e.g., long time-series
photometry), pyaneti can be ran in parallel in a server machine equipped with more than
one CPU.



CHAPTER 6

CHARACTERISATION OF EXOPLANETS

In this chapter we present the planetary systems that have been characterised in the
course of this thesis project. They are:

• K2-98 b: A doomed Neptunian world (Barragán et al., 2016).

• K2-139: An active star hosting a warm Jupiter (Barragán et al., 2018a).

• K2-141 b: A lava world with a “short year” (Barragán et al., 2018b).

• K2-111 b: A very old world (Fridlund et al., 2017).

• K2-19: Two worlds in resonance (Nespral et al., 2017).

• K2-106 b and c: Two worlds with different densities (Guenther et al., 2017).

• HD 3167 b and c: Two worlds with different densities II (Gandolfi et al., 2017).

• GJ 9827: The different nature of three neighbouring worlds (Niraula et al., 2017;
Prieto-Arranz et al., 2018).

• 44 Validated Planets from K2 Campaign 10 (Livingston et al., 2018).

• π Mensae c: A world transiting a naked-eye star (Gandolfi et al., 2018).

63
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6.1 K2-98 b: A doomed Neptunian world

We announced the discovery and mass measurement of K2-98 b in Barragán et al. (2016).
K2-98 b is a transiting Neptune-size planet monitored by the K2 mission during its Cam-
paign 5. We combined the K2 time-series data with ground-based photometric and spec-
troscopic follow-up observations to confirm the planetary nature of the object and derive
its mass, radius, and orbital parameters. K2-98 b is a warm Neptune-like planet in a
10-day orbit around a V=12.2 mag F-type star with M? = 1.074 ± 0.042 M�, R? =
1.311 ± 0.083 R�, and age of 5.2+1.2

−1.0 Gyr. We derived a planetary mass and radius of
Mp =33± 12M⊕and Rp =4.36+0.31

−0.30R⊕. We estimated that the planet will be engulfed by
its host star in ∼3 Gyr, due to the evolution of the latter towards the red giant branch.
K2-98 b joins the still relatively small number of Neptune-size planets (∼20 objects) whose
mass and radius have been determined with a precision better than 33 %.

6.1.1 Detection

The transit detection an validation were done with the DST (Cabrera et al., 2012) and
the EXOTRANS pipelines (Grziwa et al., 2012) using Vanderburg & Johnson (2014) light
curves. Both, DST and EXOTRANS, identified a planet-like signal associated with the star
EPIC 211391664 (K2-98). The candidate passed standard test which validated the plane-
tary nature of the transiting object (Barragán et al., 2016). The Vanderburg & Johnson
(2014) light curve for K2-98 is displayed in Figure 6.1.

6.1.2 Ground-based imaging

The photometric follow-up of K2-98 (EPIC 211391664) was done on 17 May 2016 with
the FASTCAM lucky imaging camera (Oscoz et al., 2008) mounted on the 1.5m Carlos
Sánchez Telescope of Teide Observatory in Tenerife (Spain). Data were processed using
the COELI algorithm (Cagigal et al., 2016). The final image shows the target to be
isolated except for the detection of an object located 1.9” South-East of K2-98 (see Fig.
1 of Barragán et al., 2016). We estimated that the light from the faint object contributes
with a fraction of 1/(50±10) to the measured flux of K2-98 and correct the K2 light curve
accordingly prior to performing the joint analysis.

6.1.3 Spectroscopic follow-up

The RV data consist of 12 data points taken with three different instruments (4 from FIES,
4 from HARPS and 4 from HARPS-N, see Sect. 4.3 for details about these instruments).
The full list of RV measurements are presented in (Barragán et al., 2016). Figure 6.1 shows
the RV time-series for the three instruments following the subtraction of the instrumental
offsets.

6.1.4 Stellar parameters

The stellar parameter estimation was done using co-added spectra for each instrument.
The derived values for Teff , log g?, [M/H], and v sin i? are listed in Table 6.1. The stellar
mass, radius, and age were determined by combining the effective temperature Teff and
metallicity [M/H]with the mean density ρ? obtained from the transit light curve modelling
(see Sect. 6.1.5). The final adopted stellar parameters are reported in Table 6.1.
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Figure 6.1: Upper panel: K2 Light curve for K2-98 as extracted by Vanderburg & Johnson (2014).
The positions of the transit signals are marked with vertical red dot-dashed lines. Lower panel: Top:
FIES (blue circles), HARPS-N (red diamonds) and HARPS (green squares) RV measurements versus
time, following the subtraction of the systemic velocities for each instrument. The 1-σ uncertainties are
marked using the same colour used for each data set. The solid line represents the inferred RV model.

6.1.5 Joint RV-transit data analysis

We perform the joint modelling of the photometric and spectroscopic data using the code
pyaneti (Barragán et al., 2019, see also Sect. 5.3). The photometric data included in the
joint analysis are subsets of the whole K2 light curve extracted by Vanderburg & Johnson
(2014). We select ∼13 hours of data-points centred on each of the 7 transits1 observed by
K2. We detrended the individual transits using a second-order polynomial locally fitted
to the ∼16 out-of-transit points per transit (8 points per side). The final data-set contains
180 photometric points. The modelled RV data-set contains the 12 measurements listed
in (Barragán et al., 2016).

The fitted parameters are the transit epoch T0, the orbital period P , the eccentricity
e, the argument of periastron of the star’s orbit ω?, the scaled semi-major axis a/R?,
planet-to-star radius ratio Rp/R?, impact parameter b, the RV semi-amplitude variation
K, the systemic velocity γj for three different instruments and the LDC parametrization
q1 and q2. The prior details for all the parameters are given in Table 6.1. We account for
the K2 long integration (Texp=29.425 minutes) by super-sampling the transit model with
10 sub-samples (Kipping, 2010, see Appendix A.2).

The joint modelling is carried out running 500 independent chains. Once chains con-
verged, we ran 5000 additional iterations with a thin factor of 10, leading to a final number
of 500 independent points for each chain, i.e., 250 000 independent points for each fitted
parameter.

We noted than an initial global fit to the data yields the parameterized limb darkening
coefficients q1 = 0.33+0.30

−0.16 and q2 = 0.38+0.35
−0.24, which corresponds to u1 = 0.43 ± 0.23 and

1The transit duration is ∼5 hours.
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Figure 6.2: Posterior distributions of the K2-98’s parameters as obtained from the final analysis performed
with pyaneti. The blue region corresponds to the marginalised posterior P (M |D), whereas the shaded
green region mark the shape of the prior P (M). Median (solid red line), 68% credible interval (dashed
red line), and mode (dash-dotted yellow line) are also shown.

u2 = 0.14+0.39
−0.33. As described in Csizmadia et al. (2013), the large uncertainties arise from

the shallow transit depth (∼0.1 %), the small number of data points (∼180) and transits
(7), and the K2 long integration time (∼30 minutes). We thus choose to constrain the limb
darkening coefficient interpolating the table of Claret & Bloemen (2011) and assuming
conservative 0.05 error bars. We stress that the system parameters derived with uniform
priors on the limb darkening coefficients are consistent to within 1-σ uncertainties with
those obtained by setting the Gaussian prior.

The inferred posterior distributions from the MCMC analysis are shown in Figure 6.2.
The parameter estimates and error bars are listed in Table 6.1. They are taken as the
median and the 68 % central interval of the final posterior distributions. Our results are
consistent with the transit parameters derived by Barros et al. (2016) and Pope et al.
(2016). Figure 6.3 shows the folded transit light curve and phase-folded RV curve, along
with their inferred models.
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Table 6.1: K2-98 system parameters.
Parameter Prior(a) Final value
Stellar parameters

Star mass M? (M�) · · · 1.074± 0.042
Star radius R? (R�) · · · 1.311± 0.083
Star density ρ? (from spectroscopy, g cm−3) · · · 0.67+0.15

−0.12g cm−3

Star density ρ? (from light curve, g cm−3) · · · 0.60+0.12
−0.22g cm−3

Effective Temperature Teff (K) · · · 6120± 80
Surface gravity log g? (cgs) · · · 4.23+0.03

−0.05

Iron abundance [Fe/H] (dex) · · · −0.2± 0.1
Star distance d (pc) · · · 435+30

−15

Model parameters of K2-98

Orbital period Porb (days) U [10.1331, 10.1403] 10.13669± 0.00047
Transit epoch T0 (BJDTDB−2 450 000) U [7145.9667, 7145.9947] 7145.9803± 0.0018
Scaled semi-major axis a/R? U [5, 100] 14.8+0.9

−2.1

Planet-to-star radius ratio Rp/R? U [0, 0.2] 0.03038+0.00098
−0.00071

Impact parameter, b U [0, 1.0] 0.35+0.25
−0.24√

e sinω F [0] 0√
e cosω F [0] 0

Radial velocity semi-amplitude variation K (m s−1) U [0, 1000] 9.3± 3.2
Additional model parameters

Parameterized limb-darkening coefficient q1 N [0.40, 0.05] 0.40± 0.05
Parameterized limb-darkening coefficient q2 N [0.26, 0.05] 0.26± 0.05
Systemic velocity γFIES (km s−1) U [76.5927, 76.6343] 76.6114± 0.0042
Systemic velocity γHARPS (km s−1) U [76.7276, 76.7658] 76.7478± 0.0032
Systemic velocity γHARPS−N (km s−1) U [76.7213, 76.7599] 76.7416± 0.0037
Derived parameters of K2-98

Planet mass Mp (M⊕) · · · 33± 12
Planet radius Rp (R⊕) · · · 4.36+0.31

−0.30

Planet mean density ρp (g cm−3) · · · 2.17+0.99
−0.82

Semi-major axis of the planetary orbit a (AU) · · · 0.089+0.009
−0.013

Orbit eccentricity e · · · 0
Orbit inclination ip (degrees) · · · 88.6+0.9

−1.3

Transit duration τ14 (hours) · · · 5.061+0.099
−0.086

Equilibrium temperature(b) Teq (K) · · · 1062+83
−38

Note – (a) U [a, b] refers to uniform priors between a and b, N [a, b] means Gaussian priors with mean a and standard
deviation b and F [a] to a fixed a value. (b) Assuming albedo = 0.
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Figure 6.3: Left panel: transit light curve folded to the orbital period of K2-98 b and residuals. The red
points are the K2 data. The solid line marks the re-binned best-fitting transit model. Right panel: phase-
folded FIES (blue circles), HARPS-N (red diamonds), and HARPS (green squares) RV measurements of
K2-98b and best-fitting circular orbit (solid line), following the subtraction of the systemic velocities as
measured from each instrument.
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6.1.6 Orbital eccentricity

A fit for an eccentric orbit yields e = 0.24+0.30
−0.18 with a significance of only about 1-σ. In

order to further check whether the non-zero eccentricity solution is significant or not, we
run an F-test and calculate the p-value, i.e., the probability that the apparent eccentricity
could have arisen if the underlying orbit were circular (Lucy & Sweeney, 1971). In doing
so we take into account the number of fitted parameters – both for the circular and
eccentric model –, the number of measurements and their uncertainties, and the residuals
from the best fitting circular and eccentric solution. We find a p-value of 0.87, which is
much higher than the 0.05 significance threshold suggested by Lucy & Sweeney (1971) to
prefer e 6= 0 over e = 0. We therefore conclude that the non-zero best fitting eccentricity
obtained with models where e is allowed to vary is not significant. Moreover, we find that
the circular (DOF=153) and eccentric (DOF=151) models provide very similar minimum
χ2 values of ∼152. The difference of the Bayesian information criterion is ∆BIC=10
between the two models, implying that the circular model is favoured. We therefore adopt
the circular model as the one that better describes our data. We note that the derived
system parameters for a non-zero eccentricity are consistent to within 1-σ uncertainties
with those derived assuming a circular orbit.

6.1.7 K2-98 b’s composition

K2-98 b has a mass of Mp = 33 ± 12M⊕and a radius of Rp =4.36+0.31
−0.30R⊕consistent with

a density of 2.17+0.99
−0.82g cm−3. These parameters are calculated adopting the stellar mass

and radius listed in Table 6.1.
Figure 6.4 shows the position of K2-98 b in the mass-radius diagram for Neptune-size

planets. The plot includes only those objects whose both mass and radius have been
estimated with a precision of at least ∼25 %. K2-98 b joins the family of intermediate
mass (20< Mp <50M⊕) Neptune-size planets. Whereas its radius is slightly larger than
that of Neptune (3.9R⊕), the mass of K2-98 b is almost twice as large as the mass of
Neptune. This implies that a solid massive core surrounded by a large atmosphere is
expected (see, e.g., Weiss & Marcy, 2014).

6.1.8 K2-98 b’s formation and migration

Assuming a minimum mass solar nebula (MMSN), the isolation mass (Schlichting, 2014)
of a planet at 0.093 AU is ∼0.004M⊕, which is significantly lower than the mass of K2-
98 b. In order to form K2-98 b in situ, a disc surface density ∼5500 times larger than
the MMSN is required. This value would generate gravitational instabilities in the disc,
because its Toomre parameter would be Q ≈ 0.03� 1 (Schlichting, 2014). This scenario
does not support the in situ formation of K2-98 b.

Valsecchi et al. (2014) proposed that Neptune-mass planets may form via migration
of hot Jupiters that come so close to their host stars as to fill their Roche lobe and start
conservative mass transfer to the star. This may reverse the direction of migration and
increase the orbital period. However, it seems very difficult to reach a final orbital period
of about 10 days, as in the case of K2-98 b. Moreover, this formation scenario cannot easily
account for the measured relatively low density of the planet. Therefore, we argue that
K2-98 b likely formed in the outer region of the protoplanetary disc and then migrated
inwards to its current position (see, e.g. Kley & Nelson, 2012).

We integrate the equations of tidal and rotational evolution as in Lanza & Mathis
(2016) assuming a constant modified tidal quality factor Q′? for the star. Given that the
stellar rotation period is close to the orbital period (see Barragán et al., 2016, Sect. 5),
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Figure 6.4: Mass-radius diagram for Neptune-size planets (2.0.Rp . 6.0R⊕) whose both mass and radius
have been determined with a precision of at least ∼33 % (Exoplanet Orbit Database, as of June 2016; Han
et al., 2014). The red circle marks the position of K2-98 b. The green diamond and blue square show the
position of Neptune and Uranus, respectively. The solid and dashed lines mark the Earth (5.5 g cm−3)
and Neptune (1.6 g cm−3) isodensity curves.

tidal dissipation by inertial waves inside the star is considered leading to a remarkably
stronger tidal interaction than in the case of the equilibrium tide (Ogilvie & Lin, 2007).
Therefore, we explore the evolution for three fixed values of Q′?, i.e., 105, 106, and 107, from
the stronger to the weaker coupling. Following Lanza et al. (2011), we include the loss
of angular momentum produced by the stellar magnetised wind considering a saturation
regime for an angular velocity greater than 8 Ω�, where Ω� is the present solar angular
velocity. We assume that the orbit of the planet is circular, although the tidal interaction
is so weak that any initial eccentricity could survive up to the present stage of the system
evolution (see below).

Fig. 6.5 shows the evolution of the rotation period of the star (upper panel), semi-major
axis of the planet’s orbit (middle panel), and stellar radius (lower panel) as obtained from
the evolutionary models (see Barragán et al., 2016, Sect. 5). Tidal interaction is so weak
that there is virtually no evolution of the orbital separation since the planet arrived at
the present semi-major axis (Fig. 6.5, middle panel). The rotation of the star is braked
solely by the stellar wind with a completely negligible tidal exchange between the orbital
and the spin angular momenta, and no dependency on the stellar tidal quality factor Q′?,
owing to the small mass of the planet and large separation. (Fig. 6.5, upper panel). Under
our model assumptions, we estimate that the star reached the zero age main sequence
(ZAMS) with a rotation period of about 1.5 days.

The tidal evolution of the planet will become important in the future – after ∼3 Gyr
from now – due to the increase of the stellar radius and rotational period of the star,
leading to a rapid decay of the planet’s orbit (Fig. 6.5, middle panel).

The amount of angular momentum in the orbit is insufficient to synchronise the rota-
tion of the star, so the present approximately synchronous state cannot be maintained.
Damiani & Lanza (2015) showed that other systems having host stars with an effective
temperature around 6100 K show a rather wide distribution of the ratio of the orbital
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Figure 6.5: Rotational period of the star (upper panel), semi-major axis of the planet orbit (middle-panel),
and stellar radius (lower panel) versus time. Different line styles refer to different initial semi-major axis
a0 and tidal quality factor of the star Q′? as follows: solid line: Q′? = 106, a0 = 0.0943 AU; dotted line:
Q′? = 107, a0 = 0.0943 AU; dashed line: Q′? = 105, a0 = 0.0943 AU; dash-dotted: Q′? = 105, a0 = 0.037
AU (corresponding to an orbital period of 2.5 days); dash-triple-dotted: Q′? = 106, a0 = 0.037 AU. This
figure was made by A. F. Lanza to appear in Barragán et al. (2016).
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period to the stellar spin period, even in the case of more massive planets, thus supporting
the conclusion that the present approximate synchronicity is probably coincidental.

Finally, we consider the possibility that the planet was initially significantly closer to
the star when the latter reached the ZAMS and was pushed outwards by the action of tides
because angular momentum was transferred from the stellar spin to the orbit, provided
that the rotational period of the star was shorter than the orbital one. We find that
also this scenario is unlikely. As an illustrative case, we show in Fig. 6.5 two integrations
for the planet initially at an orbital period of 2.5 days, corresponding to a semi-major
axis of 0.037 AU. This is the minimum orbital period for observed Neptune-mass planets
around main-sequence stars (cf. Fig. 4 of Valsecchi et al., 2014) that we choose in order
to maximise the strength of the tidal interaction. Since the star was initially rotating
faster than the planet, the tidal interaction was initially pushing the planet outwards, in
particular for Q′? = 105 (Fig. 6.5, middle panel). However, the fast rotational braking of
the star led soon to a rotation period longer than the orbital period. Since the amount
of orbital angular momentum was too small to maintain the synchronous state, the final
fate of the planet was to fall towards the star under the action of tides within a few Gyrs2.
This scenario would account for the significant dearth of Neptune-like planets with orbital
periods below 2-4 days (see, e.g., Mazeh et al., 2016; Szabó & Kiss, 2011).

The tidal evolution of the system further supports an inward migration scenario for
K2-98 b, from the outer region of the system to its current position.

2We note that assuming a different initial orbital period leads to qualitatively similar scenarios. If the initial orbital
period of the planet is shorter than 2.5 days (i.e., a0 < 0.037 AU), tidal push is stronger, but for a shorter time interval
before the rotation period of the star becomes longer than the orbital period, after which the orbit decays faster. If the
planet is further out (P0,orb > 2.5 days and a0 > 0.037 AU), tides are weaker, but they can act longer before the direction
of the evolution of the semi-major axis is reversed and the planet falls into the star.
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6.2 K2-139: An active star hosting a warm Jupiter

We announced the discovery and mass measurement of the exoplanet K2-139 b in Barragán
et al. (2018a). This discovery is part of a series of K2 exoplanet discoveries made by the
KEST collaboration. K2-139 b is a transiting warm-Jupiter on a 29-day orbit around an
active (logR′HK =−4.46± 0.06) K0 V star in K2 Campaign 7. We derived the system’s
parameters by combining the K2 photometry with ground-based follow-up observations.
With a mass of Mp = 0.387+0.083

−0.075 MJ and radius of Rp = 0.808+0.034
−0.033 RJ, K2-139 b is one

of the transiting warm Jupiters with the lowest mass known to the date. The planetary
mean density of ρp = 0.91+0.24

−0.20 g cm−3 can be explained with a core of ∼50M⊕. Given
the brightness of the host star (V = 11.653 mag), the relatively short transit duration
(∼5 hours), and the expected amplitude of the Rossiter-McLaughlin effect (∼25 m s−1),
K2-139 is an ideal target to measure the spin-orbit angle of a planetary system hosting a
warm Jupiter.

6.2.1 Detection

We use the transit detection algorithms DST (Cabrera et al., 2012) and EXOTRANS (Grziwa
et al., 2012) to search for transit signals in K2 Campaign 7 light curves extracted by Van-
derburg & Johnson (2014). Both codes detected a periodic transit-like signal associated
with the star EPIC 218916923 (K2-139). The target passed all the tests which validated
the planetary nature of the transiting object (see Barragán et al., 2018a, for more de-
tails). As a sanity check, we downloaded the EVEREST light curve of EPIC 218916923
(Luger et al., 2016) and detected the same signal. The EVEREST light curve of K2-139 b
is shown in Figure 6.6.

6.2.2 ALFOSC imaging

K2 Campaign 7 is projected close to the galactic centre and thus in a relatively crowded
stellar region. In order to estimate the contamination factor arising from sources whose
light leaks into the photometric masks used by Vanderburg & Johnson (2014) and Luger
et al. (2016), we observed K2-139 on 13 September 2016 (UT) with the ALFOSC camera
mounted at the Nordic Optical Telescope (NOT) of Roque de los Muchachos Observatory
(La Palma, Spain). The sky conditions were photometric with excellent seeing conditions
(∼0.6”). We used the Bessel R-filter and acquired 16 images of 6 sec, 2 images of 20 sec,
and 1 image of 120 sec. The data were bias subtracted and flat-fielded using dusk sky
flats. Aperture photometry was then performed on all stars within the mask used in the
extraction of the light curve by Vanderburg & Johnson (2014) and Luger et al. (2016).

Several fainter stars can be identified inside the photometric mask (see Fig. 2 of Bar-
ragán et al., 2018a), of which the two brightest sources are also in the EPIC catalogue
with Kepler band magnitudes of 16.8 and 18.4. The closest detected source is a 6.8-mag
fainter star at 3.8′′ South of K2-139. We can exclude stars as faint as ∼20 mag at an
angular distance larger than ∼0.6′′ from K2-139. It is worth noting that the faintest star
whose flux could account for the ∼1% deep transit of K2-139 cannot be more than ∼5
mag fainter than our target. The summed flux of these faint stars amounts to 1.4±0.3 %
of the total off-transit flux within the aperture. We subtracted this contamination flux
from the EVEREST K2 light curve prior to performing the joint analysis presented in
Sect. 6.2.5.
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Figure 6.6: K2 Light curve for EPIC 218916923 (K2-139) as extracted by Luger et al. (2016). The
positions of the 3 observed transits are marked with vertical red dot-dashed lines. The quasi-periodic
modulation is very likely caused by Sun-like spots appearing and disappearing from the visible stellar
disc as the star rotates around its axis (see Sect. 6.2.4).

6.2.3 Spectroscopic follow-up

The high-precision radial velocity follow-up of K2-139 was started in June 2016 with the
FIES spectrograph. The observations were carried out as part of the OPTICON and CAT
observing programs 16A/055, P53-201, and P53-203. The data acquisition and reduction
methods are similar to the ones described in Section 4.3.1. We also observed K2-139 in
July, August, and September 2016 with the HARPS and HARPS-N spectrographs. Data
were reduced using the dedicated HARPS and HARPS-N pipelines and extracted the RVs
by cross-correlation with a G2 numerical mask. The full list of FIES (10 measurements),
HARPS (6 measurements), and HARPS-N (3 measurements) RVs are listed in Barragán
et al. (2018a).

6.2.4 Stellar parameters

Spectral analysis

We derived the spectroscopic parameters of K2-139 from the co-added FIES spectra. The
stacked FIES data have a S/N ratio of ∼110 per pixel at 5500 Å. The estimated spectro-
scopic values for K2-139 are Teff = 5340± 110 K, log g? = 4.50± 0.09 (cgs), [Fe/H] = 0.22±
0.08 dex, vmic = 0.9±0.1 km s−1, vmac = 2.5±0.6 km s−1 and v sin i? = 2.8±0.6 km s−1. The
details of the approach to estimate those values are given in Barragán et al. (2018a). As
a sanity check, we also analysed the HARPS and HARPS-N data and obtained consistent
results but with larger error bars, owing to the lower S/N ratio of the co-added HARPS
and HARPS-N spectra compared to that of the co-added FIES data. Using the Boyajian
et al. (2013)’s calibration (see their Table 6), the effective temperature of K2-139 defines
the spectral type of the host star as K0 V.

Interstellar extinction

We measured the visual reddening (AV) of K2-139 following the technique described
in Gandolfi et al. (2008). We fitted the spectral energy distribution of the star to
synthetic colors extracted from the BT-NEXTGEN model spectrum (Allard et al., 2011)
with the same photospheric parameters as the star. We adopted the extinction law of
Cardelli et al. (1989) and assumed a normal value for the total-to-selective extinction,
i.e., RV =AV/E(B− V ) = 3.1. We measured a visual extinction of AV = 0.07± 0.05 mag.
This value is below the upper limit of AV . 0.3 mag extracted from the Schlegel et al.
(1998)’s all-sky extinction map, corroborating our result.
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Rotational period

The K2 light curve of K2-139 displays periodic and quasi-periodic variations with a peak-
to-peak photometric amplitude of ∼2 % (see Fig. 6.6). The late-type spectral type of
the star suggests that the observed variability is due to Sun-like spots appearing and
disappearing from the visible stellar disc as the star rotates around its axis. This is
corroborated by the fact that K2-139 is a chromospherically active star. The HARPS and
HARPS-N spectra show clear emission components in the cores of the Ca ii H&K lines,
from which we measured an average activity index of logR′HK =−4.46± 0.063.

The out-of-transit photometric variability observed in the light curve of K2-139 is
mainly due to two active regions located at opposite stellar longitudes, whose lifetime is
longer than the duration of the K2 observations. Using the spots as tracers of stellar rota-
tion and following the auto correlation function (ACF) technique described in McQuillan
et al. (2014), we estimated that the rotational period of the star is Prot = 17.24±0.12 days.
The Lomb-Scargle periodogram of the light curve shows its strongest peak at the same
period confirming our results.

It is worth noting that the rotation period (Prot = 17.24 ± 0.12 days) and radius
(R?=0.862±0.032R�; see next section) of the host star translate into a maximum value for
the projected rotational velocity of v sin i?,max = 2.53± 0.10 km s−1, which agrees with the
spectroscopically derived v sin i? = 2.8 ± 0.6 km s−1, suggesting that the star is seen nearly
equator-on (i? ≈ 90 deg) and that the system might be aligned along the line-of-sight.

Stellar mass, radius and age

We derived the stellar mass, radius, and age using the on-line interface for Bayesian es-
timation of stellar parameters available at http://stev.oapd.inaf.it/cgi-bin/param.
Briefly, the web tool interpolates onto PARSEC model isochrones (Bressan et al., 2012), the
V-band apparent magnitude, effective temperature, metal content, and parallax. We used
the V-band magnitude reported in Table 1 of Barragán et al. (2018a) – after correcting
for interstellar reddening (Sect 6.2.4) – along with the effective temperature and metal
content we derived in Sect. 6.2.4. The parallax was retrieved from the Gaia’s first data
release (px = 6.56 ± 0.43 mas, d= 152± 10 pc Fabricius et al., 2016). We adopted the
log-normal initial mass function from Chabrier (2001).

K2-139 has a mass of M? = 0.919 ± 0.033M� and radius of R? = 0.862 ± 0.032R�,
corresponding to a surface gravity of log g? = 4.503±0.035 (cgs), in excellent agreement
with the spectroscopically derived value of log g? = 4.50±0.09 (cgs). The derived mean
density ρ? = 2.02 ± 0.24 g cm−3 of K2-139 is also consistent within 1-σ with the density
estimated by the modelling of the transit light curve (ρ? 2.11+0.74

−0.81 g cm−3; see Sect. 6.2.5).
The isochrones provide an age of 3.6±3.4 Gyr for K2-139. Using the equations given

in Barnes & Kim (2010) and Barnes (2010), the rotation period of 17.3 days implies a
gyrochronological age of 1.8± 0.3 Gyr.

6.2.5 Joint RV-transit data analysis

We performed the joint fit to the photometric and RV data using the pyaneti software
(Barragán et al., 2019, see also Sect. 5.3). The photometric data included in the joint
analysis are subsets of the whole EVEREST K2 light curve. We used the EVEREST light
curve because it provides a slightly better rms over the Vanderburg & Johnson (2014)’s
data. We selected ∼10 hours of data-points around each of the 3 transits, which have a

3This value is corrected for the interstellar medium absorption, following the procedure described in Fossati et al. (2017)
and using the measured stellar parameters and reddening. The correction is +0.06. The star is therefore slightly more
active than what measured from the spectra.

http://stev.oapd.inaf.it/cgi-bin/param
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duration of ∼5 hours. We de-trended each individual transits with the code exotrending

(Barragán & Gandolfi, 2017, see Appendix A.1), using a second-order polynomial fitted
to the out-of-transit points. The fitted data include 12 points immediately before and
after each transit, with the exception of the last transit for which only 9 data points are
available. We removed the data points that are affected by stellar spot crossing events
(see Sect. 6.2.6 for more details).

We fitted the RV data using a Keplerian model for the planet, along with two sine-like
curves to account for the activity-induced RV (see Section 6.2.6 for details). We adopted
the limb-darkened quadratic law of Mandel & Agol (2002) for the transit model. Following
Kipping (2010, see Appendix A.2), we super-sampled the light curve model using 10 sub-
samples per K2 exposure to account for the long-cadence acquisition. Details on the fitted
parameters and adopted priors are given in Table 5.1. We use the same approach as in
Sect. 6.1.5 to generate 250, 000 independent points for each fitted parameter.

6.2.6 Stellar activity modeling

A simple Keplerian model provides a poor fit to the RV measurements with χ2/dof = 6.1
(Table 6.2), suggesting that additional signals might be present in our Doppler data.
Activity-induced RV variation is expected given the 2 % peak-to-peak photometric vari-
ability observed in the K2 light curve of K2-139 (Fig. 6.6) and the Ca ii H & K activity
index of logR′HK =−4.46 ± 0.06. The K2 photometric variation corresponds to a spot
filling factor of approximately 2 %, if this variation is due to cool starspots. We can use
the empirical relationship relating spot coverage to RV amplitude from Saar & Donahue
(1997) or Hatzes (2002) to estimate the RV amplitude expected from spots. Using the pro-
jected rotational velocity of 2.8 km s−1 results in an RV semi-amplitude of ≈20–30 m s−1.
The code SOAP2 (Dumusque et al., 2014), designed to estimate the effect of active regions
on photometric and spectroscopic measurements, provides consistent results.

In order to look for additional signals in our Doppler data, we performed a frequency
analysis of the RV measurements and activity indicators. The full details are described
in Barragán et al. (2018a). We concluded that we cannot exclude the existence of spot-
induced signals in our RV measurements.

Photometric and radial velocity variations due to rotational modulation can be complex
with not only the rotational period Prot present, but also its harmonics, e.g., Prot/2, Prot/3.
Assuming that the surface structures responsible for this modulation (e.g., cool spots) are
not evolving rapidly, then the simplest representation of the rotational modulation is
through the Fourier components defined by the rotation period and its harmonics.

Figure 6.6 shows that the evolution time-scale of the active regions in the stellar surface
is longer than the 80-day duration of the K2 campaign. Since our RV follow-up spans 55
days, we can assume that any activity-induced RV signal is coherent within our observing
window. This approach has been used previously for other planetary systems orbiting
active stars (e.g., Pepe et al., 2013, see Appendix B).

The Fourier analysis of the K2 light curve is the best way to measure the contribution
of the rotation period and its harmonics to the quasi-periodic photometric variability
of the star. We therefore analysed the K2 light curve using a pre-whitening procedure.
That is, the dominant period was found, a sine-fit made to the data and subtracted, and
additional periods searched in the residual data. We used the program Period04 (Lenz
& Breger, 2005) for this procedure.

The dominant periods are ∼17.2 days, i.e., the rotation period of the star (Sect. 6.2.4),
and roughly the first four harmonics (i.e., 8.6, 5.7, 4.3, and 3.4 days). The 17.2- and
8.6-day periods have about the same amplitude, while the 5.7-day period (Prot/3) has
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Table 6.2: Model comparison for K2-139 RV data.

Model Comment Npars Kb (m s−1) χ2/dof(a) lnP (D|M) AIC(b)

P0 Planet 6 29.1± 2.0 6.1 35.6 -60

P1 Planet + 1 sine-curve at Prot 9 29.4± 2.4 3.4 58.1 -98

P2 Planet + 2 sine-curves at Prot and Prot/2 11 27.3+2.6
−2.5 3.8 60.1 -98

P3 Planet + 3 sine-curves at Prot, Prot/2, and Prot/3 13 27.8+2.7
−2.6 5.3 59.3 -93

NP1 1 sine-curve at Prot (No planet signal) 6 0 18.5 -44.8 101

NP2 2 sine-curves at Prot and Prot/2 (No planet signal) 8 0 15.9 -12.0 40

Note – (a) χ2 value assuming no jitter. (b) We used the Akaike Information Criteria (AIC = 2Npars − ln 2P (D|M))
instead of the widely used Bayesian information criteria (BIC) because our RV data sample is small (19 data points),
and BIC performs better for large samples (Burnham & Anderson, 2002).

10% of the main amplitude. The Prot/4 signal has only about 4% of the main amplitude.
The light curve analysis indicates that the signal due to rotational modulation can largely
be represented by the rotational period (Prot) and its first harmonic (Prot/2).

In order to test if the addition of RV sinusoidal signals at the stellar rotation period and
its harmonics can account for the additional variation seen in our RV measurements, we
compared different models by adding signals one by one. The first model (P0) includes
only the planet signal, i.e., a Keplerian model fitted to the RV data using the same
priors given in Table 6.3, but fixing epoch and period to the values derived by the transit
modelling. The next model (P1) is obtained from P0 by adding a sinusoidal signal at
the rotation period of the star (Prot). Models P2 includes the first harmonic of the
rotation period (Prot/2), whereas model P3 account for the first (Prot/2) and second
(Prot/3) harmonics. While adding sinusoidal signals, we fitted for their amplitudes, phases
and periods. We used flat priors for the phases and amplitudes (details in Table 6.3). We
used a Gaussian prior for Prot using the value and its uncertainty derived in Sect. 6.2.4.
The periods of the harmonic signals were left free to vary depending on the value assumed
by Prot at each step of the MCMC chains. In order to check if the RV variation induced
by the planet is significant in our data set, we also performed the fit using models where
the planetary signal was not included (models NP1 and NP2; see Table 6.2).

Table 6.2 shows the goodness of the fit for each model. The preferred model is P2
(planet plus 2 sinusoidal signals at Prot and Prot/2) with the lowest Akaike Information
Criteria (AIC) and maximum likelihood. This result is consistent with the Fourier analysis
of the K2 light curve, which suggests that the major contribution to the photometric
variations arises from the stellar rotation period and its first harmonic. Our analysis
provides also additional evidence that the Doppler motion induced by the planet is present
in our RV data set. First, the planet signal does not significantly vary for the P0, P1, P2
and P3 models (Table 6.2). Second, the models with no planetary signal (NP1 and NP2)
provide a poor fit to the RV measurements (Table 6.2).

To account for additional instrumental noise not included in the nominal RV error bars
and/or imperfect treatment of the various sources of RV variations, we fitted for a jitter
term for each instrument. The final parameter estimates and their error bars are listed
in Table 6.3. They are defined as the median and the 68% credible interval of the final
posterior distributions displayed in Figure 6.7). The best fitting transit and RV models
are displayed in Figure 6.8 along with the photometric and RV data points.
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Table 6.3: K2-139 system parameters.
Parameter Prior(a) Final value
Stellar parameters

Star mass M? (M�) · · · 0.919± 0.033
Star radius R? (R�) · · · 0.862± 0.032
Star density ρ? (from spectroscopy, g cm−3) · · · 2.02+0.25

−0.22

Star density ρ? (from light curve, g cm−3) · · · 2.11+0.74
−0.81

Effective Temperature Teff (K) · · · 5340± 110
Surface gravity log g? (cgs) · · · 4.50± 0.09
Iron abundance [Fe/H] (dex) · · · 0.22± 0.08
Microturbulent velocity vmic (km s−1) · · · 0.9± 0.1
Macroturbulent velocity vmac (km s−1) · · · 2.5± 0.6
Projected rotational velocity v sin i? (km s−1) · · · 2.8± 0.6
Rotational period Prot (days) · · · 17.24± 0.12
Activity index(b) logR′HK · · · −4.46± 0.06
Gyrochronological age (Gyr) · · · 1.8± 0.3
Interstellar extinction AV (mag) · · · 0.07± 0.05
Star distance d (pc) · · · 152± 10
Model parameters of K2-139 b

Orbital period Porb (days) U [28.3773, 28.3873] 28.38236± 0.00026
Transit epoch T0 (BJDTDB−2 450 000) U [7325.8120, 7325.8220] 7325.81714± 0.00033
Scaled semi-major axis a/R? U [1.2, 100] 44.8+4.7

−6.7

Planet-to-star radius ratio Rp/R? U [0, 0.2] 0.0961+0.0023
−0.0015

Impact parameter, b U [0, 1.2] 0.30+0.21
−0.19√

e sinω U [−1, 1](c) 0.10+0.29
−0.30√

e cosω U [−1, 1](c) 0.06+0.24
−0.27

Radial velocity semi-amplitude variation K (m s−1) U [0, 200] 27.7+6.0
−5.3

Model parameters of RV sinusoidal signal at Prot

Period Prot (days) N [17.24, 0.12] 17.26± 0.12
Epoch T0 (BJDTDB−2 450 000) U [7324.0, 7341.3] 7332.4+5.5

−5.1

Radial velocity semi-amplitude variation K (m s−1) U [0, 200] 7.1+7.5
−5.0

Model parameters of RV sinusoidal signal at Prot/2

Period Porb (days) F [Prot/2] 8.63± 0.06
Epoch T0 (BJDTDB−2 450 000) U [7317.0, 7325.7] 7321.3± 2.2
Radial velocity semi-amplitude variation K (m s−1) U [0, 200] 10.6+7.7

−6.9

Additional model parameters

Parameterised limb-darkening coefficient q1 U [0, 1] 0.37+0.18
−0.13

Parameterised limb-darkening coefficient q2 U [0, 1] 0.48+0.24
−0.16

Systemic velocity γFIES (km s−1) U [−32.3913,−30.2990] −31.3575± 0.0064
Systemic velocity γHARPS (km s−1) U [−32.2217,−30.1633] −31.1970± 0.0093
Systemic velocity γHARPS−N (km s−1) U [−32.2141,−30.1683] −31.1950+0.0122

−0.0128

Jitter term σFIES (m s−1) U [0, 100] 9.6+9.8
−6.5

Jitter term σHARPS (m s−1) U [0, 100] 15.4+11.0
−7.6

Jitter term σHARPS−N (m s−1) U [0, 100] 10.2+15.8
−7.3

Derived parameters of K2-139 b

Planet mass Mp (MJup) · · · 0.387+0.083
−0.075

Planet radius Rp (RJup) · · · 0.808+0.034
−0.033

Planet mean density ρp (g cm−3) · · · 0.91+0.24
−0.20

Semi-major axis of the planetary orbit a (AU) · · · 0.179+0.021
−0.027

Orbit eccentricity e · · · 0.12+0.12
−0.08

Argument of periastron of stellar orbit ω? (degrees) · · · 124+175
−79

Orbit inclination ip (degrees) · · · 89.62+0.25
−0.36

Transit duration τ14 (hours) · · · 4.89+0.08
−0.22

Equilibrium temperature(d) Teq (K) · · · 565+48
−32

Note – (a) U [a, b] refers to uniform priors between a and b, N [a, b] means Gaussian priors with mean a and standard
deviation b and F [a] to a fixed a value. (b) Corrected for interstellar reddening following Fossati et al. (2017). The
correction is +0.06. (c) The code always ensures that e < 1. (d) Assuming albedo = 0.
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Figure 6.7: Posterior distributions of the K2-139 b’s parameters as obtained from the final analysis
performed with pyaneti. The blue region corresponds to the marginalised posterior P (M |D), whereas
the shaded green region mark the shape of the prior P (M). Median (solid red line), 68% credible interval
(dashed red line), and mode (dash-dotted yellow line) are also shown.
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Figure 6.8: Top: FIES (blue circles), HARPS-N (green diamonds) and HARPS (red squares) RV
measurements versus time, following the subtraction of the systemic velocities for each instrument. The
1σ uncertainties are marked using the same colour used for each data-set. The vertical grey lines mark
the error bars including jitter. The solid line represents the best fitting RV model, which includes the
planet signal, and the activity signal at the stellar rotation period and its first harmonic. Lower left
panel : Transit light curve folded to the orbital period of K2-139 b and residuals. The red points mark
the K2 data and their error bars. The solid line mark the re-binned best-fitting transit model. Lower
right panel : Phase-folded RV curve of K2-139 b and best fitting Keplerian solution (solid line), following
the subtraction of the two additional sinusoidal signals used to account for the stellar activity. The FIES,
HARPS, and HARPS-N are corrected for the instrument offsets as derived from the global analysis.

6.2.7 Additional companion

Huang et al. (2016) found that warm Jupiters with low eccentricities (e . 0.4) have inner
low-mass companions. They used this evidence as an argument in favour of the in situ
formation, since the planet migration would have cleaned the warm Jupiter neighbour-
hood. We searched the light curve for additional transit signals but found no evidence for
an additional transiting planet in the system. The periodogram of the RV residuals show
no significant peak with false alarm probability lower than 5 %.

6.2.8 Spot-crossing events

The passage of a planet in front of a spot can be detected as a bump in the transit light
curve (see, e.g., Sanchis-Ojeda & Winn, 2011). Spot-crossings events are clearly visible in
the EVEREST transit light curves (Fig. 6.8). The same features appear at the same times
and with consistent amplitudes in the Vanderburg & Johnson (2014) data, confirming that
the bumps are real and not due to systematics. To assess whether the bumps significantly
affect the parameter estimates, we performed the joint analysis as described in Sect 6.2.5
including all the transit data points. We found that the final parameters are consistent
within 1-σ with those reported in Table 6.3.
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Figure 6.9: Warm Jupiters (black squares; Mp ≥ 0.3 MJup and 10 ≤ Porb ≤ 100 days) whose mass and
radius have been estimated with a precision of at least 25 % (as of January 2017, exoplanet.eu). K2-139 b
is shown with a filled red circle. The solid line corresponds to a planet with a pure hydrogen composition
(Seager et al., 2007). The dashed lines represent the Fortney et al. (2007) models for planet core masses
of 0, 10, 25, 50 and 100 M⊕. The vertical dotted line marks the giant planet lower limit as defined by
Hatzes & Rauer (2015).

6.2.9 Planet’s composition and formation scenario

With a mass of Mp = 0.387+0.083
−0.075 MJ and radius of Rp = 0.808+0.034

−0.033 RJ (resulting in a
mean density of ρp=0.91+0.24

−0.20 g cm−3), K2-139 b joins the small group of well characterised
warm Jupiters. Fig. 6.9 shows the position of K2-139 b in the mass-radius diagram for
warm Jupiters (Mp ≥ 0.3MJup; 10 ≤ Porb ≤ 100 days) whose mass and radius have
been determined with a precision better than 25 % (14 objects). Notably, K2-139 b is the
transiting warm Jupiter with the lowest mass known to the date in which the discovery
was announced, if the definition of giant planets given by Hatzes & Rauer (2015) is
adopted. Fig. 6.9 displays also the planetary models of Fortney et al. (2007) for different
core masses and age between 1.0 and 4.5 Gyrs. The planet radius of K2-139 b can be
explained if the planet has a core4 of 49+19

−17M⊕, containing ∼40 % of the total planetary
mass. We expect that K2-139 b has a solid core surrounded by a gaseous envelope.

Rafikov (2006) found that a core of mass 5 – 20 M⊕ at a semi-major axis between 0.1
and 1.0 AU would be able to start the runaway accretion phase to form a gas giant planet
in situ. However, according to his models, these kind of cores are unlikely to form, owing to
the high irradiation coming from the star. Boley et al. (2016) suggested instead that more
massive cores (Mcore & 20M⊕) can be built up from the merging of tightly packed inner
planets formed at the early stages of the circumstellar disc. Batygin et al. (2016) found a
similar result and argued that the massive core of HD 149026b (Mcore ≈ 100M⊕) could be
explained by one or more super-Earths which merged and accreted the surrounding gas
to form a gas-giant planet. Huang et al. (2016) suggested that these cores can initiate
runaway accretion if they are formed in a region with enough gas around them, while those
without enough volatiles remain super-Earths and represent the population of massive
rocky planets unveiled by Kepler around solar-like stars (e.g., Demory, 2014). Based on

4Calculated by interpolating Fortney et al. (2007)’s models.
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these studies and given the semi-major axis of 0.179+0.021
−0.027 AU, the 48 ± 14M⊕ core of

K2-139 b could have formed the planet in situ. We note that the metallicity of K2-139 is
relatively high ([Fe/H] = 0.21 ± 0.05), suggesting that the primordial circumstellar disc
had a relatively high content of dust, which would have enhanced the formation of the
core of K2-139 b (see, e.g. Johnson & Li, 2012). Alternatively, the planet might have
formed beyond the snow line and migrated inwards via planet-disc interaction (see, e.g.,
Baruteau et al., 2014).

6.2.10 Orbit inclination

The spin-orbit angle, i.e., the angle between the spin axis of the star and the angular
momentum vector of the orbit, can provide us with valuable information on the migration
mechanisms of exoplanets (see, e.g. Albrecht et al., 2012; Gandolfi et al., 2012; Morton &
Johnson, 2011; Winn, 2010). Currently, there are only 4 warm Jupiters (Mp ≥ 0.3 MJup

and 10 ≤ Porb ≤ 100 days) with measured obliquity5. From this perspective, K2-139 is an
ideal target to measure the sky-project spin-orbit angle via observations of the Rossiter-
McLaughlin (RM) effect. Assuming spin-orbit alignment, the expected amplitude of the
RM anomaly is ∆RV ≈

√
1− b2 (Rp/R?)

2 v sin i?≈ 25 m s−1 (Winn, 2010). Given the
brightness of the host star (V = 11.653 mag), this amplitude can easily be measured
using state-of-the-art spectrographs such as HARPS@ESO-3.6m. Moreover, the transit
duration (∼5 hours) is shorter than the visibility of K2-139, which is ∼9 hours from
La Silla observatory (altitude higher than 30 deg above the horizon).

Alternatively, the spin-orbit angle could be measured from the analysis of the spot-
crossing events as described in Sanchis-Ojeda et al. (2011) and Sanchis-Ojeda et al. (2012).
Anomalies ascribable to the passage of K2-139 b in front of stellar spots are visible in the
3 transit light curves observed by K2. Unfortunately, the limited number of transits and
the K2 long cadence data do not allow us to perform a meaningful quantitative analysis
of the spot-crossing events. Given the amplitude of the detected anomalies (∼0.1 %),
space-based high-precision photometry is needed to detect the spot-crossing events. Ob-
servations performed with the upcoming CHaracterising ExOPlanets Satellite (CHEOPS;
Broeg et al., 2013) would allow us to photometrically determine the spin-orbit angle of
this system.

5Source: http://www2.mps.mpg.de/homes/heller/content/main_HRM.html, as of January 2017.

http://www2.mps.mpg.de/homes/heller/content/main_HRM.html
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6.3 K2-141 b: A lava world with a “short year”

We announced the discovery and characterisation of K2-141 b in Barragán et al. (2018b).
This paper is part of a series of K2 exoplanet characterisations made by the KESPRINT
consortium. K2-141 b is an ultra-short-period super-Earth on a 6.7-hour orbit transiting
an active K7 V star based on data from K2 campaign 12. We confirmed the planet’s
existence and measured its mass with a series of follow-up observations: seeing-limited
MuSCAT imaging, NESSI high-resolution speckle observations, and FIES and HARPS
high-precision radial-velocity monitoring. K2-141 b has a mass of Mp = 5.31±0.46 M⊕ and
radius of Rp = 1.54+0.10

−0.09R⊕, yielding a mean density of ρp = 8.00+1.83
−1.45 g cm−3and suggesting

a rocky-iron composition. Models indicate that iron cannot exceed ∼70% of the total
mass. With an orbital period of only 6.7 hours, K2-141 b is the shortest-period planet
known to date (October 2017) with a precisely determined mass.6

6.3.1 Detection

The search for planet candidates for K2 ’s Campaign 12 is the same approach described in
Dai et al. (2017). This approach showed that the light curve of EPIC 246393474 (hereafter
K2-141) shows significant periodic transit-like signal with a depth of ∼0.04% occurring
every 0.28 days (6.7 hours). We searched for additional transiting planets in the system
by re-running the BLS algorithm after removing the data within 1.5 hours of each transit
of planet b. No transit signal was detected: the maximum SDE of the new BLS spectrum
was 4.5. A visual inspection of the light curve did not reveal any additional transits,
either. The target passed standard tests used to detect false positives due to eclipsing
binaries: we did not detect any secondary eclipses or alternation of eclipse depths.

We show the K2 light curve of K2-141 in Fig. 6.10. The K2 light curve of K2-141 shows
quasi-periodic variations with a peak-to-peak amplitude of about ∼1%, very likely the
result of rotation and active regions on the host star. Using the auto-correlation method
applied to the out-of-transit K2 light curve (McQuillan et al., 2014), we measured a stellar
rotation period of Prot = 14.03± 0.09 days.

6.3.2 Ground-based photometric observations

Diffraction-limited imaging

On the night of August 9, 2017, UT, we conducted speckle imaging observations of the star
K2-141 with the NASA Exoplanet Star and Speckle Imager (NESSI; Scott et al., 2017,
PASP, in prep.), a new instrument for the WIYN 3.5 meter telescope, which uses high-
speed electron-multiplying CCDs (EMCCDs) to capture sequences of 40 ms exposures
simultaneously in two bands. We also observed nearby point source calibrator stars close
in time to the science target. We observed simultaneously in the “blue” band centred at
562 nm with a width of 44 nm and the “red” band centred at 832 nm with a width of 40 nm.
The pixel scales of the “blue” and “red” EMCCDs are 0.0175649 and 0.0181887 ′′/pixel,
respectively. The data reduction followed the same procedures described by Howell et al.
(2011). Using the point source calibrator images, we computed reconstructed 256× 256
pixel images in each band, corresponding to 4.6′′× 4.6′′. No secondary sources were
detected in the reconstructed images (see Fig. 2 of Barragán et al., 2018b). We measured
the background sensitivity of the reconstructed images using a series of concentric annuli
centred on the target star, resulting in 5σ sensitivity limits (in delta-magnitudes) as a
function of angular separation.

6K2-141 b has also been independently discovered, confirmed, and characterised by Malavolta et al. (2018). Their results
are in very good agreement with ours.
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Figure 6.10: K2 light curve of K2-141. Stellar activity is seen as the quasi-periodic, long period modula-
tion. Transit positions are marked with red dash-doted vertical lines. The 5.3-day-long data gap, during
which the telescope entered safe mode, is clearly visible at approximately two thirds of the way through
the time series.

Seeing-limited imaging

In order to search for sources outside of the 4.6′′× 4.6′′ field-of-view of our high-resolution
NESSI images, but within the 16′′–wide circular aperture used to extract the light curve
from the K2 pixel files, we also obtained seeing-limited multi-band optical images using
the MuSCAT (Narita et al., 2015) instrument on the 1.88m telescope at the Okayama
Astrophysical Observatory. The pixel scale of MuSCAT’s CCDs is 0.36 ′′/pixel. The
instrument can observe in Sloan g′2, r′2, and zs,2 bands simultaneously. The observations
were performed on September 23, 2017 UT with seeing of ∼1.5 ′′. To keep the peak count
level at about 45,000 ADU, we took ten exposures of 15, 4, and 12 sec with the g′2, r′2, and
zs,2 bands, respectively. The frames were dark-subtracted and flat-fielded using standard
routines. The five best on-focus frames were stacked together for each band.

We detected a companion located at 12.6 arcsec towards the East of K2-141. MuS-
CAT’s images show that this target is about 7.8 mag fainter than K2-141 (from the
weighted averaged of the g′2 and r′2 filters). This accounts for a contamination factor of
1/1400 of the target brightness. This value does not have a measurable impact on the
derived parameters.

6.3.3 High-precision Doppler observations

We obtained nine high-resolution spectra on five different nights with the FIES spectro-
graph (see Sect. 4.3.1), from August 15 to September 14, 2017, UTC, within observing
programs 55-019, 55-202, and 55-206. Since the 6.7-hour period is short enough to allow
a significant fraction of the orbit to be sampled in one night, we obtained two spectra
per night during three of the five FIES observing nights. The reduction procedures are
similar to the ones described in Sect. 4.3.1.

We also acquired 27 spectra with the HARPS spectrograph as part of the observing
program 099.C-0491. We adopted the same observing strategy as the FIES observations,
acquiring between two and five spectra per night on seven different nights, from August
19 to 27, 2017, UTC. We reduced the data using the dedicated off-line HARPS pipeline
and extracted the RVs via cross-correlation with a K5 numerical mask.

The full set of RV data are listed in Barragán et al. (2018b) and they are accessible
via the CDS portal at http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A95.

http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A95
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6.3.4 Stellar fundamental parameters

We derived the spectroscopic parameters of K2-141 from the co-added HARPS spectrum,
which has a S/N per pixel of ∼250. The details about the spectral analysis are described in
Barragán et al. (2018b). We report the adopted effective temperature Teff , iron abundance
[Fe/H], and projected velocity v sin i? in Table 6.4. The stellar radius and surface gravity
were re-determined using a different method, as described in the next paragraphs.

We derived the stellar radius R? and reddening Av using the K2-141’s spectral energy
distribution as described in (Gandolfi et al., 2008). Adopting the extinction law of Cardelli
et al. (1989) and assuming a total-to-selective extinction of R = Av/EB−V = 3.1, we
found that the interstellar reddening is consistent with zero (Av = 0.01± 0.02 mag). Using
the distance of d = 58.77 ± 0.81 pc from the Gaia’s first data release (Gaia Collaboration
et al., 2016), we determined a stellar radius of R? = 0.674 ± 0.039R�.

We finally converted Teff , R?, and [Fe/H] into stellar mass M? and surface gravity
log g? using the empirical relations derived by Torres et al. (2010) coupled to Monte
Carlo simulations. K2-141 is a K7 V star (Pecaut & Mamajek, 2013) with an effective
temperature of Teff = 4373 ± 57 K, a photospheric iron abundance of [Fe/H] = +0.03 ±
0.10 dex, a mass of M? = 0.662 ± 0.022 M�, and a radius of R? = 0.674 ± 0.039 R�,
yielding a surface gravity of log g? = 4.584 ± 0.051 (cgs). The final adopted values are
given in Table 6.4. We used gyrochronology to estimate the age of K2-141 from the
relations by Angus et al. (2015) and found 740 ± 360 Myr, suggesting that the star might
be relatively young (Table 6.4).

6.3.5 Stellar activity and frequency analysis of the HARPS data

K2-141 is an active star. As presented in Sect. 6.3.1, the K2 light curve of K2-141 displays
quasi-periodic modulation with a peak-to-peak amplitude of about 1% (Fig. 6.10). The
photometric variability is very likely caused by active regions (spots, faculae, and plages)
carried across the visible hemisphere of the stellar disc as the star spins about its axis.
This is corroborated by the detection of strong emission components in the cores of the
Ca ii H & K lines (see Fig. 4 of Barragán et al., 2018b), from which we derived an average
S-index of 0.938± 0.074, indicative of a high level of magnetic activity.

The magnetic activity of K2-141 is expected to produce quasi-periodic signals in time-
series RV data, commonly referred to as “stellar jitter”. We used the code SOAP2 (Du-
musque et al., 2014) to estimate the RV variation induced by stellar activity. From the
amplitude of the photometric variability, the spectroscopic parameters, and the rotation
period of the star, we calculated an expected RV semi-amplitude variation of ∼5-10 m s−1.

We performed a frequency analysis of our RV measurements to look for the signature
of the transiting planet and search for possible activity-induced signals. For this purpose,
we did not include the FIES RVs because of the higher uncertainties, the relatively small
number of data points, and the need to account for an offset between the FIES and
HARPS data-sets. The analysis was done using Period04 (Lenz & Breger, 2004). A
discrete Fourier transform (DFT) analysis of the HARPS RV measurements shows a peak
at 3.57 c/d, that is, the orbital frequency of K2-141 b (0.28 days) with an amplitude of
(∼7 m s−1).

An additional trend is visible in the RV data after the signal of the transiting planet has
been subtracted from the HARPS measurements. We found a Spearman’s rank correlation
coefficient of −0.80 with a p-value of 1.4 × 10−6, strongly suggesting the existence of an
additional source of RV variation in our data7. To assess if the source of this additional

7Following Fisher (1925), we adopted a significance level of p= 0.05.
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signal is induced by stellar activity, we looked for possible correlations between the RV
residuals and the activity indexes, namely, the Ca ii H & K S-index, and the FWHM
and bisector span (BIS) of the cross-correlation function (see Fig. 6 of Barragán et al.,
2018b). Although the RV residuals and the BIS do not show a significant anti-correlation
(−0.30 with p = 0.13), we found significant correlations between the RV residuals and
the FWHM (0.73 with p = 3.3× 10−5), and the RV residuals and the S-index (0.72 with
p = 4.8 × 10−5). We concluded that the long-term trend observed in the HARPS data
is likely caused by the presence of active regions on the photosphere of the star. We will
present our approach to filtering out the stellar jitter in Section 6.3.6.

6.3.6 Data analysis and results

In order to arrive at a robust measurement of the planetary mass despite the additional RV
variations induced by stellar activity (see Sect. 6.3.5), we used three different approaches
to fit the data as described below.

Floating chunk offset method

The first method (hereafter M1) is based on the floating chunk offset (FCO) technique
pioneered by Hatzes et al. (2011, see Appendix B), which works well when the orbital
period is much shorter than the timescales associated with the signals induced by stellar
activity and any additional planets (A description of the method is given in Sect. B). From
this point of view, K2-141 b is an ideal target to apply the FCO method and remove long-
term signals coming from outer companions and stellar activity (see, e.g., Hatzes et al.,
2011; Gandolfi et al., 2017). Our observing strategy was tailored to use this technique by
acquiring multiple spectra per night (Sect. 6.3.3).

We performed a Markov chain Monte Carlo (MCMC) joint analysis of the transit
and RV data using the code pyaneti (Barragán et al., 2019, see Sect. 5.3). We fitted a
Keplerian orbit to the RV data and used the limb-darkened quadratic model by Mandel &
Agol (2002) for the transit light curves. We integrated the light curve model over ten steps
to account for the Kepler long-cadence observation (Kipping, 2010, see Appendix A.2).
We used flat uniform priors for all parameters. Details are given in Table 6.4. We explored
the parameter space with 500 Markov chains to generate a posterior distribution of 250,000
independent points for each parameter. The inferred parameter value and its uncertainty
is given by the median and 68.3% credible interval of the posterior distribution. We did
not account for additional jitter terms because χ2/dof ≈ 1.

When fitting for an eccentric orbit, the posterior distribution of the eccentricity has
a median of 0.06 and a 99%-confidence upper limit of 0.20. The Bayesian Information
Criterion (BIC) favours a circular orbit with a ∆ BIC = 8. Our result is consistent with
a circular orbit, as expected for a planet with such a short period. All further analyses
were carried out fixing the orbit to be circular.

The inferred single-planet model together with the RV time-series following the sub-
traction of the offset for each night is shown in Fig. 6.11. This figure shows how the
FCO method removes the activity, yielding only the RV signal induced by the planet. We
measured a Doppler semi-amplitude of 6.74 ± 0.56 m s−1, which corresponds to a mass
of 5.31± 0.46 M⊕.

Sinusoidal activity signal modelling

In the second method (hereafter M2), the RV signal associated with stellar activity is
modelled as a coherent sinusoidal signal (e.g., Pepe et al., 2013; Barragán et al., 2018a,
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see also Appendix. B). The K2 light curve shows the presence of long-lived active re-
gions whose evolution time scale is longer that the rotation period of the star. Since our
RV follow-up lasted only ∼30 days, that is, two stellar rotation periods, we can reason-
ably assume that the activity-induced RV signal remained coherent within our observing
window.

For this method we used pyaneti and performed an MCMC analysis similar to M1. To
account for the activity-induced signal at the rotation period of the star, we included an
additional sinusoidal signal whose period was constrained with a Gaussian prior centred
at Prot = 14.03 d with a standard deviation of 0.09 d (see Sect. 6.3.5). For the phase and
amplitude of the activity signal we adopted uniform priors.

We first performed a fit including only the planetary signal. This analysis produces a
RV χ2/dof ≈ 5. When including the extra sinusoidal signal, M2 gives an RV χ2/dof ≈ 1.3
and a ∆ BIC = 130 over the previous model. This further proves that RV data cannot
be explained by only the planetary signal (cfr. Sect. 6.3.5). To account for imperfect
treatment of the activity-induced variation, we added RV jitter terms to the equation of
the likelihood for the FIES and HARPS RV data.

The final inferred Doppler amplitude induced by stellar activity is 5.05+0.72
−0.66 m s−1, which

agrees with the prediction made with SOAP2 (Sect. 6.3.5). The RV semi-amplitude vari-
ation induced by the planet is 6.71± 0.63 m s−1, which translates to a planetary mass of
5.23±0.50 M⊕. Figure 6.11 displays the two-signal model together with the RV measure-
ments for both instruments following the subtraction of the instrumental offsets.

Gaussian process

The third method (hereafter M3) models the correlated noise associated with stellar ac-
tivity with a Gaussian Process (GP); GP describes stochastic processes with a paramet-
ric description of the covariance matrix. GP regression has proven to be successful in
modelling the effect of stellar activity for several other exoplanetary systems (see, e.g.,
Haywood et al., 2014; López-Morales et al., 2016, see Appendix B).

We used the same GP model that was described in detail by Dai et al. (2017). The
list of parameters includes the RV semi-amplitude K, the orbital period Porb and the
time of conjunction tc. The model also includes the so-called hyperparameters of the
quasi-periodic kernel: the covariance amplitude h, the correlation timescale τ , the period
of the covariance T , and Γ which specifies the relative contribution between the squared
exponential and periodic part of the kernel.

We sampled the parameter posterior distribution with MCMC using the procedure
described in Dai et al. (2017). The RV semi-amplitude for planet b was found to be
6.48+0.73

−0.71 m s−1. This translates into a planetary mass of 5.05+0.57
−0.55 M⊕. Fig. 6.11 shows

the measured RV variation of K2-141 and the GP model. We found that the amplitude
of the correlated noise is hrv = 4.0+2.2

−1.2 m s−1, which agrees with the value inferred by M2
and SOAP2.

6.3.7 K2-141 b mass and radius

The three techniques used to determine the mass of K2-141 b give results that are consis-
tent to within ∼ 0.5σ. While we have no reason to prefer one method over the other, we
adopted the results of M1 (FCO method), which gives a planetary mass of Mp = 5.31±0.46
M⊕ (∼11σ significance). Figure 6.12 shows the posterior distributions calculated with
pyaneti for the fitted parameters. The parameter estimates are given in Table 6.4.
Figure 6.13 displays the K2 and RV measurements along with the inferred transit and
Keplerian models from the FCO method folded to the orbital period of the planet.
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Figure 6.11: Upper panel : RV curve of K2-141 as obtained using the FCO method. The best fitting
circular solution is marked with a solid black line. HARPS and FIES data are shown with filled circles
and squares, respectively. Different colours refer to different nights. Middle panel: HARPS (blue circles)
and FIES (red diamonds) measurements for K2-141 following the extraction of the instrumental offsets.
The inferred RV model (black solid lines) was obtained from the planet signal plus a coherent sinusoidal
signal which accounts for the stellar activity. Lower panel: The measured radial velocity variation of
K2-141 from HARPS (circles) and FIES (triangles). The red solid line is the best-fit model including the
signal of planet b and the GP model of the correlated stellar noise. The yellow dashed line shows the
signal of planet b. The blue dotted line shows the GP. This plot was created by F. Dai (see Barragán
et al., 2018b).
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Figure 6.13: Left panel. Transit light curve folded to the orbital period of K2-141 b and residuals. The
red points mark the K2 data, whereas the thick black line the re-binned best-fitting transit model. Right
panel. Phase-folded RV curve of K2-141 folded to the orbital period of the planet, as obtained using the
FCO method. The best fitting circular solution is marked with a solid black line. HARPS and FIES
data are shown with filled circles and squares, respectively. Different colors refer to different nights. The
lower panel shows the residuals to the best fitting model.
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Table 6.4: Stellar and planetary parameters.

Parameter Prior(a) Final value

Stellar parameters

Star mass M? (M�) · · · 0.662 ± 0.022
Star radius R? (R�) · · · 0.674 ± 0.039

Stellar density ρ? (g cm−3) · · · 3.05+0.61
−0.48

Stellar density ρ? (from light curve, g cm−3) · · · 2.98+0.33
−0.67

Effective Temperature Teff (K) · · · 4373 ± 57
Surface gravity log g? (cgs) · · · 4.584 ± 0.051
Iron abundance [Fe/H] (dex) · · · 0.03± 0.10
Projected rotational velocity v sin i? (km s−1) · · · 3.0± 1.7
Rotational period Prot (days) · · · 14.03± 0.09
Gyrochronological age (Myr) · · · 740± 360
Interstellar extinction AV (mag) · · · 0.01± 0.02
Star distance d (pc) · · · 58.77± 2.81

Model Parameters

Orbital period Porb (days) U [0.2802, 0.2804] 0.2803226± 0.0000013

Transit epoch T0 (BJDTDB−2 450 000) U [7738.45, 7738.47] 7738.46540+0.00023
−0.00021

Scaled semi-major axis a/R? U [1.1, 20] 2.31+0.08
−0.19

Scaled planet radius Rp/R? U [0.0, 0.1] 0.02088+0.00053
−0.00039

Impact parameter, b U [−1, 1] −0.01+0.38
−0.35√

e sinω? F [0] 0√
e cosω? F [0] 0

Parameterized limb-darkening coefficient q1 U [0, 1] 0.54+0.29
−0.25

Parameterized limb-darkening coefficient q2 U [0, 1] 0.29+0.32
−0.19

Doppler semi-amplitude variation K (m s−1) U [0, 50] 6.74± 0.56

Derived Parameters

Planet mass Mp (M⊕) · · · 5.31± 0.46

Planet radius Rp (R⊕) · · · 1.54+0.10
−0.09

Planet density ρp (g cm−3) · · · 8.00+1.83
−1.45

Semi-major axis of the planetary orbit a (AU) · · · 0.00716+0.00055
−0.00065

Eccentricity e · · · 0
Orbit inclination along the line-of-sight ip (◦) · · · 90± 10
Transit duration τ14 (hours) · · · 0.94± 0.02

Equilibrium temperature(b) Teq (K) · · · 2039+87
−48

Linear limb-darkening coefficient u1 · · · 0.43+0.27
−0.26

Quadratic limb-darkening coefficient u2 · · · 0.31+0.36
−0.43

Note – (a) U [a, b] refers to uniform priors between a and b, F [a] to a fixed a value. (b) Assuming albedo = 0.

The upper left panel of Fig. 6.14 shows the mass-period diagram for all the USP
planets with directly measured masses. We included 55 Cnc e, CoRoT-7 b, HD 3167 b,
K2-106 b, Kepler-10 b, Kepler-78 b and EPIC 228732031 b (K2-131 b) using the planetary
masses and radii reported in the TEPCat database (Southworth, 2011)8. With a period
of 0.28 d (6.7 h), K2-141 b is the shortest-period planet with a measured mass among all
planets known to date. As of October 2017, there are only three transiting exoplanets
known to have orbital periods shorter than K2-141 b, namely, Kepler 70 b, KOI-1843 b,
and EPIC 228813918 b. However, their masses have not yet been measured. The mass
of Kepler 70 b (P = 0.24 d; Charpinet et al., 2011) was estimated based on the radius
and an assumed mean density. For KOI-1843 b (P = 0.18 d), the mass was constrained
based on the lower limit of the planet’s mean density calculated from the requirement
that the planet must orbit outside the star’s Roche limit (Rappaport et al., 2013). For
EPIC 228813918 b (P = 0.18 d) Smith et al. (2017) reported a lower limit for the plan-
etary mass based on Rappaport et al. (2013), as well as a 3σ upper limit based on RV

8http://www.astro.keele.ac.uk/jkt/tepcat/.

http://www.astro.keele.ac.uk/jkt/tepcat/
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Figure 6.14: Mass-period (upper left panel) and mass-radius (lower left panel) diagram for USP planets
(Porb < 1 day, Rp < 2R⊕) with measured masses. The solid green circle marks the position of K2-141 b.
USP planets in the literature are marked with blue squares. The composition models from Zeng et al.
(2016) are displayed with different lines and colours. The Earth-like density curve is also shown with a
dot-dashed black line. Right panel: Ternary plot for different planetary compositions. We show different
combinations of water, rock and iron for possible solid planet compositions. The solid and dashed black
lines mark the possible position of K2-141 b and the 68 % credible intervals. This plot was created using
the applet available at https://www.cfa.harvard.edu/~lzeng/manipulateplanet.html.

measurements.

6.3.8 K2-141 b’s composition

The mass of Mp = 5.31 ± 0.46 M⊕ and radius of Rp = 1.54+0.10
−0.09R⊕ yield a mean density

of ρp = 8.00+1.83
−1.45 g cm−3. The lower left panel of Fig. 6.14 shows the mass-radius diagram

for USP small transiting planets (Porb < 1 day, Rp < 2R⊕), along with Zeng et al.
(2016)’s theoretical models for different compositions. Dressing et al. (2015) suggested
that planets with masses between 1 and 6 M⊕ are consistent with a composition of 17% Fe
and 83% MgSiO3 (rock). Their sample included three USP planets (Kepler-78 b, Kepler-
10 b and CoRoT-7 b), two planets with periods 4.3 and 13.8 days, and the solar system
planets Earth and Venus. Figure 6.14 shows a 20% Fe and 80% MgSiO3 composition line,
similar to the values found by Dressing et al. (2015). Given its mass and radius, K2-141 b
lies close to the 40%Fe-60% MgSiO3 compositional model. Within the 1σ uncertainties,
K2-141 b lies between the 20%Fe-80% MgSiO3 and 60%Fe-40% MgSiO3 models. If we
consider only the five USP planets with Mp < 6 M⊕, we found that no single theoretical
curve is consistent with them all. At face value this shows that there is some dispersion
in the composition of USP planets.

We further inferred the composition of K2-141 b using a ternary plot (right panel of
Figure 6.14) for planetary compositions comprising different abundances of H2O, MgSiO3

and Fe (Zeng & Sasselov, 2013; Zeng et al., 2016). The dashed lines mark the allowed
region for K2-141 b, given the 1σ uncertainty on the planetary mass and radius. We
first analysed a water-free model (right-hand side of the triangle). If the planet does not

https://www.cfa.harvard.edu/~lzeng/manipulateplanet.html
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contain H2O, K2-141 b has a composition comprising ∼5-70% iron and ∼30-95% rocks.
If the planet does contain H2O, then the maximum water abundance (1σ upper limit)
cannot exceed ∼30% of the total mass.

Rappaport et al. (2013) pointed out that for planets with orbital periods . 6 h, the mere
requirement that the planet is outside the Roche limit leads to an astrophysically relevant
lower limit on the planet’s mean density. Assuming a constant density, a planet with a
period of 6.7 h would need a minimum density of ∼ 3.5 g cm−3 to avoid tidal destruction
by the star. This value is smaller than K2-141 b’s density lower limit of 5.2 g cm−3. In this
case the RV data are more powerful than the Roche-limit consideration, for determining
the planet’s composition.

6.3.9 K2-141b in the radius gap

According to the theoretical models, the radius gap found by Fulton et al. (2017) is caused
by photo-ionising radiation (see Sect., 1.5.3). In this context, K2-141 b receives a stellar
radiation of about 2900F⊕ (where F⊕ refers to insolation received on Earth), which
is more than four times the threshold of 650F⊕ needed for planets to undergo photo-
evaporation of H/He envelopes (Lundkvist et al., 2016). This implies that if K2-141 b had
an atmosphere, it was lost due to the vicinity to its host star.
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6.4 K2-111 b: A very old world

Fridlund et al. (2017) reported the validation and characterisation of a transiting super-
Earth around the star EPIC 210894022 (K2-111), that was observed by K2 in its Cam-
paign 4. By combining the K2 photometry with high-spatial resolution imaging and
high-precision RV measurements, we confirmed that the transit signal is caused by a
super-Earth orbiting the star K2-111. The planet has a mass of Mp = 8.6 ± 3.9 M⊕ and
radius of Rp = 1.92+0.21

−0.20 R⊕. A second more massive object with a period longer than
about 120 days is indicated by a long term radial velocity drift. With an age of & 11 Gyrs
this system is one of the oldest where planets is hitherto detected. Further studies of this
planetary system is important since it contains information about the planetary formation
process during a very early epoch of the history of our Galaxy.

6.4.1 Light curve and RV data

The K2 photometry are subsets of the K2-111’s light curve extracted by Vanderburg
& Johnson (2014). Here we selected ∼7 hours of data points around each of the 13
transits observed by K2 and de-trended each transit using a second order polynomial
fitted to the out-of-transit data points with exotrending (Barragán & Gandolfi, 2017,
see Appendix A.1). The RV data set includes 6 FIES and 12 HARPS-N measurements
presented in Sect. 3.1 of Fridlund et al. (2017).

6.4.2 Joint RV and transit modelling

We performed the joint fit of the photometric and RV data using the code pyaneti

Barragán et al. (2019). We used the equations of Mandel & Agol (2002) to fit the transit
light curves and a Keplerian orbit to model the RV measurements. We adopted a quadratic
limb darkening law and followed the parametrization described in Kipping (2013). To
account for the K2 long integration time (∼30 minutes), we integrated the transit models
over 10 steps (Kipping, 2010, see Appendix A.2).

We set uniform priors for all the parameters with some exceptions. Given the limited
number of available RV measurements and their error bars, we assumed a circular orbit
(e = 0). The shallow transit and K2 ’s long cadence data do not enable a meaningful
determination of the scaled semi-major axis (ap/R?) and limb darkening coefficients u1

and u2. We thus set Gaussian priors for the scaled semi-major axis using Kepler’s third
law and the derived stellar parameters (see Sect. 3.2 of Fridlund et al., 2017). We also
used the on-line applet9 written by Eastman et al. (2013) to interpolate Claret & Bloemen
(2011)’s limb darkening tables to the spectroscopic parameters of the host star (see Sect.
3.2 of Fridlund et al., 2017) and set Gaussian priors for the limb darkening coefficients
u1 and u2 adopting 0.1 conservative error bars. Details about the fitted parameters and
priors are given in Table 6.5.

We explore the parameter space with 500 chains created randomly inside the prior
ranges. We created a posterior distribution of each parameter with 250, 000 independent
data points.

We searched for evidence of an outer companion in the RV measurements by adding
a linear trend γ̇ to the Keplerian model fitted to the RV data. The best fitting solution
provide a linear trend of γ̇ = −0.217±0.077 m s−1 d−1 with a ∼3-σ significance level. The
lnLRV and BICRV of the models with and without linear trend are 77.6 and −144, and
73.7 and −139, respectively. We therefore conclude that the model with a linear trend is
favoured.

9Available at http://astroutils.astronomy.ohio-state.edu/exofast/limbdark.shtml.

http://astroutils.astronomy.ohio-state.edu/exofast/limbdark.shtml
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Table 6.5: Stellar and planetary parameters.

Parameter Prior(a) Final value

Stellar parameters

Star mass M? (M�) · · · 1.0± 0.07
Star radius R? (R�) · · · 1.4± 0.14
Effective Temperature Teff (K) · · · 4373 ± 57
Model Parameters

Orbital period Porb (days) U [5.3489, 5.3528] 5.35117± 0.00055

Transit epoch T0 (BJDTDB−2 450 000) U [7067.9568, 7067.9926] 7067.9704+0.0044
−0.0039

Scaled semi-major axis a/R? N [9.6, 1.0] 9.59+0.98
−0.95

Scaled planet radius Rp/R? U [0.0, 0.1] 0.01255+0.00050
−0.00048

Impact parameter, b U [0, 1] 0.633+0.091
−0.128√

e sinω? F [0] 0√
e cosω? F [0] 0

Parameterized limb-darkening coefficient q1 N [0.42, 0.1] 0.4240523−0.09
−0.09

Parameterized limb-darkening coefficient q2 N [0.29, 0.1] 0.2879764+0.09
−0.09

Doppler semi-amplitude variation K (m s−1) U [0, 50] 3.1± 1.4
Radial acceleration γ̇ (m s−1 d−1) U [−1, 1] −0.217± 0.077
Derived Parameters
Planet mass Mp (M⊕) · · · 5.31± 0.46

Planet radius Rp (R⊕) · · · 1.92+0.21
−0.20

Planet density ρp (g cm−3) · · · 6.6+4.53
−3.2

Semi-major axis of the planetary orbit a (AU) · · · 0.0621+0.0092
−0.0085

Eccentricity e · · · 0
Orbit inclination along the line-of-sight ip (◦) · · · 86.2± 1.0
Transit duration τ14 (hours) · · · 0.94± 0.02

Equilibrium temperature(b) Teq (K) · · · 1309+71
−63

Linear limb-darkening coefficient u1 · · · 0.38± 0.08

Quadratic limb-darkening coefficient u2 · · · 0.28± 0.08

Note – (a) U [a, b] refers to uniform priors between a and b, N [a, b] means Gaussian priors with mean a and standard
deviation b and F [a] to a fixed a value. (b) Assuming albedo = 0.

The final parameters are given in Table 6.5. They are defined as the median and 68 %
credible interval of the posterior distribution for each parameter. Posterior distributions
are shown in Figure 6.15. We show the folded transit light curve, and the RV curves in
Figs. 6.16.

6.4.3 Orbital Dynamics

The mass, orbital period and eccentricity of the body responsible for the RV trend can
be constrained by requiring that the system is dynamically stable. Bodies too close, too
massive, and on too eccentric orbits would result in an unstable system. If the outer
body is on a circular orbit, it must be a gas giant planet or more massive, and the system
is stable even for stellar-mass companions. If it is on a highly-eccentric orbit, gas giant
planets at P∼ 1 yr are ruled out by dynamical stability. In this case, the outer planet
may be a lower-mass planet on a close orbit (P∼ 1 yr) or a gas giant on a wider orbit
(P& 2 yr). Note that an eccentric orbit permits lower masses for the outer body, but
this requires a specific alignment of the orbit with respect to the observer (edge-on orbit
and pericentre pointing along the line of sight). In general, one can also place limits on
what additional planets could be in a system between two known ones. For example, if
the second planet is a Jupiter at 1 AU on a circular orbit, the separation is roughly 20
mutual Hill radii, meaning that one (or more) additional planets could be accommodated
between the two planets.
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Figure 6.15: Posterior distributions of the K2-111’s fitted parameters as obtained using the code pyaneti.
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Figure 6.16: Upper panel: FIES (red diamonds) and HARPS-N (blue circles) RV measurements versus
time, following the correction for instrument offset. The best fitting Keplerian model with a linear trend
is over-plotted with a thick line. Lower left panel. Transit light curve folded to the orbital period of
K2-111 b and residuals. The red points mark the K2 data, whereas the thick black line the re-binned
best-fitting transit model. Lower right panel. Phase-folded RV curve of K2-111 folded to the orbital
period of the planet. The best fitting circular solution is marked with a solid black line. HARPS-N and
FIES data are shown with filled circles and diamonds, respectively. The lower panel shows the residuals
to the best fitting model.
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6.4.4 Planet mass, radius and age

The K2-111 system is demonstrated to be a rare and important object among the plethora
of transiting exoplanets that has been discovered by space missions in the last decade.
Using adaptive optics imaging and statistical methods, and also detecting the RV signa-
ture of this planet we have confirmed the presence of a 1.92+0.21

−0.20 R⊕ planet in a 5.35d
orbit, as giving rise to the K2 transit signature. We find that the planet has a mass of
8.6±3.9 M⊕. The periodic RV signal is overlaid on a trend that we identify with a second
more massive planet. The evidence for the planet K2-111 are strong enough for us to say
that it is confirmed, while we would require more data in order to confirm also the -c
planet.

We believe this planet to be extremely old. The reasons for this is as follows: a) The
low but α-rich metal content of K2-111. b) This star has a very high space velocity of 157.2
±3 km s−1 making it a likely member of the thick disk population. c) The measurement
of the stellar density, the low log g? for a star of ≤ 0.9 M�, as well as the luminosity of
1.9 L� is highly suggestive of an evolved object and we argue in Sect. 5 of Fridlund et al.
(2017) that the system is & 10 Gyrs old and that the host star has begun to move off the
main-sequence.

Together with the 5 planets in the Kepler-444 system K2-111 and its possible compan-
ion are among the oldest planets known to date. Assuming a radius of 1.92+0.21

−0.20 R⊕ the
planet has an average density of 6.6+4.53

−3.2 g cm−3 placing it in the same class as Corot-7 b
and Kepler-10b. In this context it is indeed ”Earth-like” with similar density to Venus
and the Earth itself. It would have formed together with a star having a low metallicity,
and more importantly at a very early epoch of our Galaxy. Although K2-111 is also iron-
poor it is moderately α-rich, in common with the planet host Kepler-444, which could be
favourable for the formation of an Earth-like body. But we also have tentative indications
for a more massive planet in the same system. A number of studies so far have pointed out
a correlation where metal-rich stars are more likely to harbour gas-giants (e.g., Valenti &
Fischer, 2005), while the correlation appear to be missing for the sample of small planets
discovered by Kepler (Buchhave et al., 2012). Having formed ∼ 5-6 Gyrs before the birth
of the Solar System in what is known as the galactic thick disk population, K2-111 and
its planet(s) carries information about the early stages of stellar and planetary formation
in the Galaxy. It would therefore be very interesting to continue to study this system,
primarily to confirm the presence of the second more massive planet and finding also its
period. Finding more systems, similar to K2-111 and Kepler-444, would allow us to begin
to determine what the implications for planetary formation as a function of galactic age
is.
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6.5 K2-19: Two worlds in resonance

K2-19 (also known as EPIC 201505350) is a V=13 mag late-type star observed by the
K2 space mission during its Campaign 1. K2-19 is a compact planetary system hosting
three planets, of which the two larger ones, K2-19b and K2-19c, are close to the 3:2 mean
motion resonance.

Several attempts have been made to determine the masses of K2-19 b and K2-19 c.
Armstrong et al. (2015) combined K2 data with ground-based transit photometry of K2-
19 b and used the observed TTVs to put some constraints on the mass of the two planets.
Barros et al. (2015) used a more sophisticated approach to derive the masses of the
planets based on a photo-dynamical model that considers transit timings and durations
from transits observed by the K2 mission, as well as two additional K2-19 b transits
observed from the ground. They also included radial velocities obtained with SOPHIE
at the Observatoire de Haute Provence (OHP) 1.9 m telescope in their analysis, although
they realized that the precision of these RVs prevented the detection of the Doppler reflex
motion induced by the planets.

In Nespral et al. (2017) we presented radial velocity follow-up observations of K2-19.
As part of this thesis, we performed an analysis of the radial velocity measurements. We
detected K2-19 b, the larger and more massive planet in the system, with a mass of 54.8±
7.5 M⊕ and we provided a marginal detection of K2-19 c, with a mass of Mc = 5.9+7.6

−4.3 M⊕.
The details of this analysis are presented in the next subsections.

Nespral et al. (2017) also used the TRADES code to simultaneously model both, the RV
measurements and the existing transit timing measurements. This was done in order to
provide a comparison between RV and TTV methods to derive exoplanet masses. TRADES
code derived a mass of 54.4 ± 8.9 M⊕ for K2-19b and of 7.5+3.0

−1.4 M⊕ for K2-19c. For
K2-19b, these masses are consistent with a previous determination that was principally
based on a photodynamical analysis of the K2-19 light curve. Differences remain mainly
in the mass determination of the more lightweight planet, driven likely by the limited
precision of the RV measurements and possibly some as yet unrecognised systematics.

6.5.1 RV data

The Doppler monitoring of K2-19 is presented in Nespral et al. (2017). The RV data-set
contains 10 measurements taken with FIES, 9 with HARPS-N, and 5 with HARPS.

6.5.2 Two-planet RV modeling

We fitted one-planet and two-planet Keplerian models to the FIES, HARPS-N, and
HARPS RV data. In the first case, we assumed that the observed Doppler shift is caused
entirely by the largest transiting planet K2-19 b; in the second case we assumed that both
planets contribute to the observed RV variation. The RV analysis was done using pyaneti

(Barragán et al., 2019, see Sect. 5.3). We set Gaussian priors on the orbital periods and
mid-times of first transit for both planets using the values given by Armstrong et al.
(2015). For the remaining parameters we used flat priors. The list of fitted parameters
and prior details are given in Table 6.6.

We evolved 1 000 independent chains and ran 50 000 additional iterations, with a thin-
ning factor of 50, once convergence was reached. The final parameter estimates were
obtained by combining the points from all the chains, leading to a total number of 106

points for each parameter.



98 CHAPTER 6. CHARACTERISATION OF EXOPLANETS

0.002 0.003 0.004 0.005
T0b +6.81338e3

F
re

qu
en

cy

P(M|D)
P(M)

0.0000 0.0002 0.0004 0.0006 0.0008
Pb +7.919

1.0 0.5 0.0 0.5 1.0
esin b

0.5 0.0 0.5
ecos b

0.01 0.02 0.03
Kb

F
re

qu
en

cy

0.070 0.075 0.080
T0c +6.8172e3

0.005 0.006 0.007 0.008 0.009
Pc +1.19e1

0.000 0.005 0.010 0.015
Kc

7.18 7.19 7.20 7.21
FIES

F
re

qu
en

cy

7.30 7.31 7.32
HARPSN

7.31 7.32 7.33 7.34 7.35
HARPS

Figure 6.17: Posterior distributions of the K2-19’s fitted parameters as obtained using the code pyaneti.
The blue region corresponds to the posterior P (M |D), whereas the green shaded area marks the prior
shape P (M). Median (red solid line), 68% credible interval (red dashed line) and mode (yellow dash-
dotted line) are also shown.

6.5.3 Inferred planet parameters

Figure 6.17 shows the inferred posterior distribution for each fitted parameter obtained
with pyaneti. They all are unimodal, but we note that there is a truncation effect in
the lower prior limit for Kc (see Sect. 6.5.4 for more details). Considering the known
difficulties of quantifying the contribution from stellar activity to RV amplitudes on the
1 m s−1level, we expect that the RV amplitudes have larger uncertainties than those de-
rived in this analysis.

We see that for planets, the posterior distributions for T0 and P matches the prior
distribution. This shows how the fit to the RV data does not modify the T0 and P values
coming from a transit fit. The parameter estimates, defined as the median values of the
posterior probability distributions, are given in Table 6.6 along with the 68 % credible
interval. The inferred models for both planets are shown in Figure 6.18.

6.5.4 Planet masses

Assuming a stellar mass of M? = 0.918±0.064 M� (Table 6.6, see Sect. 3 of Nespral
et al., 2017), modelling the RV data with only one Keplerian orbit gives a mass of



6.5. K2-19: TWO WORLDS IN RESONANCE 99

Table 6.6: K2-19 system parameters.
Parameter Prior(a) Final value

Stellar parameters(b)

Star mass M? (M�) · · · 0.918± 0.064
Star radius R? (R�) · · · 0.8810000± 0.111
Effective Temperature Teff (K) · · · 5250± 70
Model parameters of K2-19 b

Orbital period Porb (days) N [7.9195, 0.0001] 7.9195± 0.0001
Transit epoch T0 (BJDTDB−2 450 000) N [6813.3835, 0.0004] 6813.3835± 0.0004√
e sinω U [−1, 1] 0.07+0.23

−0.25√
e cosω U [−1, 1] 0.17+0.16

−0.21

Radial velocity semi-amplitude variation K (m s−1) U [0, 100] 18.8± 2.4
Model parameters of K2-19 c

Period Prot (days) N [11.9070, 0.0004] 11.9070± 0.0004
Epoch T0 (BJDTDB−2 450 000) N [6817.2759, 0.0012] 6817.2759± 0.0012√
e sinω F [0] 0√
e cosω F [0] 0

Radial velocity semi-amplitude variation K (m s−1) U [0, 100] 1.8+2.3
−1.3

Additional model parameters

Systemic velocity γFIES (km s−1) U [7.1628, 7.2307] 7.1951± 0.0044
Systemic velocity γHARPS (km s−1) U [7.2832, 7.3533] 7.3278± 0.0041
Systemic velocity γHARPS−N (km s−1) U [7.2951, 7.3426] 7.3122± 0.0023
Derived parameters of K2-19 b

Planet mass Mp (M⊕)(c) · · · 54.8± 7.5
Orbit eccentricity e · · · 0.09+0.09

−0.07

Argument of periastron of stellar orbit ω? (degrees) · · · 100+37
−70

Derived parameters of K2-19 c

Planet mass Mp (M⊕)(c) · · · 5.9+7.6
−4.3

Orbit eccentricity e · · · 0

Note – (a) U [a, b] refers to uniform priors between a and b, N [a, b] means Gaussian priors with mean a and standard
deviation b and F [a] to a fixed a value. (b) Details about the stellar parameter estimation are given in Nespral et al.
(2017). (c) The true masses were calculated using the orbit inclinations given by Armstrong et al. (2015).
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Figure 6.18: FIES (blue circles), HARPS-N (red diamonds), and HARPS (green triangles) RV measure-
ments of K2-19 and Keplerian fits (solid line), phase folded to the orbital period and time of first transit
of K2-19b (left figure) and K2-19c (right figure). For K2-19c, the fitted RVs from K2-19b have been
removed. All RVs, fits and residuals (in smaller subpanels) are shown following the subtraction of the
systemic velocities from the three instruments.
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Mb = 58.6± 4.6 M⊕ for K2-19 b, with a χ2 value of 15.6 (dof = 14). The two-planet mod-
elling gives a similar value of Mb = 54.8± 7.5 M⊕ for K2-19 b, and a mass of Mc = 5.9+7.6

−4.3 M⊕
for K2-19 c, with a chi-square value of 17.5 (dof = 11). We conclude that the RV data do
not allow us to significantly detect the Doppler reflex motion induced by K2-19 c. Never-
theless, two planets are known to be in this system and given the marginal RV detection
of K2-19 c, the two-planet fit is the preferred one.

Figure 6.17 shows that the posterior distribution for Kc, the RV semi-amplitude of
planet, is truncated at zero. For instance, we can only draw a maximum mass for planet
c. With a 99% of confidence, the maximum RV semi-amplitude induced by K2-19 c is
7.0 m s−1 which translates to a maximum mass of 23.8M⊕.
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6.6 K2-106 b and c: Two worlds with different densities

Adams et al. (2017) reported the discovery of two small planets transiting the star K2-106
(EPIC 220674823), which was observed by K2 in its campaign 8. Intensive radial velocity
follow-up observations were presented in Guenther et al. (2017), as part of follow-up
program carried out by the KESPRINT consortium to determine the masses, radii, and
mean densities of the two transiting planets orbiting K2-106. The parameter estimation
of both planets was done as part of this thesis. This analysis will be described in the
present section. Details about the detection, validation, photometric follow-up, and stellar
characterisation are given in Guenther et al. (2017).

We found that although the two planets have similar masses, their densities are very
different. For K2-106 b we derived a mass of 8.44+0.96

−0.94 M⊕, a radius of 1.52 ± 0.16 R⊕,
and a high density of 12.8+5.3

−3.5 g cm−3. For K2-106 c, we found a mass, radius and radius
of 8.4+4.8

−4.3 M⊕, 2.53+0.28
−0.27 R⊕, and 2.8+2.2

−1.5 g cm−3, respectively. Since the system contains
two planets of almost the same mass, but different distances from the host star, it is
an excellent laboratory to study atmospheric escape. In agreement with the theory of
atmospheric-loss processes, it is likely that the outer planet has a hydrogen-dominated
atmosphere. The mass and radius of the inner planet is in agreement with theoretical
models predicting an iron core containing 80+20

−30 % of its mass. Such a high metal content
is surprising, particularly given that the star has a solar metal abundance.

6.6.1 RV and light curve data

We used the K2 photometry provided by Vanderburg & Johnson (2014), and detrended
and cleaned the transit light curves using the code exotrending (Barragán & Gandolfi,
2017, see Appendix A.1). We show the light curve of K2-106 in Figure 6.19.

The RV measurements were collected using 5 different spectrographs (Guenther et al.,
2017). Between August 14, 2016, and January 14, 2017, we obtained 13 spectra of K2-106
with the Carnegie Planet Finder Spectrograph (PFS; Crane et al., 2008, 2010). We also
obtained 3 RV measurements of K2-106 with the High Dispersion Spectrograph (HDS;
Noguchi et al., 2002) on the 8.2 m Subaru Telescope. We also obtained 6 RV measurements
with the FIES spectrograph, 12 RV measurements with the HARPS-N spectrograph, and
20 RVs with the HARPS spectrograph. The RV measurements are listed in Tables 1 and
2 of Guenther et al. (2017). The data-set is also accessible through the CDS portal at
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A93.

While the paper from Guenther et al. (2017) was being refereed, we learned that
Sinukoff et al. (2017) had also undertaken RV measurements of K2-106 and uploaded their
article on the preprint arXiv server. Their work included 35 relative RV measurements
obtained with Keck-HIRES, which we also included in our analysis.

6.6.2 Orbital solution of K2-106b

K2-106 b is an ultra-short period planet ideal to measure the mass via the floating chunk
offset (FCO) method (Hatzes et al., 2011, see also section B). We selected the HARPS,
HARPS-N and HIRES measurements for which at least two data points were taken the
same night. This leads to a number of 8, 3, and 5 chunks of nightly HARPS, HARPS-N
and HIRES RV data, respectively.

We modeled the HIRES, HARPS and HARPS-N RV measurements with pyaneti

(Barragán et al., 2019). We fixed the ephemeris to the values given by our joint analysis
of the data (see § 6.6.3). We fitted for the RV semi-amplitude for planet b, Kb, and the
16 nightly offsets.

http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A93
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Figure 6.19: K2 light curve of K2-106 extracted by Vanderburg & Johnson (2014). Stellar activity is seen
as the quasi-periodic, long period modulation. Transits of both planets are marked with vertical lines.
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Figure 6.20: The RV curve of K2-106 phase-folded to the orbital period of planet b, as derived using
the FCO method and residuals. The best fitting circular solution is marked with a thick line. Different
colours represent measurements from different observing nights.

We adopted uniform priors within a wide range for each parameter and ran 500 in-
dependent Markov chains. We ran the code in order to create posterior distributions of
250 000 independent data points for each fitted parameter once chains converged.

The final estimates and their 1-σ uncertainties were taken as the median and the 68 %
of the credible interval of the posterior distributions. Figure 6.20 shows the RV data
together with the inferred model once all the night offsets were subtracted. We found a
radial velocity semi-amplitude variation of Kb = 6.80 ± 0.67 ms which translates into a
mass of Mb = 8.48± 0.92M⊕ for K2-106 b.

6.6.3 Multi-planet joint analysis

We performed the multi-planet joint analysis using the code pyaneti (Barragán et al.,
2019, see also Sect. 5.3). We fitted the RV and light curve data assuming two planets
orbiting the star. Since the stellar activity was negligible, we did not add extra sinusoidal
signals (see Sect. 3.2 of Guenther et al., 2017, for more details). We also fit for a
jitter term for each spectrograph. Given the very short orbital period, we assumed a
circular orbit for K2-106 b, but included eccentricity orbit in the case of K2-106 c. Details
for fitted parameters and priors are given in Table 6.7. Following Kipping (2010, see
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Appendix A.2), we super-sampled the light curve model using 10 sub-samples per K2
exposure to account for the long-cadence acquisition. We used a similar approach to the
one presented in Sect. 6.1.5 to generate posterior distributions with 250, 000 independent
points for each fitted parameter once chains converged.

Posterior distributions for each fitted parameters are displayed in Figure 6.21. We
report our results in Table 6.7 as the median and the 68 % credible interval of the final
posterior probability distribution of each parameter. Fig. 6.22 shows the K2 transit light
curves and best fitting transit models, as well as the RV data together with the best
fitting Keplerian models of K2-106 b and c. In figure 6.23 we show a multi-transit event
that occurred at the fifth transit of K2-106 c.

6.6.4 Planets’ masses, radii, and composition

Given the stellar parameters derived by Guenther et al. (2017) (see Table 6.7), the planet
masses are 8.44+0.96

−0.94 M⊕ and 8.4+4.8
−4.3 M⊕ for K2-106 b and K2-106 c, respectively. The

radius of the inner planet is 1.52 ± 0.16 R⊕ and the outer planet is 2.53+0.28
−0.27 R⊕. With

these values, the mean densities of both planets are 12.8+5.3
−3.5 g cm−3 and 2.8+2.2

−1.5 g cm−3.
We note that our derived planet radii are consistent with the values reported by Adams
et al. (2017).

Figure 6.24 shows the mass-radius relation for low-mass planets together with various
compositions taken from Zeng et al. (2016). The filled symbols are the values for K2-106 b
and K2-106 c using our stellar parameters. K2-106 b is located between the lines with 50%
and 100% iron composition. How robust is this conclusion that K2-106 b is metal rich?
When we use models published by Fortney et al. (2007) or Wurm et al. (2013), we obtain
the same results. Thus, regardless of which set of stellar parameters we use, whether we
include the jitter term, and regardless of which models we use, in all cases we reach the
conclusion that the iron core contains more than half of the mass of the planet. The
conclusion that this planet is metal rich is therefore robust. The composition is Mercury-
like rather than Earth-like. This is very interesting because other ultra-short planets seem
to have an Earth-like composition. The high metal content of the planet is particularly
surprising because the host star has solar metallicity (see Table 3 of Guenther et al., 2017).
The unusual composition of K2-106 b also shows that rocky planets are more diverse than
previously thought, and it can provide important clues of how such metal-rich planets
form

Another interesting aspect of the K2-106 system is that the masses of the two plan-
ets are relatively similar, but the densities are very different. Since the mass and radius
measurements for both planets might be affected in the same way by the systematic uncer-
tainties of the stellar parameters, the diversity of exoplanets (e.g., Hatzes & Rauer, 2015)
cannot be entirely explained by problems in the determination of the stellar parameters.
As shown in Fig. 6.24, the density of K2-106 c is consistent with a planet composed of
100 % water. However, other planets like K2-106 c have compositions suggesting a rocky
core with a hydrogen atmosphere (Chen et al., 2017). Since the mass is 8.4+4.8

−4.3 M⊕ and
the ratio of the stellar flux received by the planet compared to Earth is Fp/F⊕ ∼ 52,
there is no reason why K2-106 c could not have a hydrogen atmosphere. The difference
in atmospheric loss rates (see Sect. 3.5 of Guenther et al., 2017) explains why the inner
planet has no hydrogen atmosphere, while the other planet is likely to have one. K2-106 c
is an ideal target for future studies of atmospheric escape.
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Figure 6.21: Posterior distributions of the K2-106’s fitted parameters as obtained from the final analysis
performed with pyaneti. The blue region corresponds to the posterior P (M |D), whereas the green
shaded area marks the prior shape P (M). Median (red solid line), 68% credible interval (red dashed
line), and mode (yellow dash-dotted line) are also shown.
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Table 6.7: K2-106 system parameters.
Parameter Prior(a) Final value

Stellar parameters(b)

Star mass M? (M�) · · · 0.945± 0.063
Star radius R? (R�) · · · 0.869± 0.088
Effective Temperature Teff (K) · · · 5470± 30
Model parameters of K2-106 b

Orbital period Porb (days) U [0.5710, 0.5716] 0.571292± 0.000012
Transit epoch T0 (BJDTDB−2 450 000) U [7394.0039, 7394.0211] 7394.0114± 0.0010
Scaled semi-major axis a/R? U [1.2, 10] 2.79+0.14

−0.33

Planet-to-star radius ratio Rp/R? U [0, 0.1] 0.01611+0.00052
−0.00036

Impact parameter, b U [0, 1] 0.3223883+0.26
−0.23√

e sinω F [0] 0√
e cosω F [0] 0

Radial velocity semi-amplitude variation K (m s−1) U [0, 10] 6.67± 0.69
Model parameters of K2-106 c

Orbital period Porb (days) U [13.3312, 13.3512] 13.33966+0.00092
−0.00099

Transit epoch T0 (BJDTDB−2 450 000) U [7405.6932, 7405.7692] 7405.73156+0.0025
−0.0023

Scaled semi-major axis a/R? U [1.2, 100] 23.9+6.7
−6.2

Planet-to-star radius ratio Rp/R? U [0, 0.1] 0.0264+0.0013
−0.0007

Impact parameter, b U [0, 1] 0.3223883+0.26
−0.23√

e sinω U [−1, 1] 0.04+0.29
−0.41√

e cosω U [−1, 1] −0.49+0.32
−0.19

Radial velocity semi-amplitude variation K (m s−1) U [0, 10] 6.67± 0.69
Additional model parameters

Parameterized limb-darkening coefficient q1 N [0.47, 0.1] 0.46± 0.10
Parameterized limb-darkening coefficient q2 N [0.33, 0.1] 0.32± 0.10
Systemic velocity γFIES (km s−1) U [−0.0102, 0.0306] 0.0102+0.0024

−0.0026

Systemic velocity γHDS (km s−1) U [−0.0195, 0.0178] 0.0013566± 0.0055
Systemic velocity γPFS (km s−1) U [−0.0143, 0.0255] 0.0014± 0.0015
Systemic velocity γHIRES (km s−1) U [−0.0348, 0.0207] −0.00186+0.00094

−0.00097

Systemic velocity γHARPS (km s−1) U [−15.7531,−15.7125] −15.73301+0.00090
−0.00095

Systemic velocity γHARPS−N (km s−1) U [−15.7530,−15.7179] −15.7361± 0.0012
RV jitter term σFIES (m s−1) U [0, 100] 2.4+3.0

−1.7

RV jitter term σHDS (m s−1) U [0, 100] 6.3+9.4
−4.4

RV jitter term σPFS (m s−1) U [0, 100] 4.2+1.7
−1.3

RV jitter term σHIRES (m s−1) U [0, 100] 4.8+0.7
−0.6

RV jitter term σHARPS (m s−1) U [0, 100] 2.0+1.3
−1.2

RV jitter term σHARPS−N (m s−1) U [0, 100] 1.8+1.5
−1.2

Derived parameters of K2-106 b

Planet mass Mp (MJup) · · · 8.44+0.96
−0.94

Planet radius Rp (RJup) · · · 1.52± 0.16
Planet mean density ρp (g cm−3) · · · 12.8+5.3

−3.5

Semi-major axis of the planetary orbit a (AU) · · · 0.0110+0.0014
−0.0016

Orbit eccentricity e · · · 0
Argument of periastron of stellar orbit ω? (degrees) · · · 90
Orbit inclination ip (degrees) · · · 83.4+4.8

−7.0

Equilibrium temperature(c) Teq (K) · · · 2451+157
−81

Derived parameters of K2-106 c

Planet mass Mp (MJup) · · · 8.4+4.8
−4.3

Planet radius Rp (RJup) · · · 2.53+0.28
−0.27

Planet mean density ρp (g cm−3) · · · 2.8+2.2
−1.5

Semi-major axis of the planetary orbit a (AU) · · · 0.096+0.030
−0.026

Orbit eccentricity e · · · 0.36+0.20
−0.21

Argument of periastron of stellar orbit ω? (degrees) · · · 176+54
−36

Orbit inclination ip (degrees) · · · 89.2+0.6
−1.3

Equilibrium temperature(c) Teq (K) · · · 835+134
−99

Note – (a) U [a, b] refers to uniform priors between a and b, N [a, b] means Gaussian priors with mean a and standard
deviation b and F [a] to a fixed a value. (b) Details about the stellar parameter estimation are given in Guenther et al.
(2017). (c) Assuming albedo = 0.
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Figure 6.22: Transit light curves and RV curves of K2-106 due to planet b (upper panels) and c (lower
panels). The best fitting transit and Keplerian models are overplotted with thick black lines. The K2
data points are shown with red circles (left panels). The HARPS and HARPS-N RV measurements are
plotted with red circles and blue diamonds, respectively, along with their nominal uncertainties (right
panels). The RV curves are phase-folded to the orbital period of the two planets, following the subtraction
of the systemic velocities and other signals, except planet b (upper right panel) and c (lower right panel).
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Figure 6.23: Multi-transit event for K2-106. The K2 data points are shown with red circles. The best-
fitting transit model is overplotted with a thick black line. The data and the model show the simultaneous
transit of K2-106 b and K2-106 c.
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Figure 6.24: Mass-radius diagram for well-characterised (5-σ precision level or better) super-Earths and
Neptunes. From bottom to top, the solid curves are theoretical models (Zeng et al., 2016) for planets
with a composition of 100% iron (brown), 50% silicate and 50% iron (dashed red), 100% silicate (beige),
50% silicate and 50% water (dashed blue), water (light blue). K2-106 b & K2-106 c are highlighted with
different symbols and colours.
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6.7 HD 3167 b and c: Two worlds with different densities II

Using time-series photometric data from K2 ’s Campaign 8, Vanderburg et al. (2016)
announced the discovery of two small transiting planets around the bright (V=8.9 mag)
K0 dwarf star HD 3167. The inner planet, HD 3167 b, has a radius of Rp=1.6R⊕ and
transits the host star every 0.96 days. HD 3167 b qualifies as an ultra-short period planet.
The outer planet, HD 3167 c, has a radius of 2.9R⊕ and an orbital period of 29.85 days.
The brightness of the host star makes the system amenable to follow-up observations such
as high-precision RV measurements for planetary mass determination.

Gandolfi et al. (2017) presented an intensive radial velocity follow-up of HD 3167 per-
formed with the FIES@NOT, HARPS@ESO-3.6m, and HARPS-N@TNG spectrographs.
The data analysis presented in Gandolfi et al. (2017) was done as part of this thesis. We
revised the system parameters and determined radii, masses, and densities of the two
transiting planets by combining the K2 photometry with our spectroscopic data.

With a mass of 5.69 ± 0.44 M⊕, radius of 1.574 ± 0.054 R⊕, and mean density of
8.00+1.10

−0.98 g cm−3, HD 3167 b joins the small group of ultra-short period planets known to
have a rocky terrestrial composition. HD 3167 c has a mass of 8.33+1.79

−1.85 M⊕ and a radius
of 2.740+0.106

−0.100 R⊕, yielding a mean density of 2.21+0.56
−0.53 g cm−3, indicative of a planet with

a composition comprising a solid core surrounded by a thick atmospheric envelope. The
rather large pressure scale height (∼350 km) and the brightness of the host star make
HD 3167 c an ideal target for atmospheric characterisation via transmission spectroscopy
across a broad range of wavelengths. We found evidence of additional signals in the radial
velocity measurements but the currently available data set does not allow us to draw any
firm conclusion on the origin of the observed variation.

Details about the detection and the validation are given in Vanderburg et al. (2016).
Ground-based follow-up and stellar characterisation are described in Gandolfi et al. (2017).
In this section we will present the different analyses that were performed to model the
transit and radial velocity signals. We note that Christiansen et al. (2017) presented an
independent mass determination of HD3167 b and c using a different RV data-set. Their
results are consistent with ours.

6.7.1 RV and light curve data

For our analysis we used the light curve (Fig. 6.25) extracted following the technique
described in Vanderburg & Johnson (2014). The fitted photometric data-set includes 6
and 15 hours of K2 data-points centred around each transit of HD 3167 b and c. We
de-trended the segments using the program exotrending (Barragán & Gandolfi, 2017,
see Appendix A.1). Briefly, we fitted a second order polynomial to the out-of-transit data
and removed outliers using a 3-sigma-clipping algorithm applied to the residuals of the
preliminary best fitting transit models derived using the formalism of Mandel & Agol
(2002) coupled to a non-linear least square fitting procedure.

The description of the Doppler follow-up of HD 3167 is given in Gandolfi et al. (2017).
The RV data-set contains 37 measurements taken with FIES, 32 with HARPS-N, and
50 with HARPS. The RV measurements are accessible through the CDS portal at http:
//cdsarc.u-strasbg.fr/viz-bin/Cat?cat=J%2fAJ%2f154%2f123.

6.7.2 Orbital solution of HD 3167 b

We performed a Keplerian fit of the FIES, HARPS, and HARPS-N RV data following the
floating chunk offset (FCO) method described in Hatzes et al. (2011, see Appendix B).
The ultra-short period planet HD 3167 b is well suited for application of the FCO method.

http://cdsarc.u-strasbg.fr/viz-bin/Cat?cat=J%2fAJ%2f154%2f123
http://cdsarc.u-strasbg.fr/viz-bin/Cat?cat=J%2fAJ%2f154%2f123
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Figure 6.25: K2 light curve of HD 3167 as extracted by Vanderburg & Johnson (2014). Transits of both
planets are marked with vertical lines.

This technique is particularly effective at filtering out the long term RV variation due
to magnetic activity coupled with stellar rotation. The star has an estimated rotation
period of about 23.5 days (Gandolfi et al., 2017, see § 4.3), which is longer than the orbital
period of HD 3167 b. HD 3167 c has an orbital period of about 29.95 days, which results
in a change of less than 0.01 in phase within the nightly visibility window of the target
(∼5-6 hours). The RV of the star due to the outer transiting planet does not change
significantly during an observing night. Moreover, each of the three data sets has its own
zero-point offset, which is naturally taken into account by the method. Finally, the FCO
technique also removes – or at least greatly minimises – any long term systematic errors,
such as the night-to-night RV drifts of FIES.

We modelled the FIES, HARPS and HARPS-N RV measurements with pyaneti (Bar-
ragán et al., 2019, see Sect. 5.3). Following Hatzes et al. (2011), we divided the RVs
into three subsets of nightly measurements – one per instrument – and analysed only
those radial velocities for which multiple measurements were acquired on the same night,
leading to a total of 12, 15, and 11 chunks of nightly FIES, HARPS, and HARPS-N RVs,
respectively. The best fitting orbital solution of HD 3167 b was found keeping period and
transit ephemeris fixed to the values derived by our joint analysis described in § 6.7.3, but
allowing the RV semi-amplitude variation Kb and the 38 nightly offsets to vary. We also
fitted for

√
eb sinω?,b and

√
eb cosω?,b, where eb is the eccentricity and ω?,b is the argu-

ment of periastron of the star. We also fitted for a constant white noise term – commonly
referred to as RV “jitter” term – to account for instrumental velocity noise not included
in the nominal uncertainties and/or possible sources of short term stellar variability –
such as granulation – not removed by the FCO method. Three independent jitters were
added in quadrature to the formal error bars of each instrument. We super-sampled the
light curve model using 10 sub-samples per K2 exposure to account for the long-cadence
acquisition (Kipping, 2010, see Appendix A.2).

We adopted uniform priors within a wide range for each parameter and ran 500 inde-
pendent Markov chains. Once chains converged, we took 25000 iterations using a thin
factor of 50, leading to a posterior distribution of 250 000 independent data points for
each fitted parameter. The final estimates and their 1-σ uncertainties were taken as the
median and the 68 % of the credible interval of the posterior distributions.

We obtained a best fitting non-zero eccentricity of eb = 0.12±0.05. We also fitted the
RV data assuming a circular orbit (

√
eb sinω?,b =

√
eb cosω?,b = 0). Figure 6.26 displays

our FIES, HARPS, and HARPS-N measurements along with the best fitting circular
model. Different symbols refer to different instrument, whereas different colours represent
different nights. In order to assess the significance of our result we created 105 sets of
synthetic RVs that sample the best fitting circular solution at the epochs of our real
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Figure 6.26: The RV curve of HD 3167 phase-folded to the orbital period of planet b, as derived using
the FCO method and residuals. The best fitting circular solution is marked with a thick line. The FIES,
HARPS, and HARPS-N RV measurements are plotted with triangles, circles, and squares, respectively,
along with their formal error bars. Different colours represent measurements from different observing
nights.

observations. We added Gaussian noise at the same level of our measurements and fitted
the simulated data allowing for an eccentric solution. We found that there is a ∼18 %
probability that a best fitting eccentric solution with e ≥ 0.12 could have arisen by chance
if the orbit were actually circular. As this is above the 5 % significance level suggested by
Lucy & Sweeney (1971), we decided to conservatively assume a circular model.

We found a radial velocity semi-amplitude variation of Kb = 3.81± 0.50 m s−1 which
translates into a mass of Mb = 5.39± 0.72M⊕ for HD 3167 b. We note that the eccentric
solution provides a planetary mass that is consistent within 1-σ with the result from the
circular model.

6.7.3 Transit and RV joint analysis

We performed a joint modelling of the K2 and RV measurements with pyaneti. We
modelled the RV data with two Keplerian signals and fitted the transit light curves using
the Mandel & Agol (2002)’s model with a quadratic limb darkening law. We parametrized
the limb darkening coefficients following Kipping (2013). To account for the K2 long
cadence data, we integrated the transit models over 10 steps. For each planet i we fitted
for the orbital period P, i, time of first transit T0,i, scaled semi-major axis ai/R?, impact
parameter bi, planet-to-star radius ratio Ri/R?, and RV semi-amplitude variation Ki. To
account for the RV offset between HARPS and HARPS-N, we fitted also for a systemic
velocity for each instrument. We assumed a circular orbit for the inner planet and fitted
for
√
ec sinω?,c and

√
ec cosω?,c for the outer planet.

The 30-minute integration time of K2 smears out the shape of planetary transits
increasing the degeneracy between the scaled semi-major axis a/R? and the impact pa-
rameter b (Csizmadia et al., 2011). We therefore set Gaussian priors for ai/R? for both
planets using the stellar mass and radius (Sect., 4 of Gandolfi et al., 2017) and constrained
and the orbital period of both planets through Kepler’s third law. We did not add RV
jitter terms at this stage of our analysis.

We explored the parameter space with 500 independent chains created randomly inside
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the prior ranges for each parameter, as listed in the second column of Table 6.8. Once
all chains converged, we ran 25000 more iterations with a thin factor of 50. This led to a
posterior distribution of 250000 independent points for each fitted parameter.

The two-planet model provides a poor fit to the HARPS and HARPS-N measurements
with a RV χ2 of 597 and χ2/dof = 8.7, suggesting that additional signals might be present
in the data, as discussed in the next section.

Gandolfi et al. (2017) found two additional signals with periods of 6.0 and 10.7 days
in the HARPS and HARPS-N measurements. However, the sampling of the observations,
as well as the limited number of RVs and their noise level do not allow us to assess
whether the two signals are due to activity, or are rather induced by two additional
orbiting planets. We thus include the two signals in our analysis to account for these
extra sinusoidal signals, but warn the reader that more observations are needed to unveil
their true nature.

6.7.4 Joint two-planet and stellar activity modelling

We used pyaneti to perform the final joint modelling of the K2 and RV measurements.
We fitted the transit and RV curves of HD 3167 b and c following the guidelines presented
in § 6.7.3, and incorporated the modelling of the two additional RV signals at 6.0 and
10.7 days using two sinusoidal curves (see Appendix B). We set uniform priors for the
periods of the two additional signals – using a 2-day range centred around the values
found by the frequency analysis presented in Gandolfi et al. (2017) – and adopted uniform
priors for the corresponding phases and amplitudes (details in Table 6.8). To account for
additional instrumental noise not included in the nominal RV error bars and/or imperfect
treatment of the various sources of RV variations (e.g., stellar activity and/or additional
planets), we added jitter terms to the equation of the likelihood for the HARPS and
HARPS-N RV measurements.

We display the posterior distribution for each fitted parameter in Figure 6.27. The
parameter estimates and their error bars were taken to be the median and the 68 % credible
interval of the final posterior probability distribution of each parameter. We report our
results in Table 6.8. Fig. 6.28 shows the K2 transit light curves and best fitting transit
models, as well as the HARPS and HARPS-N RVs and best fitting Keplerian models of
HD 3167 b and c. The RV fits to the two additional signals at 6.0 and 10.7 days are shown
in Fig. 6.29. Figure 6.30 shows two consecutive transits of HD 3167 b and HD 3167 c to
show the difference in transit depth and duration for both planets.

6.7.5 Planet’s masses

The mass of HD 3167 b is in very good agreement with the value we derived using the
FCO method corroborating our analysis (cfr. § 6.7.2). Does the inclusion of the 6.0
and 10.7-day signals bias the mass determinations of HD 3167 b and HD 3167 c ? A two-
planet model fit that includes only planet b and c gives RV semi-amplitude variations of
Kb = 3.74± 0.39 m s−1 and Kc = 2.29± 0.45 m s−1, respectively. By adding only the 10.7-
day signal we get Kb =4.06± 0.37 m s−1 and Kc =2.04± 0.43 m s−1. By adding both the
10.7-day and the 6.0-day signal we obtain Kb = 4.02± 0.31 m s−1 and Kc = 1.88+0.40

−0.42 m s−1,
proving that the RV semi-amplitude variations – and thus the determination of the plan-
etary masses of HD 3167 b and HD 3167 c – are not significantly affected by the inclusion
of the two additional signals.
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Figure 6.27: Posterior distributions of the HD 3167’s fitted parameters as obtained from the final analysis
performed with pyaneti. The blue region corresponds to the posterior P (M |D), whereas the green
shaded area marks the prior shape P (M). Median (red solid line), 68% credible interval (red dashed
line), and mode (yellow dash-dotted line) are also shown.
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Table 6.8: HD 3167 system parameters.
Parameter Prior(a) Final value

Stellar parametersb

Star mass M? (M�) · · · 0.877± 0.024
Star radius R? (R�) · · · 0.835± 0.026
Effective Temperature Teff (K) · · · 5286± 40

Model Parameters for HD 3167 b
Orbital period Porb (day) U [0.9596, 0.9598] 0.959632± 0.000015
Transit epoch T0 (BJDTDB−2 450 000) U [7394.3675, 7394.3763] 7394.37442+0.00060

−0.00055

Scaled semi-major axis a/R? N [4.74, 0.18] 4.516+0.076
−0.085

Scaled planet radius Rp/R? U [0, 0.5] 0.01728± 0.00025
Impact parameter, b U [0, 1] 0.11+0.11

−0.08

Radial velocity semi-amplitude variation K (m s−1) U [0, 100] 4.02± 0.31√
e sinω F [0] 0√
e cosω F [0] 0

Model Parameters for HD 3167 c
Orbital period Porb (day) U [29.8508, 29.8532] 29.84622+0.00098

−0.00091

Transit epoch T0 (BJDTDB−2 450 000) U [7394.9763, 7394.9787] 7394.97831± 0.00085
Scaled semi-major axis a/R? N [46.3, 1.4] 46.5± 1.5
Scaled planet radius Rp/R? U [0, 0.5] 0.03006+0.00065

−0.00055

Impact parameter, b U [0, 1] 0.30+0.11
−0.18

Radial velocity semi-amplitude variation K (m s−1) U [0, 100] 1.88+0.40
−0.42√

e sinω U [−1, 1] 0.00+0.17
−0.24√

e cosω U [−1, 1] 0.06+0.16
−0.17

Signal with period of 10.7 days
Period Porb (days) U [9.4, 12.0] 10.77+0.15

−0.13

Radial velocity semi-amplitude variation K (m s−1) U [0, 100] 1.34+0.27
−0.28

Signal with period of 6.0 days
Period Porb (days) U [5.4, 6.5] 5.967+0.038

−0.035

Radial velocity semi-amplitude variation K (m s−1) U [0, 100] 1.26± 0.25

Other Parameters
Systemic velocity γHARPS (km s−1) U [19.4183, 19.6317] 19.52311± 0.00029
Systemic velocity γHARPS−N (km s−1) U [19.4086, 19.6197] 19.51471± 0.00036
RV jitter term σHARPS (m s−1) U [0, 10] 1.44+0.24

−0.21

RV jitter term σHARPS−N (m s−1) U [0, 10] 0.95+0.24
−0.20

Parameterized limb-darkening coefficient q1 U [0, 1] 0.34+0.26
−0.15

Parameterized limb-darkening coefficient q2 U [0, 1] 0.47+0.29
−0.22

Derived Parameters for HD 3167 b
Planet mass Mp (M⊕) · · · 5.69± 0.44
Planet radius Rp (R⊕) · · · 1.574± 0.054
Mean density ρb (g cm−3) · · · 8.00+1.10

−0.98

Eccentricity e · · · 0 (fixed)
Semi-major axis of the planetary orbit a (AU) · · · 0.01752± 0.00063
Orbit inclination ip (◦) · · · 88.6+1.0

−1.4

Transit duration τ14 (hours) · · · 1.65± 0.03
Equilibrium temperaturec Teq (K) · · · 1759± 20
Derived Parameters for HD 3167 c
Planet mass Mp (M⊕) · · · 8.33+1.79

−1.85

Planet radius Rp (R⊕) · · · 2.740+0.106
−0.100

Mean density ρc (g cm−3) · · · 2.21+0.56
−0.53

Eccentricity e · · · 0.05+0.07
−0.04

Argument of periastron w? (◦) · · · 178+134
−136

Semi-major axis of the planetary orbit a (AU) · · · 0.1806± 0.0080
Orbit inclination ip (◦) · · · 89.6± 0.2
Transit duration τ14 (hours) · · · 4.81+0.17

−0.09

Equilibrium temperaturec Teq (K) · · · 548± 10

Linear limb-darkening coefficient u1 · · · 0.54+0.15
−0.17

Quadratic limb-darkening coefficient u2 · · · 0.04+0.35
−0.27

Note – (a) U [a, b] refers to uniform priors between a and b, N [a, b] means Gaussian priors with mean a and standard
deviation b and F [a] to a fixed a value. (b) Details about the stellar parameter estimation are given in Gandolfi et al.
(2017). (c) Assuming albedo = 0.
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Figure 6.28: Transit light curves and RV curves of HD 3167 due to planet b (upper panels) and c (lower
panels). The best fitting transit and Keplerian models are overplotted with thick black lines. The K2
data points are shown with red circles (left panels). The HARPS and HARPS-N RV measurements are
plotted with red circles and blue diamonds, respectively, along with their nominal uncertainties (right
panels). The RV curves are phase-folded to the orbital period of the two planets, following the subtraction
of the systemic velocities and other signals, except planet b (upper right panel) and c (lower right panel).
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Figure 6.29: Radial velocity curves of the two signals at 10.7 days (left panel) and 6.0 days (right panel)
and best-fitting models. The HARPS and HARPS-N RV measurements are plotted with red circles and
blue diamonds, respectively, along with their nominal uncertainties.
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Figure 6.30: Consecutive transits of HD 3167 b and HD 3167 c. The K2 data points are shown with red
circles. The best fitting transit model is overplotted with thick black lines. Note the different depth and
duration.

6.7.6 Planet’s composition

The ultra-short period planet HD 3167 b has a mass of Mb=5.69± 0.44 M⊕ and a radius
of Rb=1.574 ± 0.054 R⊕, yielding a mean density of ρb=8.00+1.10

−0.98 g cm−3. Figure 6.31
displays the position of HD 3167 b on the mass-radius diagram compared to the sub-
sample of small transiting planets (R ≤ 4 R⊕) whose masses and radii have been derived
with a precision better than 20 %. Theoretical models from Zeng et al. (2016) are over-
plotted using different lines and colours. The precision of our mass determination (∼8 %)
allows us to conclude that HD 3167 b is a rocky terrestrial planet with a composition
consisting of ∼50 % silicate and ∼50% iron.

With a mass of Mc=8.33+1.79
−1.85 M⊕ and a radius of Rc=2.740+0.106

−0.100 R⊕ the outer planet
HD 3167 c has a mean density of ρb=2.21+0.56

−0.53 g cm−3, which is consistent with a com-
position comprising a solid core surrounded by a thick atmosphere. HD 3167 c joins the
small group of low-density mini-Neptunes with precise mass and radius determinations
(see Fig. 6.31).

HD 3167 c is expected to have a completely different nature with respect to the inner
planet b. Despite the lack of mass measurements, Vanderburg et al. (2016) noticed that
HD 3167 c may be a primary target for transmission spectroscopy. The rather large pres-
sure scale height of about 350 km and the brightness of the host star (V=8.9 mag) make
HD 3167 c an ideal target for transmission spectroscopy observations across a wide range
of wavelengths, from the far-ultraviolet to the infrared. One can expect the planet to
have a rather large hydrogen-rich cloud made of gas escaping from the planetary upper
atmosphere under the effect of the high-energy stellar radiation, similarly to GJ 436 b
(Kulow et al., 2014; Ehrenreich et al., 2015). This cloud would be detectable at Lyα dur-
ing primary transit. Such observations would then provide us with crucial information
about the properties of the upper planetary atmosphere and its environment (e.g., stellar
wind density and velocity). Observations at longer wavelengths would instead give us
the opportunity to study the lower atmosphere and infer its chemical composition and
physical properties. HD 3167 c appears to be one of the best candidates to investigate the
atmosphere of a low-mass planet.
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6.8 GJ 9827: The different nature of three neighbouring worlds

GJ 9827 is a relatively bright (V = 10.39 mag) late K-dwarf star at 30 pc from the
Solar system. Using data from K2 ’s Campaign 12, Niraula et al. (2017) reported on
the discovery of 3 transiting planets around this star. As part of this thesis, we ran an
independent MCMC analysis using pyaneti in order to corroborate the results reported
in Table 1 of Niraula et al. (2017). This discovery was also announced independently by
Rodriguez et al. (2018).

An intense ground-based follow up is presented by the KESPRINT team in Prieto-
Arranz et al. (2018). Details about the observations and stellar characterisation are given
in detail in Prieto-Arranz et al. (2018). The RV follow-up, and the parameter estimation
from the light curve and RV data were carried out as part of this thesis. We provide
details below.

6.8.1 Light curve and RV data

Figure 6.32 shows the K2 light curve of GJ 9827 as extracted by Vanderburg & Johnson
(2014). For the data analysis presented in Sect. 6.8.2 we used the light curve extracted
and flattened from the K2 raw target pixel files as in Dai et al. (2017).

The RV data are presented in Prieto-Arranz et al. (2018). The data consists of 35
HARPS RVs taken under programs 099.C-0491 and 0100.C-0808, and 23 HARPS-N RV
measurements acquired under the programs OPT17A 64 and A36TAC 12. The HARPS
spectra were gathered from August 19 to October 24 2017 UT, and the HARPS-N spectra
from July 29 to December 9 2017 UT. We used the second fibre of both instruments to
monitor the sky background. The HARPS and HARPS-N spectra were reduced and
extracted using the dedicated data reduction software (DRS). The RVs were measured
by cross-correlating the Echelle orders of the observed spectra with a K5 numerical mask
(Baranne et al., 1996; Pepe et al., 2002) and by fitting a Gaussian function to the average
cross-correlation function (CCF). The list of HARPS and HARPS-N measurements are
presented in Prieto-Arranz et al. (2018).

6.8.2 Multi-planet joint analysis

We performed the joint analysis to the photometric and RV data with pyaneti (Barragán
et al., 2019, see Sect. 5.3). We fitted Keplerian orbits to the RV data and used the limb-
darkened quadratic transit model by Mandel & Agol (2002) for the K2 transit light curves.
In order to account for the Kepler long-cadence acquisition, we super-sampled the transit
models using 10 subsamples per K2 exposure (Kipping, 2010, see Appendix A.2).

We fitted for a transit and a RV signal for each of the three planets. We sampled for

ρ
1/3
? and recovered the scaled semi-major axis (ap/R?) of the three planets using Kepler’s

third law. We used uniform priors for all the parameters, except for the limb darkening
coefficients for which we set Gaussian priors as described in Niraula et al. (2017). Details
about fitted parameters and priors are given in Table 6.10.

6.8.3 Stellar activity modelling

The RV data of GJ 9827 shows activity-induced RV at the stellar rotation frequency and
its harmonics, with an estimated semi-amplitude of ∼3 m s−1(See Sect. 4 of Prieto-
Arranz et al., 2018). The light curve of GJ 9827 (Fig. 6.32) suggests that the evolution
time scale of active regions is longer than the K2 observations (∼80 days). Since our
FIES, HARPS, and HARPS-N RV follow-up covers ∼140 days, we can model the RV
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Figure 6.32: K2 light curve of GJ 9827 extracted by Vanderburg & Johnson (2014). Stellar activity is
seen as the quasi-periodic, long period modulation. Transit positions for the three planets are marked
with vertical lines.

Table 6.9: Model comparison for GJ 9827.

Model Kb (m s−1) Kc (m s−1) Kd (m s−1) Krot (m s−1) Krot/2 (m s−1) χ2/dof BIC

3P 2.86± 0.28 0.80± 0.24 1.26± 0.25 0 0 2.8 -500

3P + Prot 2.96± 0.30 1.11± 0.27 0.99± 0.26 5.68± 0.84 0 1.9 -539

3P + Prot/2 3.01± 0.28 0.85± 0.27 1.16± 0.27 0 3.18± 0.38 1.4 -564

3P + Prot + Prot/2 2.98± 0.31 0.82± 0.27 1.25± 0.30 0.64+1.10
−0.47 3.27± 0.50 1.7 -488

induced signal using a coherent sinusoidal signals at the stellar rotation frequency and its
harmonics, similarly to the work described in, e.g., Pepe et al. (2013) and Barragán et al.
(2018a, see Appendix B).

In order to check which Fourier components at the rotation frequency and its harmonics
can better describe the activity signal, we tested different RV models. The first model (3P)
includes only the three planetary signals. The second model (3P+Prot) is obtained from
3P by adding a sinusoidal signal at the rotation period of the star (Prot ∼30 days). The
third model called 3P+Prot/2 includes three Keplerians and a sinusoidal signal at half the
rotation period (∼15 days). We also tested a model where two sinusoidal signals at both
Prot and Prot/2 were included. Since the stellar rotation period is not well constrained,
we set uniform priors in the ranges [Prot − 2 : Prot + 2] and [Prot/2 − 1 : Prot/2 + 1].

Table 6.9 summarises the results of our test, showing the goodness of the fit for each
model. With the lowest Bayesian information criteria (BIC), the preferred model is
3P+Prot/2 (3 planets plus one sinusoidal signal at∼15 days). Table 6.9 shows also that the
semi-amplitudes of the three planetary signals do not change significantly when consid-
ering different models, providing evidence that the Doppler motion induced by the three
planets is present in our RV data-set and does not depend on the Fourier components
used to model the activity-induced RV signal.

We emphasise that our approach of treating the RV stellar signal as a coherent signal
at the first harmonic of the rotation frequency relies on the fact that the K2 light curve
provides evidence that the evolution time-scale of active regions is longer than the duration
of our RV follow-up. Unfortunately, the assumption of a coherent stellar signal does not
hold for the RV measurements presented by Teske et al. (2018) because their follow-up
spans ∼7 years with average gaps of ∼69 days.
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Table 6.10: GJ 9827 fitted parameters.
Parameter Prior(a) Final value

Model Parameters for GJ 9827 b
Orbital period Porb (day) U [1.2089, 1.2091] 1.208966± 0.000012
Transit epoch T0 (BJDTDB−2 450 000) U [7738.8226, 7738.8289] 7738.82646± 0.00043
Scaled planet radius Rp/R? U [0, 0.05] 0.02322+0.00058

−0.00037

Impact parameter, b U [0, 1] 0.21+0.23
−0.14

RV semi-amplitude variation K (m s−1) U [0, 50] 3.00± 0.35√
e sinω F [0] 0√
e cosω F [0] 0

Model Parameters for GJ 9827 c
Orbital period Porb (day) U [3.6477, 3.6493] 3.64823± 0.00012
Transit epoch T0 (BJDTDB−2 450 000) U [7738.5380, 7738.5579] 7738.5496± 0.0015
Scaled planet radius Rp/R? U [0, 0.05] 0.01820+0.00054

−0.00041

Impact parameter, b U [0, 1] 0.25+0.21
−0.16

RV semi-amplitude variation K (m s−1) U [0, 50] 0.82± 0.32√
e sinω F [0] 0√
e cosω F [0] 0

Model Parameters for GJ 9827 d
Orbital period Porb (day) U [6.2003, 6.2024] 6.20142± 0.00013
Transit epoch T0 (BJDTDB−2 450 000) U [7740.9564, 7740.9684] 7740.96198± 0.00086
Scaled planet radius Rp/R? U [0, 0.05] 0.02993+0.00101

−0.00078

Impact parameter, b U [0, 1] 0.864+0.022
−0.013

RV semi-amplitude variation K (m s−1) U [0, 50] 1.11± 0.32√
e sinω F [0] 0√
e cosω F [0] 0

Extra sinusoidal signal
Orbital period Porb (day) U [13.5, 15.5] 14.46± 0.11
Transit epoch T0 (BJDTDB−2 450 000) U [7734.85, 7749.15] 7739.87+1.96

−1.92

RV semi-amplitude variation K (m s−1) U [0, 50] 3.15± 0.44
Other Parameters

Stellar density parametrization ρ
1/3
? (g1/3cm−1) U [0.01, 2.3] 1.697+0.044

−0.128

Systemic velocity γHARPS (km s−1) U [31.9310, 31.9621] 31.94794+0.00036
−0.00036

Systemic velocity γHARPS−N (km s−1) U [31.9312, 31.9636] 31.94888+0.00035
−0.00034

Systemic velocity γFIES (km s−1) U [31.7624, 31.7896] 31.7737+0.0014
−0.0014

RV jitter term σHARPS (m s−1) U [0, 10] 0.96+0.37
−0.39

RV jitter term σHARPS−N (m s−1) U [0, 10] 0.61+0.48
−0.40

RV jitter term σFIES (m s−1) U [0, 10] 1.25+1.55
−0.89

Parameterized limb-darkening coefficient q1 N [0.52, 0.1] 0.53+0.09
−0.09

Parameterized limb-darkening coefficient q2 N [0.40, 0.1] 0.34+0.09
−0.09

Note – The derived parameters are shown in Table 6.11. (a) U [a, b] refers to uniform priors between a and b, N [a, b]
means Gaussian priors with mean a and standard deviation b and F [a] to a fixed a value. (b) Details about the stellar
parameter estimation are given in Gandolfi et al. (2017). (c) Assuming albedo = 0.
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6.8.4 Joint three planet and stellar activity modelling

We performed the final joint analysis assuming that the RV data are described by the
3P+Prot/2 model. For the phase, amplitude, and period of the activity signal we adopted
uniform priors (see Table 6.10). We included a jitter term for each spectrograph to
account for additional instrumental noise not included in the nominal RV error bars
and/or imperfect treatment of the various sources of RV variations. Since GJ 9827 hosts
a short-period multi-planetary system, we assumed tidal circularisation of the orbits and
fixed e = 0 for all three planets (Van Eylen & Albrecht, 2015).

We explored the parameter space with 500 Markov chains initialised at random posi-
tions inside the prior ranges. Once all chains converged, we ran 5000 iterations more. We
used a thin factor of 10 to generate a posterior distribution of 250,000 independent points
for each parameter.

The inferred posterior distributions for each fitted parameter are shown in Figure 6.33.
We derived parameter values and uncertainties from the median and the 68.3% credi-
ble intervals of their posterior distributions. Fitted and derived parameters are reported
in Tables 6.10 and 6.11, respectively. The inferred models for each planet for the light
curve and RV data are shown in Fig. 6.34. Figure 6.35 shows the stellar activity induced
RV signal together with the inferred sinusoidal model. In Fig. 6.36 we show simultane-
ous transits of the three planets to show explicitly the differences on transit depths and
durations.

6.8.5 Planet masses

We determined masses, radii, and densities of the three planets known to transit GJ 9827.
We found that GJ 9827 b has a mass of Mb = 3.69 ± 0.47M⊕ and a radius of Rb =
1.58 ± 0.14R⊕ , yielding a mean density of ρb = 5.11+1.74

−1.27 g cm−3. GJ 9827 c has a mass
of Mc = 1.45 ± 0.57 M⊕ , radius of Rc = 1.24 ± 0.11R⊕ , and a mean density of ρc =
4.13+2.31

−1.77 g cm−3. For GJ 9827 d we derived Md = 2.35±0.69M⊕ , Rd = 2.04±0.18R⊕ , and
ρd = 1.51+0.71

−0.53 g cm−3. GJ 9827 is the brightest (V=10.35± 0.10 mag) multiplanet system
for which the masses of all transiting planets have been measured.

6.8.6 Planet composition

GJ 9827 hosts a canonical terrestrial planet, GJ 9827 c, and two planets close to the radius
valley (§ 1.5.3) but from different sides: the super-Earth GJ 9827 b and the sub-Neptune
GJ 9827 d. Fig. 6.37 shows the position of the three planets in the mass-radius diagram
along with the Zeng et al. (2016)’s theoretical models for different internal compositions.
Planets b and c may have rocky nuclei with traces of lighter elements. Given its radius,
planet d is likely surrounded by a large gaseous H/He-rich envelope. Since the innermost
planets lie on the same isocomposition line of ∼80%MgSiO3-20%H2O (Fig. 6.37), we
can speculate that the outer planet might have a nucleus with similar composition too.
According to Wolfgang & Lopez (2015), the atmosphere of GJ 9827 d would account for
up to only ∼1% of the total mass, yielding to a thickness of ∼0.6R⊕, that is, ∼30% of
the planet’s radius.
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Figure 6.33: Posterior distributions of the GJ 9827’s fitted parameters as obtained from the final analysis
performed with pyaneti. The blue region corresponds to the posterior P (M |D), whereas the green
shaded area marks the prior shape P (M). Median (red solid line), 68% credible interval (red dashed
line), and mode (yellow dash-dotted line) are also shown.
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Figure 6.34: From top to bottom and left to right: transit fit and phase-folded RV curve of GJ 9827 b,
GJ 9827 c, GJ 9827 d after removing the activity signal from the star and the signals from the other
planets. The gray error bars account for additional instrumental noise and/or imperfect treatment of the
various sources of RV variations.
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Figure 6.35: RV curve of GJ 9827 phase-folded to the first harmonic of the stellar rotation period
(Prot/2 = 15.1 days) after removing the signals of the three transiting planets.
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Figure 6.36: Multi-transit events for GJ 9827 at different times. The best fitting transit model is over-
plotted with thick black lines. Left panel: simultaneous transit of planet c and d. Right panel: The
transit of the three planets occur almost at the same time. The K2 data points are shown with red
circles.
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Figure 6.37: Mass-radius diagram for all rocky planets with masses between 1-5 M⊕ and radii between
1-2.6 R⊕, as registered in the TEPCat database. The solid circles indicate measurements of the mass
and radius of the planets of GJ 9827. The empty circle shows the inferred mass y radius of the nucleus of
the third planet under the assumptions made on section 6.8.6. This plot was created by J. Prieto-Arranz
to appear in Prieto-Arranz et al. (2018) using the code available at https://github.com/oscaribv/

fancy-massradius-plot.

https://github.com/oscaribv/fancy-massradius-plot
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Table 6.11: GJ 9827 derived parameters.
Parameter Final value

Stellar parametersa

Star mass M? (M�) 0.637± 0.051
Star radius R? (R�) 0.622± 0.051
Effective Temperature Teff (K) 5286± 40
Derived Parameters for GJ 9827 b
Planet mass Mp (M⊕) 3.69± 0.47
Planet radius Rp (R⊕) 1.58± 0.14
Mean density ρb (g cm−3) 5.11+1.74

−1.27

Eccentricity e 0
Scaled semi-major axis a/R? 7.23+0.19

−0.55

Semi-major axis of the planetary orbit a (AU) 0.0206+0.0020
−0.0023

Orbit inclination ip (◦) 88.33+1.15
−2.10

Transit duration τ14 (hours) 1.281+0.020
−0.020

Equilibrium temperaturec Teq (K) 1114+46
−26

Derived Parameters for GJ 9827 c
Planet mass Mp (M⊕) 1.45± 0.57
Planet radius Rp (R⊕) 1.24± 0.11
Mean density ρc (g cm−3) 4.13+2.31

−1.77

Eccentricity e 0
Scaled semi-major axis a/R? 15.10+0.39

−1.14

Semi-major axis of the planetary orbit a (AU) 0.0429+0.0042
−0.0048

Orbit inclination ip (◦) 89.07+0.59
−0.92

Transit duration τ14 (hours) 1.825+0.042
−0.042

Equilibrium temperatureb Teq (K) 771+31
−18

Derived Parameters for GJ 9827 d
Planet mass Mp (M⊕) 2.35±0.69
Planet radius Rp (R⊕) 2.04± 0.18
Mean density ρc (g cm−3) 1.51+0.71

−0.53

Eccentricity e 0
Scaled semi-major axis a/R? 21.51+0.56

−1.63

Semi-major axis of the planetary orbit a (AU) 0.0611+0.0060
−0.0068

Orbit inclination ip (◦) 87.70+0.08
−0.25

Transit duration τ14 (hours) 1.248+0.038
−0.033

Equilibrium temperatureb Teq (K) 646+26
−15

Limb darkening coefficients
Linear limb-darkening coefficient u1 0.58+0.12

−0.12

Quadratic limb-darkening coefficient u2 0.15+0.13
−0.13

Note – The fitted parameters are shown in Table 6.10. (a) Details about the stellar parameter estimation are given in
Prieto-Arranz et al. (2018). (b) Assuming albedo = 0.
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6.9 44 Validated Planets from K2 Campaign 10

K2 Campaign 10 was pointed towards a relatively high galactic latitude where blending
within the photometric apertures is less significant than for other fields, and contamination
from background eclipsing binaries is low. This makes of K2 Campaign 10 an excellent
opportunity to statistically validate exoplanets.

In Livingston et al. (2018) we presented the validation of 44 transiting exoplanets
around stars observed by K2 on its Campaign 10. As part of this thesis, we performed a
MCMC analysis of the light curve candidates to provide an additional layer of confidence
on the main analysis presented in Livingston et al. (2018).

6.9.1 Light curve data

We first downloaded the light curves of Vanderburg & Johnson (2014) from the MAST
database for all the 72 targets listed in Table 1 of Livingston et al. (2018). We then
detrended the light curves by fitting a second order polynomial to the out-of-transit data
using exotrending (Barragán & Gandolfi, 2017, see Appendix A.1).

6.9.2 Transit fitting

To explore the transit model parameter space with MCMC, we used the code pyaneti

(Barragán et al., 2019, see also § 5.3) to fit the detrended light curves with uniform priors
for all parameters. For each system, we explored the parameter space with 500 indepen-
dent Markov chains. We then created posterior distributions with 250,000 independent
points for each fitted parameter (see Sect. 6.1.5).

6.9.3 Comparison with other pipeline in Livingston et al. (2018)

For the majority of candidates, the main transit parameters of interest (period P , planet-
to-star radius rate Rp/R?, impact parameter b, and scaled semi-major axis a/R?) are
consistent within 1-σ between the two independent analyses, although there are some
cases in which marginally significant differences were found. These differences are likely
to be the result of different handling of the K2 systematics and/or the stellar variability
in the light curves. The overall good agreement between these two independently-derived
sets of transit parameters provides an additional layer of confidence in the quality of the
candidates. The results of this comparison are listed in Table 6.12.
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Table 6.12: Comparison of parameters between both
analysis presented in Livingston et al. (2018).

EPIC Porb ∆P Rp ∆Rp b ∆b a ∆a
201092629.01 26.809633+0.001327

−0.001235 3.7 0.0263+0.0011
−0.0007 3.0 0.25+0.28

−0.17 0.4 48.0+2.0
−6.0 0.7

201102594.01 6.513855+0.000534
−0.000660 0.0 0.0656+0.0138

−0.0041 0.3 0.54+0.37
−0.37 0.3 23.0+4.3

−10.9 0.1
201110617.01 0.813175+0.000032

−0.000032 0.5 0.0163+0.0008
−0.0007 0.1 0.39+0.33

−0.27 0.0 4.6+0.5
−1.0 0.4

201111557.01 2.302093+0.000127
−0.000133 0.8 0.0143+0.0010

−0.0008 0.1 0.40+0.34
−0.28 0.0 12.0+1.5

−3.0 0.1
201127519.01 6.178825+0.000030

−0.000030 0.6 0.1080+0.0024
−0.0016 1.1 0.24+0.15

−0.16 0.3 17.7+0.4
−0.8 0.6

201128338.01 32.652883+0.002143
−0.002309 0.6 0.0418+0.0023

−0.0014 1.3 0.40+0.32
−0.30 0.1 57.0+4.8

−14.0 0.2
201132684.01 5.898463+0.001803

−0.001503 1.5 0.0135+0.0009
−0.0009 0.7 0.30+0.23

−0.20 0.3 13.3+1.3
−2.1 0.6

201132684.02 10.062708+0.001114
−0.001122 1.3 0.0271+0.0012

−0.0010 0.9 0.43+0.22
−0.26 0.1 18.9+1.9

−3.1 0.0
201164625.01 2.713225+0.001656

−0.001971 0.6 0.0090+0.0057
−0.0023 0.5 0.47+0.37

−0.32 0.1 18.8+48.6
−11.3 1.2

201166680.01 11.540719+0.002151
−0.002063 0.4 0.0136+0.0006

−0.0006 0.8 0.43+0.16
−0.18 0.1 21.0+1.0

−2.1 0.1
201166680.02 24.942035+0.003282

−0.003280 0.6 0.0147+0.0005
−0.0005 1.4 0.22+0.26

−0.16 0.5 35.0+1.7
−3.5 0.1

201180665.01 17.773142+0.000122
−0.000123 1.1 0.1879+0.0035

−0.0034 0.4 0.67+0.02
−0.02 0.8 33.6+0.5

−0.4 0.5
201211526.01 21.073824+0.003409

−0.002816 1.2 0.0164+0.0014
−0.0008 0.6 0.40+0.35

−0.28 0.1 38.0+5.9
−9.7 0.0

201225286.01 12.420030+0.000967
−0.000768 1.0 0.0249+0.0032

−0.0011 0.0 0.40+0.37
−0.28 0.1 25.8+2.2

−7.8 0.3
201274010.01 13.008576+0.001302

−0.001295 0.6 0.0278+0.0015
−0.0013 0.8 0.42+0.34

−0.28 0.0 27.7+2.9
−7.4 0.1

201352100.01 13.383697+0.001049
−0.001031 0.1 0.0307+0.0019

−0.0013 0.9 0.41+0.33
−0.30 0.1 36.4+3.6

−9.5 0.3
201357643.01 11.893194+0.000420

−0.000420 0.2 0.0318+0.0008
−0.0006 0.1 0.36+0.32

−0.25 0.0 17.7+1.1
−3.7 0.0

201386739.01 5.768345+0.000696
−0.000597 0.8 0.0370+0.0019

−0.0015 1.1 0.38+0.29
−0.25 0.1 11.2+0.9

−2.1 0.0
201390048.01 9.456636+0.000964

−0.000971 1.6 0.0177+0.0011
−0.0008 0.9 0.43+0.34

−0.30 0.0 24.3+2.7
−6.9 0.1

201390927.01 2.637995+0.000129
−0.000132 0.0 0.0290+0.0017

−0.0013 0.9 0.44+0.32
−0.30 0.0 10.6+1.2

−2.8 0.1
201392505.01 27.363675+0.035237

−0.016303 2.9 0.0160+0.0043
−0.0047 5.3 0.56+0.32

−0.37 0.3 68.6+20.6
−26.9 1.4

201437844.01 9.553130+0.001159
−0.001060 2.4 0.0152+0.0004

−0.0004 1.8 0.22+0.26
−0.15 0.5 19.4+0.9

−1.8 0.7
201437844.02 21.057795+0.001448

−0.001458 0.0 0.0308+0.0006
−0.0006 0.3 0.40+0.16

−0.11 0.5 32.9+1.5
−3.0 0.5

201595106.01 0.877180+0.000040
−0.000041 1.2 0.0129+0.0008

−0.0007 1.2 0.42+0.32
−0.29 0.0 6.1+0.8

−1.4 0.3
201598502.01 7.514375+0.000687

−0.000779 0.5 0.0385+0.0039
−0.0021 0.9 0.45+0.36

−0.32 0.1 21.9+2.8
−7.5 0.2

201615463.01 8.527713+0.001707
−0.001639 0.2 0.0139+0.0008

−0.0006 1.1 0.41+0.31
−0.28 0.0 10.9+1.0

−2.6 0.1
228707509.01 15.349275+0.000298

−0.000302 3.7 0.1631+0.0021
−0.0037 2.8 0.68+0.04

−0.05 0.8 24.1+0.8
−0.7 0.9

228720681.01 15.781458+0.000245
−0.000243 0.3 0.1019+0.0022

−0.0030 0.9 0.74+0.04
−0.06 0.6 24.3+1.7

−1.2 0.6
228721452.01 0.505574+0.000052

−0.000054 1.0 0.0076+0.0008
−0.0007 0.6 0.74+0.10

−0.16 0.9 2.9+0.2
−0.4 1.0

228721452.02 4.564508+0.000318
−0.000320 2.1 0.0121+0.0005

−0.0005 3.0 0.28+0.27
−0.20 0.3 12.6+0.8

−1.6 0.8
228724899.01 5.202587+0.000348

−0.000379 0.0 0.0348+0.0055
−0.0020 0.3 0.52+0.37

−0.35 0.2 21.0+3.4
−9.7 0.7

228725791.01 2.250464+0.000209
−0.000225 0.6 0.0308+0.0019

−0.0016 0.8 0.48+0.21
−0.27 0.1 8.6+1.0

−1.4 0.0
228725791.02 6.492941+0.001399

−0.001910 0.5 0.0313+0.0020
−0.0018 0.6 0.30+0.27

−0.20 0.3 17.4+1.9
−2.9 0.2

228725972.01 4.478767+0.000622
−0.000596 0.2 0.0183+0.0010

−0.0009 0.7 0.58+0.12
−0.12 0.5 12.4+0.6

−1.3 0.2
228725972.02 10.095993+0.000753

−0.000740 0.8 0.0259+0.0009
−0.0008 0.2 0.25+0.26

−0.18 0.4 21.3+1.1
−2.2 0.3

228729473.01 16.769028+0.002673
−0.002826 1.0 0.0390+0.0015

−0.0009 2.0 0.31+0.24
−0.22 0.8 8.4+0.4

−1.0 0.9
228732031.01 0.369293+0.000007

−0.000007 1.2 0.0199+0.0010
−0.0008 0.6 0.38+0.30

−0.26 0.1 2.9+0.2
−0.5 0.6

228734900.01 15.871027+0.001990
−0.001782 0.3 0.0195+0.0007

−0.0007 0.5 0.39+0.32
−0.27 0.0 19.0+1.6

−4.3 0.3
228735255.01 6.569194+0.000037

−0.000036 0.3 0.1134+0.0019
−0.0010 0.4 0.21+0.15

−0.14 0.5 14.8+0.3
−0.6 0.8

228736155.01 3.270851+0.000334
−0.000373 0.4 0.0154+0.0010

−0.0008 0.1 0.44+0.32
−0.30 0.0 10.6+1.3

−2.8 0.3
228739306.01 7.172600+0.001126

−0.001120 0.0 0.0277+0.0028
−0.0015 0.9 0.45+0.36

−0.31 0.1 16.1+2.1
−5.5 0.0

228748383.01 12.402562+0.003191
−0.003055 1.5 0.0180+0.0012

−0.0010 1.0 0.42+0.34
−0.29 0.0 14.1+1.7

−3.8 0.1
228748826.01 4.014377+0.000317

−0.000304 0.3 0.0303+0.0050
−0.0017 1.0 0.49+0.39

−0.34 0.2 12.0+1.7
−5.3 0.1

228753871.01 18.693829+0.002443
−0.002428 0.5 0.0293+0.0016

−0.0014 0.4 0.40+0.31
−0.27 0.1 62.1+7.1

−13.8 0.2
Continued on next page
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Table 6.12 – continued from previous page

EPIC Porb ∆P Rp ∆Rp b ∆b a ∆a
228758778.01 9.296632+0.002139

−0.002028 1.1 0.0394+0.0045
−0.0028 0.7 0.46+0.39

−0.31 0.0 21.6+4.7
−8.3 0.1

228758948.01 12.202002+0.000790
−0.000760 0.4 0.0357+0.0019

−0.0013 0.6 0.38+0.29
−0.26 0.0 21.8+1.7

−4.3 0.1
228763938.01 13.814364+0.002778

−0.002668 0.1 0.0201+0.0016
−0.0012 0.3 0.42+0.33

−0.29 0.0 27.3+3.3
−7.4 0.2

228784812.01 4.188426+0.000792
−0.000773 0.4 0.0122+0.0011

−0.0009 0.1 0.42+0.34
−0.29 0.3 12.1+2.0

−3.3 0.2
228798746.01 2.698349+0.000118

−0.000127 0.3 0.0176+0.0008
−0.0008 0.4 0.42+0.32

−0.28 0.0 12.2+1.3
−3.0 0.0

228801451.01 0.584253+0.000015
−0.000015 0.2 0.0139+0.0005

−0.0005 0.7 0.32+0.27
−0.22 0.2 3.9+0.3

−0.5 0.9
228801451.02 8.329889+0.000554

−0.000772 3.0 0.0172+0.0012
−0.0011 4.8 0.67+0.10

−0.08 0.9 22.8+1.5
−3.1 0.4

228804845.01 2.860187+0.000318
−0.000313 0.3 0.0149+0.0010

−0.0007 1.6 0.40+0.32
−0.27 0.0 7.2+0.7

−1.6 0.0
228809391.01 19.574436+0.002652

−0.002288 0.7 0.0280+0.0024
−0.0013 0.4 0.44+0.34

−0.30 0.1 52.8+6.0
−15.6 0.0

228809550.01 4.001536+0.000023
−0.000023 1.1 0.1090+0.0053

−0.0035 0.7 0.42+0.18
−0.26 0.2 13.3+1.1

−1.4 0.3
228834632.01 11.729360+0.001681

−0.001829 0.9 0.0352+0.0019
−0.0017 2.2 0.38+0.31

−0.27 0.5 34.2+3.1
−7.0 0.4

228836835.01 0.728083+0.000038
−0.000052 0.3 0.0272+0.0053

−0.0016 0.0 0.38+0.35
−0.26 0.2 6.2+1.5

−1.4 0.7
228846243.01 25.541849+0.011979

−0.013420 1.7 0.0372+0.0025
−0.0021 0.7 0.40+0.31

−0.27 0.2 22.0+2.2
−4.9 0.0

228849382.01 4.097290+0.000494
−0.000470 1.0 0.0191+0.0010

−0.0010 0.9 0.27+0.28
−0.19 1.2 15.8+1.6

−2.1 0.0
228849382.02 12.118887+0.001355

−0.001403 0.1 0.0326+0.0013
−0.0013 0.8 0.60+0.12

−0.14 0.5 32.5+3.3
−4.4 0.2

228888935.01 5.690115+0.000157
−0.000152 1.1 0.0864+0.0021

−0.0021 0.2 0.82+0.03
−0.04 0.8 7.4+0.5

−0.4 0.7
228894622.01 1.963920+0.000014

−0.000014 5.9 0.0380+0.0054
−0.0015 0.1 0.40+0.39

−0.28 0.1 8.8+0.7
−2.7 0.1

228934525.01 3.676107+0.000210
−0.000207 0.6 0.0320+0.0013

−0.0011 1.3 0.28+0.28
−0.19 0.3 14.1+1.0

−1.9 0.1
228934525.02 7.955047+0.000647

−0.000658 0.2 0.0314+0.0014
−0.0013 0.4 0.56+0.14

−0.11 0.4 23.6+1.7
−3.1 0.2

228964773.01 37.289381+0.017004
−0.032089 2.5 0.0307+0.0194

−0.0119 1.2 0.90+0.09
−0.24 1.2 57.1+31.0

−21.4 0.1
228968232.01 5.525028+0.002150

−0.003208 1.2 0.0191+0.0025
−0.0025 3.5 0.41+0.34

−0.28 0.0 10.3+6.0
−3.7 0.7

228974324.01 1.605873+0.000090
−0.000088 0.1 0.0150+0.0010

−0.0008 0.3 0.42+0.33
−0.30 0.1 8.3+1.0

−2.2 0.0
228974907.01 20.763514+0.009371

−0.007177 2.6 0.0136+0.0010
−0.0007 2.7 0.41+0.37

−0.29 0.0 30.8+3.5
−9.5 0.2

229004835.01 16.140711+0.001057
−0.001032 2.1 0.0189+0.0011

−0.0008 0.4 0.40+0.35
−0.28 0.0 54.1+5.3

−14.6 0.0
229017395.01 19.090353+0.003305

−0.003665 0.2 0.0219+0.0011
−0.0010 0.5 0.42+0.32

−0.30 0.1 21.5+2.3
−5.4 0.0

229103251.01 11.663465+0.001861
−0.001357 2.0 0.0330+0.0027

−0.0018 1.3 0.43+0.33
−0.30 0.0 27.9+3.4

−7.4 0.0
229131722.01 15.484081+0.003104

−0.002549 0.9 0.0171+0.0014
−0.0010 0.9 0.41+0.33

−0.29 0.0 30.0+4.5
−7.4 0.0

229133720.01 4.036851+0.000081
−0.000080 0.4 0.0284+0.0019

−0.0008 0.0 0.37+0.31
−0.26 0.0 13.2+0.9

−2.8 0.1
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6.10 π Mensae c: A world transiting a naked-eye star

In the final stage of preparing this thesis, the first list of planet candidates (the so called
alerts) from the TESS space mission was released on September 5, 2018. The candidate
list includes the naked-eye star π Mensae (V=5.65 mag).

Two weeks later Gandolfi et al. (2018) reported on the confirmation and mass determi-
nation of π Men c, the first transiting planet discovered by NASA’s TESS space mission.
π Men is a quiet G0 V star that was previously known to host a sub-stellar companion
(π Men b) on a long-period (Porb = 2091 days), eccentric (e = 0.64) orbit. Using TESS
time-series photometry, combined with Gaia data, published UCLES@AAT Doppler mea-
surements, and archival HARPS@ESO-3.6m radial velocities, we find that π Men c is an
close-in planet with an orbital period of Porb = 6.25 days, a mass of 4.50 ± 0.81 M⊕, and
a radius of 2.08 ± 0.04 R⊕. Based on the planet’s orbital period and size, π Men c is
a super-Earth located at, or close to, the radius gap, while its mass and bulk density
suggest it may have held on to a significant atmosphere. Because of the brightness of
the host star, this system is highly suitable for a wide range of further studies to charac-
terise the planetary atmosphere and dynamical properties. We note that an independent
investigation of this system was publicly announced by Huang et al. (2018).

We performed the RV and light curve analysis as part of this thesis. We note that all
the tools and methods learned with K2 data are also applicable to TESS data.

6.10.1 Light curve and RV data

We downloaded the TESS Sector 1 light curves from the MIT website. For the TESS
object of interest TOI-144 (aka, π Men, HD 39091, TIC 261136679), the light curve is
provided by the NASA Ames SPOC center. The time-series includes 18 036 short-cadence
(Texp = 2 min) photometric measurements. TESS observations started on 25 July 2018
and ended on 22 August 2018. We removed any measurements that have a non-zero
“Quality” flag, i.e., those suffering from cosmic rays or instrumental issues. We detected
the signal of π Men c with a signal-to-noise ratio (S/N) of 9.1 and our ephemeris is
consistent with that reported by the TESS team. We did not find any additional transit
signal with (S/N)> 6. We also performed a periodogram and auto-cross-correlation
analysis in the attempt to extract the rotation period of the star from the out-of-transit
TESS light curve, but we found no significant rotation signal in the light curve. Figure
6.38 shows the TESS light curve for π Men.

For the final set of photometric data, we extracted 10 hours of TESS data points
centred around each of the 5 transits observed by TESS. The 5 segments were de-trended
using the code exotrending (Barragán & Gandolfi, 2017, see Appendix A.1), fitting a
second-order polynomial to the out-of-transit data.

Jones et al. (2002) reported on the detection of a long-period (Porb≈ 2100 days), eccen-
tric (e≈ 0.6), sub-stellar companion to π Men with a minimum mass of Mb = 10.3MJup.
Their discovery is based on 28 RV measurements obtained between November 1998 and
April 2002 using the UCLES spectrograph mounted at the 3.92-m Anglo-Australian Tele-
scope at Siding Spring Observatory. Fourteen additional UCLES RVs were published by
Butler et al. (2006).

We also retrieved from the ESO public archive 145 high-resolution (R≈ 115 000) spec-
tra of π Men, taken with the HARPS spectrograph (Mayor et al., 2003) mounted at the
ESO-3.6m telescope of La Silla observatory (Chile). The observations were carried out
between 28 December 2012 and 17 March 2017 UTC, as part of the observing programs
072.C-0488, 183.C-0972, and 192.C-0852. On June 2015, the HARPS fibre bundle was
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Figure 6.38: Upper panel: TESS Light curve for π Men. The positions of the transit signals are marked
with vertical red dot-dashed lines. Lower panel: AAT (blue circles), HARPS HS1 and HS2 (red diamonds
and green squares, respectively) RV measurements versus time, following the subtraction of the systemic
velocities for each instrument. The solid line represents the inferred RV model.

upgraded (Lo Curto et al., 2015). To account for the RV offset caused by the instrument
refurbishment, we treated the HARPS RVs taken before/after June 2015 as two different
data-sets, HS1 and HS2.

Following Eastman et al. (2010), we converted the heliocentric Julian dates (HJD UTC)
of the UCLES time stamps and the barycentric Julian (BJD UTC) of the HARPS time
stamps into barycentric Julian dates in barycentric dynamical time (BJD TDB). We used
all 187 Doppler measurements available and accounted for the RV offsets between the
different instruments and the two HARPS set-ups. All the RV measurements are presented
in Gandolfi et al. (2018). Figure 6.38 shows the RV time-series following the subtraction
of the instrumental offsets.

6.10.2 Joint analysis of the transit and RV data

We performed a joint analysis of the photometric and RV time-series using the software
suite pyaneti (Barragán et al., 2019, see also Sect. 5.3). The RV model consists of two
Keplerians to account for the Doppler signal induced by planets b and c. We fitted for a
RV jitter term for each instrument/setup to account for instrumental noise not included in
the nominal uncertainties, and/or to account for any stellar activity-induced RV variation.
We modelled the TESS transit light curves using the limb-darkened quadratic model of
Mandel & Agol (2002). For the limb darkening coefficients, we set Gaussian priors using
the values derived by Claret (2017) for the TESS pass-band. We imposed conservative
error bars of 0.1 on both the linear and the quadratic limb-darkening term. A preliminary
analysis showed that the transit light curve poorly constrains the scaled semi-major axis
(a/R?). We therefore set a Gaussian prior on a/R? using Kepler’s third’s law, the orbital
period, and the derived stellar parameters (see Sect. 5 of Gandolfi et al., 2018). Because
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Figure 6.39: Posterior distributions for Rp/R? (left) and a/R? (right) obtained with pyaneti. The
distributions obtained from a resampled and non-resampled model are shown with blue and green colours.

the eccentricity of planet c is poorly constrained by the observations, we fixed it to zero
for our analysis. We imposed uniform priors for the remaining fitted parameters. Details
about the fitted parameters and prior ranges are given in Table 6.13.

Before performing the final analysis, we ran a numerical experiment to check if the
TESS 2 min integration time needs to be taken into account following Kipping (2010).
Figure 6.39 shows the posterior distributions for Rp/R? and a/R? for models with and
without re-sampling. We found no differences in the posterior distributions for fits with
and without re-sampling. We thus proceeded with our analysis without re-sampling.

We used 500 independent Markov chains initialised randomly inside the prior ranges.
Once all chains converged, we used the last 5 000 iterations and saved the chains states
every 10 iterations. This approach generates a posterior distribution of 250 000 points for
each fitted parameter.

Table 6.13 lists the inferred planetary parameters. They are defined as the median and
68% region of the credible interval of the posterior distributions for each fitted parameter.
The transit and RV curves are shown in Fig. 6.40.

The solid line represents the inferred RV model.

6.10.3 Dynamical properties

π Men joins the growing number of stars known to host both long-period Jupiter ana-
logues and close-in small planets (Rp< 4R⊕). Bryan et al. (2018) recently found that the
occurrence rate of companions between 0.5–20MJup at 1–20 AU in systems known to host
inner small planets is 39± 7%, suggesting that the presence of outer gas giant planets
does not prevent the formation of inner Earth- and Neptune-size planets.

We performed a dynamical stability analysis of π Men using the software mercury6

(Chambers, 1999). Assuming co-planar orbits, we let the system evolve for 1 000 000
yr. For π Men b we found negligible changes of the semi-major axis and eccentricity of
< 2.6 × 10−3 AU and 3 × 10−4, respectively. For π Men c we found no variation larger
than 1× 10−5 of its semi-major axis, with changes of its eccentricity .0.05. Figure 6.41
shows the evolution of the semi-major axis and eccentricities for both planets.

The actual orientation of the outer planet’s orbit is unknown. While we know the
inner planet’s inclination, because it transits, its eccentricity is poorly constrained by the
data. Compact multi-planet systems have been observed to have near-zero eccentricities
(e.g. Hadden & Lithwick, 2014; Van Eylen & Albrecht, 2015; Xie et al., 2016). However,
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Figure 6.40: Phase-folded RV curves of π Men b (upper left) and c (upper right), and transit light curve
of π Men c (lower panel). The ATT data and the two sets of HARPS RVs (HS1 and HS2) are shown with
circles, diamonds, and squares, respectively. The 1-σ uncertainties are marked using the same colour used
for each data-set. The vertical grey lines mark the error bars including jitter. The TESS data points are
shown with red circles (lower panel). The best fitting transit and Keplerian models are overplotted with
thick black lines.

planets with only a single transiting planet appear to often be “dynamically hotter”,
and many have a non-zero eccentricity, which can, e.g., be described by the positive half
of a zero-mean Gaussian distribution, with a dispersion σe = 0.32 ± 0.06 (Van Eylen
et al., 2018c). The outer planet, π Men c, has an orbital eccentricity of ∼0.64. A far-out
giant planet, such as planet c, may in fact increase the orbital eccentricity of a close-in
super-Earth, such as planet b (see, e.g., Mustill et al., 2017; Hansen, 2017; Huang et al.,
2017). Following Van Eylen et al. (2018c), we found an orbital eccentricity based on the
transit data alone of [0, 0.45] at 68% confidence. Because the current RV observations
cannot constrain the eccentricity either, we fixed it to zero in the above analysis (see
Section 6.10.2). The brightness of the host star makes this planetary system an exciting
target for further RV follow-up to measure the inner planet’s eccentricity.

6.10.4 Mass, radius, and composition of π Men c

The transiting planet π Men c has a mass of Mc = 4.50 ± 0.81 M⊕ and a radius of
Rc = 2.08 ± 0.04 R⊕, yielding a mean density of ρc=2.73+0.52

−0.51 g cm−3. Figure 6.42 shows
the mass-radius diagram for small planets whose masses have been determined with a pre-
cision better than 25 %. Theoretical models from Zeng et al. (2016) are overplotted using
different lines and colors. The position of π Men c suggests a composition of Mg-silicates
and water. Alternatively, the planet might have a solid core surrounded by a gas envelope.
At short orbital periods, super-Earths and sub-Neptunes are separated by a radius gap at
≈1.6 R⊕ (Fulton et al., 2017; Van Eylen et al., 2018a). The exact location of the radius
gap is observed to be a function of the orbital period (Van Eylen et al., 2018a), as pre-
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Figure 6.41: Evolution of the semi-major axes (upper panel) and eccentricities (lower panel) vs time for
π Men b (blue line) and π Men c (orange line) as computed with the code mercury.

dicted by models of photo-evaporation (e.g. Owen & Wu, 2013; Lopez & Fortney, 2013).
Van Eylen et al. (2018a) find that the radius gap is located at logR = m × logP + a,
where m = −0.09+0.02

−0.04 and a = 0.37+0.04
−0.02. At the orbital period of π Men c, i.e. Porb = 6.27

days, the radius gap is then located at Rp = 1.99± 0.20 R⊕. This suggests that π Men c,
with a radius of Rp = 2.08 ± 0.04 R⊕, is located just around the radius gap, or slightly
below, although the measured density suggests that the planet may have held on to (part
of) its atmosphere.

6.10.5 Further characterization

The naked-eye brightness of π Men immediately argues that any transiting planet will
be attractive for atmospheric characterisation. Observations of a planetary atmosphere
through transmission spectroscopy during transit provide opportunities to measure the ex-
tent, kinematics, abundances, and structure of the atmosphere (Seager & Deming, 2010).
Such measurements can be utilised to address fundamental questions such as planetary at-
mospheric escape and interactions with the host star (Cauley et al., 2017), formation and
structure of planetary interiors (Owen et al., 1999), planetary and atmospheric evolution
(Öberg et al., 2011), and biological processes (Meadows & Seager, 2010).
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Table 6.13: π Men system parameters.

Parameter Prior(a) Final value

Stellar parameters

Star mass M? (M�) · · · 1.02± 0.03
Star radius R? (R�) · · · 1.10± 0.01
Effective Temperature Teff (K) · · · 5870± 50
Surface gravity(b) log g? (cgs) · · · 4.36± 0.02
Surface gravity(c) log g? (cgs) · · · 4.33± 0.09
Iron abundance [Fe/H] (dex) · · · 0.05± 0.09
Projected rotational velocity v sin i? (km s−1) · · · 3.3± 0.5
Age (Gyr) · · · 5.2± 1.1

Model parameters of π Men b

Orbital period Porb (days) U [2079.5, 2109.5] 2091.2± 2.0
Time of minimum conjunction T0 (BJDTDB−2 450 000) U [6531.9928, 6571.9928] 6548.2± 2.7√
e sinω U [−1, 1] −0.3922± 0.0075√
e cosω U [−1, 1] 0.6968± 0.0053

Radial velocity semi-amplitude variation K (m s−1) U [0, 500] 195.8± 1.5

Model parameters of π Men c

Orbital period Porb (days) U [6.2416, 6.2916] 6.26830± 0.00027
Transit epoch T0 (BJDTDB−2 450 000) U [8325.4787, 8325.5287] 8325.50339± 0.00081
Scaled semi-major axis a/R? N [13.11, 0.17] 13.10± 0.17
Planet-to-star radius ratio Rp/R? U [0, 0.1] 0.01737± 0.00026

Impact parameter, b U [0, 1] 0.611+0.018
−0.020√

e sinω F [0] 0√
e cosω F [0] 0

Radial velocity semi-amplitude variation K (m s−1) U [0, 10] 1.54± 0.27

Additional model parameters

Parameterized limb-darkening coefficient q1 N [0.36, 0.1] 0.33± 0.10
Parameterized limb-darkening coefficient q2 N [0.25, 0.1] 0.22± 0.10
Systemic velocity γAAT (km s−1) U [−0.3036, 0.2951] 0.0021± 0.0011
Systemic velocity γHS1 (km s−1) U [10.5307, 10.8832] 10.70915± 0.00039
Systemic velocity γHS2 (km s−1) U [10.5611, 10.7750] 10.73157± 0.00073

RV jitter term σAAT (m s−1) U [0, 100] 4.26+1.08
−0.97

RV jitter term σHS1 (m s−1) U [0, 100] 2.36+0.19
−0.17

RV jitter term σHS2 (m s−1) U [0, 100] 1.69+0.40
−0.30

Derived parameters of π Men b

Planet minimum mass Mp sin i (MJ) · · · 9.66± 20
Semi-major axis of the planetary orbit a (AU) · · · 3.22± 0.05
Orbit eccentricity e · · · 0.6394± 0.0025
Argument of periastron of stellar orbit ω? (degrees) · · · 330.63± 0.65

Derived parameters of π Men c

Planet mass Mp (M⊕) · · · 4.50± 0.81

Planet radius Rp (R⊕) · · · 2.08± 0.04

Planet mean density ρp (g cm−3) · · · 2.73+0.52
−0.51

Semi-major axis of the planetary orbit a (AU) · · · 0.0670± 0.0011
Orbit eccentricity e · · · 0 (fixed)
Orbit inclination ip (degrees) · · · 87.33± 0.11

Transit duration τ14 (hours) · · · 2.98+0.04
−0.03

Equilibrium temperature(d) Teq (K) · · · 1145± 12

Note – (a) U [a, b] refers to uniform priors between a and b, and F [a] to a fixed a value. (b) From spectroscopy and
isochrones. (c) From spectroscopy. (d) Assuming albedo = 0.



CHAPTER 7

CONCLUSIONS

We carried out an intensive RV follow-up of transiting exoplanet candidates from the
NASA’s K2 mission. Our observations validated and confirmed new exoplanetary sys-
tems. Most of the confirmed planets were well characterised in terms of mass, radius, and
bulk density (see below). This allowed us to infer the planet’s main properties, such as
internal composition and structure, existence of an atmosphere, formation scenario, and
so on.

A large fraction of the Doppler observations presented in this work were carried out
by myself as part of the doctoral project presented in this thesis. Specifically, I observed
for a total 33 nights with the HARPS spectrograph at the ESO-3.6 m telescope, at La
Silla Observatory (Chile), and 5 nights with the FIES spectrograph at the 2.58 m Nordic
Optical Telescope at Roque del los Muchachos observatory (La Palma, Spain).

We developed and tested the code pyaneti, a robust software suite able to simulta-
neously fit RV measurements and transit light curves of multi-planet systems. pyaneti

combines the computational power of FORTRAN with the versatility of PYTHON and it offers
the option to run in parallel with OpenMP. The package was developed under “the open
source ideology”, i.e., both the code and the platforms used to write the package are to-
tally free. This code can perform a fast and robust analysis even using a personal laptop.
This makes pyaneti a powerful tool to perform data analysis of hundreds of systems from
future space- and ground-based facilities, such as TESS, PLATO, CHEOPS, and ESPRESSO.

In the present thesis work we derived masses, radii, and densities of the following
planets:

• K2-98 b is a warm Neptune-like planet in a 10-day orbit transiting a V=12.2 mag F-
type star with a mass of M? = 1.074±0.042M�, a radius of R? = 1.311+0.083

−0.048R�, and
an age of 5.2+1.2

−1.0 Gyr. We derived a planetary mass and radius of Mp = 33± 12M⊕
and Rp = 4.36+0.31

−0.30R⊕. K2-98 b joins the relatively small group of Neptune-size plan-
ets whose both mass and radius have been derived with a precision better than 30%
(see Barragán et al., 2016).

• K2-139 b is a warm Jupiter with a mass of Mp = 0.387+0.083
−0.075MJ and radius of

Rp = 0.808+0.034
−0.033RJ. It transits a K0 V star every 29 days. K2-139 b is one of

the transiting warm Jupiters with the lowest mass known to date. The planetary

135
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mean density of ρp = 0.91+0.24
−0.20 g cm−3 can be explained with a core of ∼50M⊕.

The magnitude of the host star (V=11.7 mag), the relatively short transit duration
(∼5 h), and the expected amplitude of the the Rossiter-McLaughlin effect (∼25
km s−1) make K2-139 an ideal target to measure the spin-orbit angle of a warm
Jupiter. This would shed insights into the formation of warm Jupiters (see Barragán
et al., 2018a).

• K2-141 b is an ultra-short period super-Earth with a mass of Mp = 5.31± 0.46 M⊕
and radius of Rp = 1.54+0.10

−0.09 R⊕, yielding a mean density of ρp = 8.00+1.83
−1.45 g cm−3

and suggesting a rocky-iron composition. With an orbital period of only 6.7 hours,
K2-141 b is the shortest-period planet known to date with a precisely determined
mass (see Barragán et al., 2018b).

• K2-111 b is a super-Earth transiting a very old star (∼11 Gyr), metal-poor ([Fe/H] =
−0.53 ± 0.05 dex) G3 V star with a radius of R? = 1.30 ± 0.10R� and a mass of
M? = 0.88 ± 0.02M�. K2-111 b has a mass of Mp = 8.6 ± 3.9M⊕ and a radius of
Rp = 1.9± 0.2R⊕. With an age of ∼11 Gyr this system is one of the oldest where a
planet is hitherto detected. Further studies of this planetary system are important
since it contains information about the planetary formation process during a very
early epoch of the history of our Galaxy (see Fridlund et al., 2017).

• K2-19 is a compact multi-planet system hosting three planets, of which the two
larger ones, K2-19 b and K2-19 c, are close to the 3:2 mean motion resonance. An
analysis considering only the radial velocity measurements detects K2-19 b, the larger
and more massive planet in the system, with a mass of 54.8± 7.5M⊕ and provides a
marginal detection of K2-19 c, with a mass of 5.9+7.6

−4.3M⊕ (see Nespral et al., 2017).

• K2-106 is a transiting multi-planet system hosting an ultra-short period (P = 0.57 d)
super-Earth and a mini-Neptune on a 13.3-day orbit. For K2-106 b we derived
Mb = 8.36+0.96

−0.94M⊕, Rb = 1.52 ± 0.16R⊕, and a high density of 13.1+5.4
−3.6 g cm−3.

For K2-106 c, we found Mc = 5.8+3.3
−3.0M⊕, Rc = 2.50+0.27

−0.26R⊕ and a relatively low
density of 2.0+1.6

−1.1 g cm−3. It is likely that the outer planet has a hydrogen-dominated
atmosphere. The mass and radius of the inner planet are in agreement with theoret-
ical models predicting an iron core containing about 80 % of its mass. K2-106 is an
excellent laboratory to study atmospheric escape because the system contains two
planets of almost the same mass but at different distances from the host star (see
Guenther et al., 2017).

• HD 3167 is a bright (V = 8.9 mag) K0 V star hosting two transiting planets, namely
HD3167 b and c. With a mass of 5.69 ± 0.44 M⊕, a radius of 1.574 ± 0.054 R⊕,
and a mean density of 8.00+1.10

−0.98 g cm−3, HD3167 b joins the small group of ultra-
short-period planets known to have rocky terrestrial compositions. HD3167 c has
a mass of 8.33+1.79

−1.85 M⊕ and a radius of 2.740+0.106
−0.100R⊕, yielding a mean density of

2.21+0.56
−0.53 g cm−3, indicative of a planet with a composition comprising a solid core

surrounded by a thick atmospheric envelope. Given the brightness of the host star,
HD 3167 c is an ideal target for atmospheric characterisation via transmission spec-
troscopy across a broad range of wavelengths (see Gandolfi et al., 2017).

• GJ 9827 has recently been found to host a tightly packed system consisting of
three transiting small planets whose orbital periods of 1.2, 3.6, and 6.2 days are
near the 1:3:5 ratio. We found that the inner planet, GJ 9827 b, has a mass of
Mb = 3.69+0.48

−0.46M⊕ and a radius of Rb = 1.58+0.14
−0.13R⊕, yielding a mean density

of ρb = 5.11+1.74
−1.27 g cm−3. GJ 9827 c has a mass of Mc = 1.45+0.58

−0.57M⊕, radius of
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Table 7.1: Main parameters of the planetary systems whose masses, radii and bulk densities have been
derived as part of the project here presented.

Name Period (days) Mass (M⊕) Radius (R⊕) Semi-major axis (AU) Spectral type

K2-98 b 10.13675± 0.00033 33± 12 4.36+0.31
−0.30 0.089+0.009

−0.013 F8 V
K2-141 b 0.2803226± 0.0000013 5.31± 0.46 1.54+0.10

−0.09 0.00716+0.00055
−0.00065 K7 V

K2-111 b 5.35117± 0.00055 8.6± 3.9 1.9± 0.2 0.0621+0.0092
−0.0085 G3 V

K2-19 b(a) 7.91951+0.00040
−0.00012 54.8± 7.5 7.23+0.56

−0.51 0.077+0.008
−0.013 K0 V

K2-19 c(a) 11.9066+0.0021
−0.0014 5.9+7.6

−4.3 4.21± 0.31 0.1032+0.0074
−0.0080 K0 V

K2-106 b 0.571292± 0.000012 8.36+0.96
−0.94 1.52± 0.16 0.0110+0.0014

−0.0016 G5 V
K2-106 c 13.33966+0.00092

−0.00099 5.8+3.3
−3.0 2.50+0.27

−0.26 0.096+0.030
−0.026 G5 V

HD 3167 b 0.959632± 0.000015 5.69± 0.44 1.574± 0.054 0.01752± 0.00063 K0 V
HD 3167 c 29.84622+0.00098

−0.00091 8.33+1.79
−1.85 2.740+0.106

−0.100 0.1806± 0.0080 K0 V
GJ 9827 b 1.208966± 0.000012 3.69± 0.47 1.58± 0.14 0.0210+0.0024

−0.0026 K6 V
GJ 9827 c 3.64823± 0.00012 1.45± 0.57 1.24± 0.11 0.0439+0.0050

−0.0055 K6 V
GJ 9827 d 6.20142± 0.00013 2.35± 0.69 2.04± 0.18 0.0625+0.0071

−0.0075 K6 V
πMen c 6.26830± 0.00027 4.50± 0.81 2.08± 0.04 0.0670± 0.0011 G0 V

Name Period (days) Mass (MJ) Radius (RJ) Semi-major axis (AU) Spectral type

K2-139 b 28.38236± 0.00026 0.387+0.083
−0.075 0.808+0.034

−0.033 0.179+0.021
−0.027 K0 V

Note – (a) Planet radii and semi-major axes are taken from Armstrong et al. (2015).

Rc = 1.24+0.11
−0.11R⊕, and a mean density of ρc = 4.13+2.31

−1.77 g cm−3. For GJ 9827 d we
derived Md = 2.35+0.70

−0.68M⊕, Rd = 2.04+0.18
−0.18R⊕, and ρd = 1.51+0.71

−0.53 g cm−3. GJ 9827
is one of the few known transiting planetary systems for which the masses of all
planets have been determined with a precision better than 30%. We found that the
planetary bulk compositions are compatible with a scenario where all three planets
formed with similar core/atmosphere compositions, and we speculated that while
GJ 9827 b and GJ 9827 c lost their atmospheric envelopes, GJ 9827 d maintained its
atmosphere, owing to the much lower stellar irradiation (see Niraula et al., 2017;
Prieto-Arranz et al., 2018).

• πMensae is a naked-eye (V=5.65 mag), quiet G0 V star that was previously known
to host a sub-stellar companion (πMen b) on a long-period (Porb = 2091 days),
eccentric (e = 0.64) orbit. We reported on the confirmation and mass determination
of an additional planet, π Men c, which is the first transiting planet discovered
by NASA’s TESS space mission. We found that π Men c is a close-in planet with
an orbital period of Porb = 6.27 days, a mass of 4.50 ± 0.81M⊕, and a radius of
2.08 ± 0.04R⊕. Based on the planet’s orbital period and size, π Men c is a super-
Earth located at, or close to, the radius gap, while its mass and bulk density suggest
it may have held on to a significant atmosphere. Because of the brightness of the host
star, this system is highly suitable for a wide range of further studies to characterise
the planetary atmosphere and dynamical properties (see Gandolfi et al., 2018).

We summarise the main parameters of these planetary systems in Table 7.1.

Figure 7.1 shows a mass-radius diagram similar to the one presented in Sect. 1.5.1.
The red dots highlight the planets listed in Table 7.1. We note that “our planets” fall in
different radius regimes covering super-Earths, icy giants, and gas giants exoplanets.

Stellar irradiance on close-in planets can play a major role in explaining some of the
observed diversity in small planet densities. Photo-evaporation can strip the atmosphere
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of a Neptune-like planet leaving behind a dense rocky core. Ultra-short period planets
(USPs) may be important objects in understanding the role of photo-evaporation. USPs
have Rp < 1.7R⊕ and P < 1 day (Sanchis-Ojeda et al., 2014). Given the proximity to their
host stars, USPs are expected to be stripped cores of planets that have lost their atmo-
spheres due to photo-evaporation. As part of this thesis, we have also vastly increased our
knowledge of USPs. Sanchis-Ojeda et al. (2014) found that all USPs are in multi-planet
systems, yet there are only 5 USP systems where the mass has been determined for more
than one planet and we have provided characterisation for 2 of these systems (K2-106 and
HD 3167). Thanks to our detections we see a trend that USP planets have densities 5−10
times higher than the outer planets in the system indicating that photo-evaporation may
indeed play a role in the observed diversity of densities in multi-planet systems. USPs
could provide important clues in understanding the diverse planet compositions and the
effects of photo-evaporation.

Our results confirm that small planets with similar masses can have different radii.
Those with Rp . 1.5R⊕ have internal compositions consistent with different mixtures
of rocks and iron. Objects with radii Rp & 2.0R⊕, have densities indicative of planets
with compositions comprising a solid core surrounded by a thick atmospheric envelope.
Figure 7.2 shows the mass-radius diagram for planets with masses <50 M⊕. We highlight
the planets characterised in this thesis using both a colour code that depends on the
planet insolation, and a marker whose size depends on the orbital period. The planets
with the shortest orbital periods are those that receive a higher level of stellar irradia-
tion. These planets have the higher density in our sample and are likely bare cores whose
atmospheres have been stripped away. On the other hand, planets with longer period
and lower irradiation levels, have larger radii. These can be explained by the presence of
volatile envelopes, which account for a small fraction of the mass.

The characterisation of the super-Earth and sub-Neptune-size planets presented in
this thesis represent a leap forward in understanding small planets. GJ 9827 d, HD 3167 c,
K2-106 c, and π Men c are excellent laboratories to perform atmospheric studies.

Perspectives

We are now living in a fascinating era in which we know that other Suns are the centres
of concentric systems of many worlds. Planets are ubiquitous in the Galaxy and – we can
safely assume – in the Universe. Missions such as Kepler and K2, and instruments such as
HARPS and HARPS-N have helped us to understand the nature of other worlds. The most
exiting thing is that exoplanet science is still at the beginning of its era. The future for
exoplanet science is promising. The on-going and planned exoplanet hunters (e.g., TESS,
PLATO, CHEOPS, ESPRESSO) will reveal new mysteries about new worlds. Future exoplanet
discoveries will remember us that there are faraway worlds waiting to be unveiled. One
by one, these discoveries will contribute to the legacy of curiosity, the main distinctive
quality of humankind.
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APPENDIX A

Issues with stellar light curve data

A.1 Intrinsic stellar flux variations

The light curve of a star can display flux variability induced by, e.g., flares, pulsations,
Sun-like spots, plages, etc. Figure 6.6 shows the K2 light curve of K2-139, a magnetically
active star hosting a transiting warm Jupiter on a 29-day orbit (Sect. 6.2). Three transits
are visible at BJD−2454833 ≈ 2493, 2521, and 2550 days super-imposed on a quasi-
periodic flux variation induced by the presence of active regions carried around by stellar
rotation. Stellar photometric variability can allow us to measure, e.g., the rotation period
of the star (e.g., Barragán et al., 2018a,b), perform asteroseismic studies (e.g., Van Eylen
et al., 2018b), and estimate the impact of stellar activity on RV measurements (e.g.,
Dumusque et al., 2014).

When modelling a transit light curve, it is convenient to remove any trend caused by
stellar variability and analyse “flattened” light curves. One of the most common method
to flatten a transit light curve is by removing the local trend around each transit. This
can be achieved by fitting a N -order polynomial to the out-of-transit data around each
transit, and divide each light curve segment – including the in-transit data – by the best-
fitting polynomial. Figure A.1 shows the local detrending performed around each of the
three transit light curves of K2-139 (Sect. 6.2).

In order to flatten transit light curves, we developed a code called exotrending (Bar-
ragán & Gandolfi, 2017), which is freely available at https://github.com/oscaribv/

exotrending. The inputs to the code are a light curve, and the duration and ephemeris
of the transit, namely, the epoch of first transit and the orbital period. The code extracts
chunks of the light curve centred around each transit, fits a second order polynomial to
the out-of-transit data, normalise each segment, and finally fits a Mandel & Agol (2002)
model in order to remove 10-σ outliers. Exotrending generates a set of normalised tran-
sit light curves that can be modelled using, e.g., pyaneti (Barragán et al., 2019, see also
Sect. 5.3). The code has been tested with Kepler and K2 light curves and has been used
for the analysis of some of the planetary systems presented in Chapter 6.
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Figure A.1: K2 transits light curve of EPIC 218916923 (K2-139). The out-of-transit and in-transit data
are shown with red squares and black circles, respectively. The upper panels show the non-flattened
transit light curves, as extracted from the K2 data. The trends clearly visible in the first and second
transit are induced by Sun-like spots crossing the visible hemisphere as the star rotates around its axis.
The lower panels display the transit light curves flattened using the code Exotrending.

A.2 Finite integration time

In Sect. 2.3 we described the equations used to model a transit light curve. However, these
equations give the instantaneous flux, whereas CCD photometers integrate the stellar
light for a finite amount of time. The finite integration stretches out the ingress and
egress transit duration and suppresses the limb darkening effects (Kipping, 2010). If not
taken into account, the finite integration time may lead to severe systematic errors on the
parameter estimates. The so-called light curve “smearing” becomes clearly visible when
the exposure time is comparable to the transit duration. Figure A.2 shows the effects of
the K2 30-min integration time on the light curve of K2-141 (Barragán et al., 2018b, see
Sect. 6.3).

Kipping (2010) demonstrated that the best approach to account for the finite integra-
tion time is by resampling the transit model. The resampling method works as follows:
for a flux measurement Fi at the time ti with an integration time I, the resampling of
the time ti into N sub-time stamps with labels j = 1, . . . , N − 1, N , can be written as

ti,j = ti +

(
j − N + 1

2

)
I
N
. (A.1)

Let us define Fi,j as the theoretical flux at each time ti,j. The model flux F̂i can be
derived by rebinning the N fluxes Fi,j as

F̂i =
1

N

N∑
j=1

Fi,j. (A.2)

The quantity F̂i is the integrated flux model corresponding to the time stamp ti. The
synthetic flux F̂i can then be compared with the measurement Fi when modelling the
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Figure A.2: Light curve of K2-141 folded to the orbital period of K2-141 b and residuals. The red points
mark the K2 data. The thick black line the re-binned transit model. The blue line shows how the transit
would look like if the exposure time were 1 second.

transit light curve (see Chapter 5).
Kipping (2010) showed that the error on the resampling method varies as ∝ N−2. This

implies that a resampling computed with a large number of subsamples produces better
results. However, a large number of subsamples has a computational cost. For instance,
an optimal N value has to be chosen in order to resample the model without compromise
the computational resources. We note that it is possible to speed-up the computations
using selective resampling, i.e., the resampling is done only for in-transit points (Kipping,
2010).

In this thesis we analysed long cadence time-series photometry from the K2 mission.
We performed a numerical test to choose the optimal value of N . This has to be large
enough to properly account for the long exposure time, but not too large to preserve the
numerical efficiency of the modelling. We utilised pyaneti (see Sect. 5.3) to model the
K2 long-cadence data using N = 1, 10, and 30. We modeled light curves with different
transit durations and depths. The tests with N = 1 provided parameter estimates that
did not agree with those abstained with N = 10 and 30. Moreover, for N = 1 the derived
stellar densities did no agree with the spectroscopic densities. We found that N = 10
and 30 provided consistent results well withing the 1-σ uncertainty. We therefore adopted
N = 10 – which is ∼ 3 faster than N = 30 – to resample the transit models when fitting
the K2 long cadence data.
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APPENDIX B

Techniques to mitigate stellar activity

The mass determination of low-mass extra-solar planets through Doppler spectroscopy is
currently hindered by the intrinsic magnetic activity of the host stars (Hatzes, 2016). The
RV signal induced by stellar activity can mimic or conceal planetary signals. For solar-like
stars, one of main source of stellar RV signal – also known as stellar noise or jitter – is the
presence of cool spots, hot faculae, and plagues combined with stellar rotation. Typical
values of the RV jitter range from a few m s−1 to tens of m s−1 (see, e.g., Dumusque et al.,
2014). The stellar RV signal is thus of the same order of magnitude or even larger than
the expected RV amplitude induced by a close-in low-mass planet.

In this Appendix we describe three techniques that were used in this thesis to disen-
tangle planetary signals from stellar activity signal.

B.1 Floating Chunk Offset (FCO) method

The floating chunk offset (FCO Hatzes et al., 2011) method is useful to disentangle the
RV signal induced but a planet whose orbital period is shorter than the period of other
signals, such as stellar activity or additional planets in long-period orbits.

This technique divides a given RV time series into segments of duration ∆t, long enough
to encompass a significant fraction of the orbital signal of a planet. Each segment has
to include at least two measurements. If additional RV signals with periods � ∆t are
present in the data, we can assume that they remain constant within the time interval ∆t.
We can also assume that the RV variation observed within each segment mainly reflects
the orbital motion of the short period planet rather than other, longer period signals,
such as those induced by stellar rotation, magnetic activity, and/or additional planets in
long period orbits. For each sub-segment, we can fit an offset that account for any long
period signal, assuming that it remains nearly constant within the time interval ∆t.

This method is ideal for planets whose orbital period is shorter than one day – the
so-called ultra-short period (USP) planets. By acquiring multiple RV measurements per
night, we can cover a significant fraction of the orbital signal of an USP planet. We can
divide the data in nightly chunks and fit for an offset for each night. Examples of the
use of the FCO method are given in this thesis for the USP planets K2-141 b (Sect. 6.3),
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K2-106 b (Sect. 6.6), and HD 3167 b (Sect. 6.7). A good example of the use of the FCO
method for a planet whose orbital period is longer than one day is given in Persson et al.
(2018).

B.2 Stellar activity as a coherent signal

Radial velocity variations due to active regions coupled to stellar rotational modulation
can be complex with not only the stellar rotational period Prot present, but also its
harmonics, e.g., Prot/2, Prot/3. Assuming that the surface structures responsible for this
modulation (e.g., cool spots) are not evolving rapidly, then the simplest representation
of the rotational modulation is through the Fourier components defined by the rotation
period and its harmonics.

If the RV follow-up spans a time interval that is shorter than the evolution time-scale
of active regions, we can assume that any activity-induced RV signal is coherent within
this observing window. This approach has been used previously for planetary systems
orbiting active stars (e.g., Pepe et al., 2013). This approach has been largely used in this
thesis, as described in Sect. 6.2, 6.3, 6.7, and 6.8.

B.3 Gaussian processes

The stellar activity-induced RV signal can also be treated as a stochastic process. If we
assume that the “stellar noise” follows a normal distribution, it can be modelled using
Gaussian processes (GPs). Usually, GPs require a computationally expensive inversion
of an n × n covariance matrix, where n is the number of data points. However, some
techniques have been developed to evaluate correlated time-series with numerical efficient
methods. They allow GPs to be used many problems encountered in exoplanet research
(see, e.g., Dı́az, 2018; Parviainen, 2017).
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