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Abstract 

Most common diseases have a heritable component that is influenced by mutations on 

multiple loci, and by interactions between loci and with the environment. However, 

traditional genetic analysis techniques have focused on single locus effects. This is 

mostly due to the polynomial increase in computational capacity needed to attempt 

multi-loci interaction analyses, and the anticipated loss of power due to multiple 

testing. In this dissertation, a framework for performing a complete two single 

nucleotide polymorphism (SNP) interaction analysis of high dimensionality genome 

wide association scans (GWAS) is presented. The implementation of the framework 

utilizes diverse distributed computational resources to overcome the bottlenecks of 

each resource, harvesting enough capacity to analyze any of the GWAS in existence 

today within a reasonable time frame. Algorithmic approaches are proposed to 

improve the efficiency of the framework and improve its computational performance 

so that a brute force attack on the problem can be performed. The data is encoded in 

binary using a lossless algorithm that significantly reduces its size. Computationally 

efficient data mining measures for the Omnibus and Epistatic interaction effects are 

proposed and compared to traditional statistical techniques. An algorithm is proposed 

that optimizes the analyses of multiple response variables within the same GWAS. 

GenMSA, a multiple sclerosis (MS) dataset, is analyzed using the proposed 

framework with top results tested for replication using ANZgene, an independent MS, 

dataset. Some of the top results replicated, implicating SNPs in a region of known 

association to MS providing evidence to the validity of the proposed framework. Top 

results are further examined through a proposed approach that enables drilling into 

these results and studying correlation coefficient between each of the genotype 

combinations of the SNP and the signal level to each of the main and epistatic effects.   
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Chapter 1  Introduction 

Most common diseases that have a heritable component such as diabetes, multiple 

sclerosis, schizophrenia and dyslipidemia are influenced by mutations on multiple 

loci, interactions between loci and interactions with the environment. In genetic 

studies, due to limitations in genotyping technology, traditionally only a small subset 

of the genome could be analyzed, so candidate gene studies were common. The 

introduction of affordable high throughput genotyping technologies (DNA chips) 

allows the assay of more than half a million single nucleotide polymorphisms (SNPs) 

per subject across the whole genome. Genetic association studies applying such 

technology allow investigation of the vast majority of common loci variants in the 

human genome; such studies are typically called genome wide association scans 

(GWAS). These GWAS provide an unprecedented opportunity to identify genetic 

variations associated with diseases. 

However, traditional analyses techniques have focused on discovering single locus 

effects rather than multi-loci effects in GWAS studies. This approach has yielded 

rather limiting results in many studies because the model used is too simple and is 

being applied in a complex reality. Commonly used arguments for this practice are the 

increased computational requirements and the loss of power of detection following 

correction for multiple testing in multi-loci analyses. In the few cases where multiple 

loci interactions have been examined, only a subset of the search space has been 

analyzed. Typically loci with no or very small main effects (little or no single-marker 

association to the phenotype) were not included even though there is no reason to 

believe that they could not be involved in a strong multi-locus interaction associated 

with a complex disease [1,2,3]. 
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Approaches that attempted to test for gene-gene interaction in GWAS data can be split 

into two categories, those that attempt to perform an exhaustive, or near exhaustive 

search, and those that attempt to use machine learning approaches derived from data 

mining to discover gene-gene interactions without going through the whole search 

space.  

Another key issue that arises from current research is the need to develop new 

statistical measures to quantify the epistatic effect. There is a common 

acknowledgement in the field that end results need to be statistically interpretable, 

with p-values as the statistic of choice (the probability of obtaining a test statistic at 

least as extreme as the one that was actually observed, assuming that the null 

hypothesis is true) [4,5,6].  However, the traditional analytical approaches to getting 

p-values for interactions are too slow to perform at the whole genome level. Therefore 

estimations have been proposed that attempt to provide close approximations to the 

actual statistic in a computationally efficient manner[2]. 

The evaluation of genetic results, and by extension the methods used to obtain them, 

are traditionally based on replication testing. Replication testing involves the use of 

two independent datasets to test if a hypothesis tested and found to be significant in 

one study replicated under the same parameters in a second independent study. A 

concise, replication methodology is necessary to be defined a-priory accompanied 

with a solid mathematical proof that the probability of reporting replicated results that 

are in reality false positive is extremely low.  
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1.1 Problem statement  

With the complete sequencing of the human genome one might expect a plethora of 

drug targets for many diseases to be discovered [7]. This however isn’t the case, since 

the analytical techniques applied to these data were focused on simple Mendelian 

diseases (diseases where a single genetic polymorphism was responsible for a 

phenotypical trait) while the majority of common diseases in humans are complex 

diseases (multiple genetic polymorphisms and environmental factors predispose a 

subject’s disease status) [8].  

The work presented in this thesis dissertation was focused around identifying the key 

problems surrounding the lack of a method performing a complete GWAS two SNP 

interaction test and addressing each one of them. Through this process several 

problems were identified, and each required an original contribution to be researched 

and developed in order for the proposed framework to get completed. In this section 

the key problems addressed in this dissertation are presented.  

1.1.1 Data encoding  

The need to reduce the size of the data is owed to the 100 fold increase in the 

genotyping capacity available today combined with the massive reduction in cost. 

Today’s technology has the ability to analyze datasets up to 550,000 or even 1 million 

SNPs per subject with >99% accuracy, at a rate of >100 K genotypes per day and at a 

cost of around 20–30 cents per genotype [9,10,11]. 

Traditionally, the genetic data in these studies is stored in the QTDT (Quantitative and 

Discrete Traits) format introduced in the program QTDT and MERLIN [12]. Input 

files describe relationships between individuals in a dataset, store marker genotypes, 
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disease status and quantitative traits and provide information on marker locations and 

allele frequencies.  

There was already a technique for compressing this data by utilizing a binary 

encoding PLINK [13]. However, that technique was focused at encoding SNPs as 

markers to be used in analyses that don’t require the information of which DNA strand 

each allele belongs to. Today as more GWAS datasets become available researchers 

are developing innovative new methodologies to analyze them. Some of these 

methodologies are not relying so much on the SNPs as markers; rather they look at the 

sequence of genotyped alleles on each strand of DNA separately. The methodology 

used in PLINK [13] to encode the data looses the information of which strand holds 

each allele’s genotype for heterozygote SNPs. This makes it impossible to run 

analyses that use strand information using the binary input format for GWAS.  

1.1.2 Measure of epistasis  

The established way of measuring epistasis with categorical response variables in 

genetic data is logistic regression [2,3,14]. However, logistic regression is not very 

fast and is therefore usually applied to test small subsets of the datasets. A faster 

computational approach is needed that will provide results comparable to logistic 

regression [2]. However the key aspects that make logistic regression the analysis of 

choice would need to be retained, such as testing for the null hypothesis generating p-

values. Furthermore, a key issue in analyzing genetic data is the non-independence of 

markers, an issue that exists with logistic regression; any proposed methodology 

would need to not provide a positive bias towards loci that are non-independent [3].   

The correlation between any proposed methodology and logistic regression is defined 

a-priory at 5% correlation between any proposed methodology and logistic regression 
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in order to accept it as producing sufficiently converging estimations to logistic 

regression.  

1.1.3 Computing multidimensional contingency tables  

In the majority of case-control studies with genetic data, more than one phenotype 

may be important even though the subject disease status (case - control) is typically 

the most interesting one. Many diseases tend to have different characteristics, or 

different distributions in sub-populations and typically, when performing genetic 

analyses, the goal is not only to identify genetic loci associated with the case-control 

status but also to identify the ones that are associated with subsets of subjects that 

exhibit other phenotypes (phenotypes are used as response variables) relative to the 

disease [4]. As an example, Multiple Sclerosis (MS) is more evident in females than 

males, it’s not clear if this is due to environmental or genetic factors [15]. It is 

therefore logical to ask if a reported association is driven by males, females or both. 

Similarly, most diseases including MS, have subtypes, and it’s typically interesting to 

test whether a specific effect is associated with one of the subtypes [11,16]. Such 

questions typically require a re-analysis of the dataset for each phenotype definition in 

order to perform data mining on each of the variables, and then collect all results 

together in a single table to interpret. However, traditional analyses also typically 

involve only univariate analysis that has a computational complexity of O = n, where 

n is the number of SNP’s while in a complete two SNP interaction test as attempted in 

this work the computational complexity is O(n
2
). To put this in perspective, a 

univariate analyses on a typical personal computer today will take a few minutes. A 

complete two SNP interaction analysis will take several months if not years. Having to 

repeat the analyses for every phenotype of interest in the case of the univariate 
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analysis does not increase the requirements to an unacceptable level. In the case of 

two SNP interactions, however, it multiplies the complexity of an already challenging 

task by a factor equal to the number of extra response variables to be tested. Counting 

the values for a contingency table and the sums of all rows and columns is a known P 

hard problem [17]. Furthermore, the research in finding solutions to the problem is 

focused on getting approximate counts of the table using heuristics [18,19]. However 

this would result in loss of information in the case of GWAS analysis, since the 

number of subjects are limited compared to the statistical power needed, thus any 

approach which sacrifices statistical power in order to provide a linear increase in 

performance should be avoided.  

1.1.4 Multiple testing problem  

The multiple testing problem is a major issue in GWAS analyses that needs to be 

addressed [20]. Multiple testing, or multiple comparisons as it’s sometimes referred to 

in statistics is a problem that occurs when a set of statistical inferences are considered 

simultaneously [20]. Errors in inference that fail to include their corresponding 

population parameters or hypothesis tests that incorrectly reject the null hypothesis are 

more likely to occur when one considers the set as a whole. The multiple testing 

problem is especially evident in data mining applications that test high dimensional 

datasets [21] such as the ones analyzed as part of this dissertation work. Traditionally, 

in genetic analyses heuristics such as the Bonferoni correction [22] were used to 

adjust for it [23]. Bonferoni correction is based on the idea that if an experiment is 

testing a dependent or independent hypothesis on a set of data, then one way of 

maintaining the set-wise error rate is to test each hypothesis at a statistical significance 

level of 1/n times of what it would be if only one hypothesis were tested, where n is 
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the number of tests performed. So if there is a need to compute the significance level 

of a set of tests n to be at most a, then the Bonferoni correction would be to test each 

of the individual tests at a significance level of (a/n) [24]. Statistical significance 

simply means that a given result is unlikely to have occurred by chance assuming the 

null hypothesis is actually correct (i.e. no effect) [25]. Bonferoni corrections tend to 

over-adjust, thus making identifying statistically significant p-values after correction 

for multiple testing a very difficult task [24,26]. Traditionally, the only test that was 

considered to be ideal for adjusting for multiple testing is replication testing [27]. 

The current norm in identifying a result as statistically significant or not is to a-priory 

set an arbitrary level of significance, up to which the results will be rejected as invalid 

[6]. In genetics, the typical level of statistical significance is either p<0.05 or p<0.01. 

This level of significance still involves a pretty high probability of error (5% or 1%) . 

Furthermore, the statistical measures used to estimate p, usually assume a normal 

distribution between the results and this only holds if the results are independent, but 

as it will be discussed in later sections in real life applications this assumption does 

not hold.  

1.1.5 Computational complexity and high performance 

computing  

The problem of testing for all two SNP interactions in GWAS has a growth rate of 

O=n
2 

where n is the number of SNPs to be analyzed. Since the typical GWAS contain 

hundreds of thousands of SNPs and some even have over a million SNPs it’s 

important to use a system capable of providing enough computational capacity both 

for current and for expected high dimensionality of GWAS. Therefore it’s expected 

that in order to address the computational requirements of performing a complete two 



21 
 

SNP interaction test in a high dimensional GWAS, a high performance computing 

resource is required. This problem requires large computational capacity as well as 

large data storage and transfer capacity between the nodes of a distributed system 

[1,8,28].  

1.2 Original contributions 

The main contribution of this thesis is the proposed framework for a complete two 

SNP interaction testing in high dimensional GWAS. In order to overcome the 

problems associated with designing and developing a two SNP interaction framework, 

several original contributions in the fields of data mining, high performance 

computing and statistical genetics were made and are presented in the next sections of 

this dissertation. 

1.2.1 Data encoding 

A proposed methodology is presented that enables encoding of the GWAS data in a 

way that results in a lossless compression of the data compared to the traditional 

“MERLIN” format [12]. Furthermore, even though this method results in twice as 

large files compared to a similar approach presented in [13], it does not suffer from a 

loss of information. Although this issue does not affect univariate analyses, 

multivariate analyses may be affected. Furthermore the proposed methodology 

enables encoding of deleted SNPs, a type of polymorphism that is gaining momentum 

in being detected and combined in some analytical techniques with traditional SNP 

data.  
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1.2.2 Measure of epistasis 

 A new measure of epistasis was proposed in order to test for the epistatic effect, a 

term used in Biology to identify the interaction effect between two loci. The 

advantage of the proposed measure is that it’s designed to be considerably faster than 

logistic regression, the established method of measuring epistasis, improving the 

efficiency of the proposed framework.  Through the algorithmic steps to estimate the 

interaction effect, an established omnibus measure is also calculated that represents 

the total association between the categorical variables and a response variable.  

To put this in data mining terms, the proposed methodology enables the evaluation of 

the probability that a multidimensional association rule is a false positive assuming the 

rule (null hypothesis) is true.  

1.2.3 Computing multidimensional contingency tables 

As a way to further improve the efficiency of the proposed framework, an algorithm 

that supports generating efficiently all contingency tables for each of the response 

variables to be tested is proposed. Assuming the number of response variables to be 

tested is φ, the proposed algorithm is nearly φ times faster than the traditional 

approach. The proposed algorithm succeeds this optimization by identifying the 

genotype combination between two SNPs of a specific subject only once rather than φ 

times.  

In GWAS studies, response variables are usually phenotypes, and this approach 

enables the analysis of multiple phenotypes without significantly increasing the 

computational cost of the analysis compared to running just a single phenotype. Most 

common diseases have multiple subtypes; this is a key feature that will enable testing 

for epistatic effects associated with specific subtypes of diseases.  
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1.2.4 Evaluation of significance through replication 

In this thesis dissertation we explore existing methodologies of testing for replication 

between independent genetic studies in order to identify statistically significant results 

[27,29]. However, we also propose some post-processing steps for replicated results 

that enable both the visualization of the distribution of each effect among the genotype 

combinations of the two SNPs as well as studying the correlation of the effects 

between the two studies.  

When comparing p-values between two studies only the total association level of the 

test in each study is compared. The distribution of each effect among each of the 

genotype combinations of the two SNPs is not considered. If a replicated result is 

indeed a true positive, then it’s expected that the signals for each effect will be 

similarly distributed between the two datasets. Failure to do so may be due to many 

factors and can’t be used as a test for non-replication success. In the case of a high 

correlation of the distribution of effects (both main and interaction) to the genotype 

combinations of the two SNPs the confidence in the validity of the results will be 

significantly increased [3,5,27,29].  

If an independent replication study is not available then the same approach of drilling 

down into results in order to visualize the direction and level of the signal of each 

effect on each of the genotype combinations is still helpful. Even though it will not 

help in increasing the confidence in the result, it will help identify the possible 

haplotypes that are more frequent in each phenotype class enabling researchers to 

generate new hypotheses that they may be able to test with follow up experiments.  
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1.2.5 Hybrid cluster cloud high performance computing (HCC-

HPC) framework 

The computing resources available for this work were composed of two different HPC 

systems. They each had distinct characteristics that disabled them from being used 

alone for this analysis [30]. A distributed analytical approach is proposed that enables 

the use of both HPC resources in parallel enabling improvements in efficiency of the 

proposed framework. The proposed approach is compared to using either HPC 

architecture alone, or both. This proposed distributed analytical approach is however 

not applicable to other problems since it’s problem specific to the subject of complete 

two SNP interaction testing, thus it’s labelled as a minor contribution to distinguish it 

from the other presented contributions.  

The proposed computing framework is labelled as a hybrid cluster – cloud high 

performance computing framework (HCC-HPC). This is composed of an algorithm 

that is designed to work for two SNP interactions testing in such a way as to utilize 

both a cloud and a cluster grid to avoid the bottlenecks associated in each. This is 

achieved by breaking up the data into work nodes with each work node going through 

a serial pipeline from the analysts’ personal computer to each of the two HPC systems 

and performing the computationally intensive part of the analysis on the 

computational cloud, leaving the parts that require both computational power and 

inter-process communication to the cluster. The performance of this Hybrid HPC is 

discussed in comparison to performing the analyses on either HPC alone or both.  

 

Publications that were derived as part of this work are listed in Appendix A . 
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1.3 Structure of this dissertation   

This dissertation is split into 7 chapters. In chapter 2 background knowledge will be 

presented to introduce the reader to key relevant concepts of this thesis. Chapter 3 

presents a detailed literature review that was performed in the fields relating to the 

innovations introduced in this dissertation. The proposed framework is presented in 

detail in chapter 4. All results related to the actual analyses of the datasets as well as 

results related to the performance of the system are presented in chapter 5. A 

discussion of the results and the implications of this work are presented in chapter 6. 

Future work is presented on chapter 7. 
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Chapter 2  Background Knowledge 

The goal of this chapter is to introduce some background information as to enable a 

clear understanding of the following chapters and a common terminology related to 

GWAS analyses. The first part of this chapter begins with some basic concepts in 

Molecular Biology, with a focus of explaining SNPs, the markers that the genetic data 

used in this dissertation is consisted of, and Linkage Disequilibrium, an effect that is 

of key importance in all analytical genetic approaches. It concludes with an 

introduction to Complex diseases and genetic and environmental factors that are both 

useful to define in order to understand the motivation for this work. The second part of 

this chapter focuses on statistical genetics, defining a key terminology and providing 

an explanation of key effects and analytical approaches relevant to this work.   

2.1 Molecular biology and medical genetics 

Molecular biology is the branch of biology which primarily deals with functions, 

characteristics and structures of three major macro-molecules DNA, RNA and 

proteins. In this section some basic biological mechanisms from molecular biology are 

presented to enable better understanding of the work in this dissertation. The general 

problem the proposed methodology tries to address falls within the field of human 

genetics. In human genetics the study is focused on inheritance in humans. Study of 

human genetics can answer questions about human nature, understand diseases and 

help in the development of effective disease treatments. However, to date these 

promises have not been met, and part of the problem as described in chapter one is the 

lack of a comprehensive framework to test for gene-gene interactions associated with 

complex diseases.   
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___________________________________________________________________________ 

 

___________________________________________________________________________ 

 

  

Figure 1 From DNA to proteins, the biological mechanism 

Lister Hill National Center for Biomedical Communications, US National Library of Medicine, 

National Institutes of Health, Department of Health & Human Services, Genetics Home 

Reference. Your Guides To Understanding Genetic Conditions. United States: U.S. National 

Library of Medicine, 2011. 
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2.1.1 Macromolecules DNA, mRNA and proteins  

Deoxyribonucleic acid otherwise known as DNA is the building block of life. It 

contains the information the cell requires to synthesize proteins and to replicate itself. 

The central dogma of life; the coded genetic information hard-wired into DNA is 

transcribed (transcription is the process of creating a complementary mRNA molecule 

from a DNA segment) into mRNA molecules; each mRNA molecule contains the 

information for the synthesis of a particular protein. As Figure 1 demonstrated mRNA 

molecules can travel outside of the nucleus and into the cytoplasm, here they can be 

translated into proteins.  

2.1.2 SNPs  

A single-nucleotide polymorphism (SNP, pronounced snip) is a DNA sequence 

variation occurring when a single nucleotide in the genome differs between members 

of a biological species or paired chromosomes in an individual [31].  

All individuals have two strands, one inherited by each parent. Figure 2 depicts two 

strands. If we consider these to be from a single individual, then he has a heterozygote 

genotype for the SNP highlighted. Subjects who have the same allele on both strands 

are called homozygote. In the case shown in Figure 2 the two alleles of the SNP are C 

and T.  

Although there are several types of polymorphisms that can occur on a disease 

causing gene, the majority of them can potentially be represented by one type of 

mutation, single nucleotide polymorphisms (SNPs). Therefore SNPs serve as 

biological markers for pinpointing a disease on the human genome map. This does not 

mean that the SNPs cause the disease even though some times that is the case. Simply 

put, due to the way that DNA is inherited, SNPs neighbouring a mutation (potentially 
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disease causing) of any type have a higher probability to be inherited together than 

normal distribution and linkage equilibrium would dictate. The reason for this effect is 

linkage disequilibrium, discussed in at length in a following section. Therefore the 

SNPs with a high probability of being inherited together with a disease causing 

polymorphism will carry that same association with the disease even though they are 

not the causative factor [31,32,11]. 

___________________________________________________________________________ 

 

___________________________________________________________________________ 

 

Figure 2 A SNP on DNA strands 
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2.1.3 Genes 

Genes are stretches of DNA that code for a type of protein or an RNA chain that has a 

function in the living organism [31]. Genes determine hereditary traits, such as the 

hair and eye colour or disease predisposition by providing instructions for how every 

activity in every cell of our body should be carried out [31,33]. Due to the multiplicity 

of polymorphism combinations inherited by each organism different forms of the 

same gene exist in subgroups of individuals. These forms are called alleles. When a 

gene is in the process of being transcribed into a functional protein the number of 

copies of mRNA sequences for that gene can be counted through “gene expression” 

experiments [34].  

To better understand the functionality of genes, here’s a classic example. A gene may 

enable a liver cell to remove excess cholesterol from our bloodstream. It does this by 

instructing the cell to make a particular protein. It is this protein that then carries out 

the actual work. In the case of excess blood cholesterol, it is the receptor proteins on 

the outside of a liver cell that bind to and remove cholesterol from the blood. The 

cholesterol molecules can then be transported into the cell, where they are further 

processed by other proteins [35]. 

Many diseases are caused by polymorphisms or changes in the DNA sequence of a 

gene. When the information coded for by a gene changes, the resulting protein may 

not function properly or may not even be produced at all. In either case, the cells 

containing that genetic change may no longer perform as expected. For example, we 

now know that mutations in genes code for the cholesterol receptor protein associated 

with a disease called familial hypercholesterolemia. The cells of an individual with 

this disease end up having reduced receptor function and cannot remove a sufficient 

amount of low density lipoprotein (LDL), or bad cholesterol, from their bloodstream. 
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A person may then develop dangerously high levels of cholesterol, putting them at 

increased risk for both heart attack and stroke [35]. 

2.1.4 Linkage disequilibrium 

Linkage disequilibrium is the non-random association of alleles at two or more loci, 

not necessarily on the same chromosome [8,31]. In other words, linkage 

disequilibrium is the occurrence of some combinations of alleles or genetic markers in 

a population more often or less often than would be expected from a random 

formation of haplotypes from alleles based on their frequencies. The amount of 

linkage disequilibrium is the difference between observed and expected (assuming 

random distributions) allelic frequencies [7,36]. 

Linkage disequilibrium can be visualized in a map that presents the LD between two 

SNPs by using an LD metric. LD metrics are tests of associations between two 

markers such as SNPs typically applied to a single group of subjects that is 

representative of the general population. HAPLOVIEW is the traditional software for 

performing and visualizing LD analyses [7,37]. A sample of HAPLOVIEW’s output 

is presented in Figure 3. 

The horizontal line at the top of the map represents a DNA strand. The vertical lines 

on it represent genotyped SNP locations. Below that all genotypes SNPs are put in 

series with a line connecting them to their position on the DNA strand. The LD map 

generates an equilateral triangle so that two of the vertices of the triangle are placed 

on the SNP location on the map and the third vertice is represented by a small 

rhombus. The colour of the rhombus represents the level of LD between the two 

SNPs. In this example, three categories are plotted, High LD, No LD, and Low LD as 
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red, blue and green respectively. All SNP pairs in this small region are calculated for 

LD.  

Visualization of LD or any other genetic variation on genetic maps generated from 

published studies is possible through the HapMap project [36] that provides the 

functionality and tools to query any region of the human genome. 
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Figure 3 Linkage disequilibrium map example 

Generated from HAPLOVIEW software on a sample dataset[37].  
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2.1.5 Complex versus Mendelian diseases  

Mendelian diseases are diseases where one gene is responsible for one disease. These 

diseases are often rare (such as MCKD1 and MCKD2 researched by the Cyprus 

Institute of Neurology and Genetics) [38]. Linkage analyses were most often used, 

rather than association studies, to discover these Mendelian disease causing genes.  

Complex diseases, otherwise known as multigenic diseases, are caused by more than 

one gene or SNP. Environmental or other factors may also play a role. Thus the 

problem of identifying causative factors in these diseases is far more complex since a 

combination of SNPs will predispose a person in a certain degree to a disease. 

Furthermore, it is believed that for some of the most common complex diseases 

(diabetes, Alzheimer, etc) genetic variations in many or all chromosomes are the 

causes [3,26,29].  

In whole genome analyses, SNPs from the entire genome are involved. This type of 

research requires the analyses of up to hundreds of thousands or even millions of 

SNPs that may be associated to the disease by themselves, or through interaction with 

other genetic loci or environmental factors [3]. The increased number of SNPs needed 

for this type of research and the reduced number of patients’ data that is usually 

available for analysis, due to the high cost of genotyping (determining the genotype of 

SNPs on their DNA), is what makes GWAS studies challenging to conduct. 

Nevertheless, multiple studies have being conducted in many complex diseases. 

2.1.6 Genetic and environmental factors 

For the most part, complex diseases are caused by a combination of genetic, 

environmental, and lifestyle factors, most of which have not yet been identified 

[15,34,39,40]. The vast majority of diseases fall into this category, including several 
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congenital defects and a number of adult-onset diseases. Some examples include 

alzheimer's disease, scleroderma, asthma, parkinson's disease, multiple sclerosis, 

osteoporosis, connective tissue diseases, kidney diseases, autoimmune diseases, and 

many more [41]. 

Scientists now know that complex diseases do not obey the standard Mendelian 

patterns of inheritance. Although we inherit genes associated with these diseases, 

genetic factors represent only part of the risk associated with complex disease 

phenotypes. A genetic predisposition means that an individual has a genetic 

susceptibility to developing a certain disease, but this does not mean that a person 

with a genetic tendency is destined to develop the disease. The actual development of 

the disease phenotype depends in a large part on a person's environment and lifestyle. 

While we cannot change our genes, we can alter our lifestyle and environment to 

prevent or delay the onset of such a disorder. Indeed, the interplay between genetic 

and environmental factors in complex disease continues to challenge the research 

community [39]. 

2.2 Statistical genetics 

2.2.1 Response - explanatory variables terminology in genetics 

The terms “dependent variable” and “independent variable” are used in similar but 

subtly different ways as part of the standard terminology in statistics. They are used to 

distinguish between two types of quantities being considered, separating them into 

those available at the start of a process and those being created by it, where the latter 

(dependent variables) are dependent on the former (independent variables). 

However, in real life applications of statistical approaches in data mining, or statistical 

genetics, independent variables are rarely statistically independent, therefore the terms 
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response variable and explanatory variable are preferable instead of dependent and 

independent variable [42,43]. For the purposes of this dissertation the response 

variable (independent variable) will be composed of phenotypes, while the 

explanatory variables will be composed of SNPs. The terms response and explanatory 

variables will be used, but in the context of this dissertation they should be 

respectively equivalent in terms of statistics to dependent and independent 

respectively.  

2.2.2 Regression analysis 

In statistics, regression analysis includes any techniques for modelling and analyzing 

several variables, when the focus is on the relationship between a response variable 

and one or more explanatory variables. Regression analysis defines how the typical 

value of the response variable changes when any one of the explanatory variables is 

varied, while the other explanatory variables are held fixed [14]. Most commonly, 

regression analysis estimates the conditional expectation of the response variable 

given the explanatory variables — that is, the average value of the dependent variable 

when the independent variables are held fixed. Less commonly, the focus is on a 

quintile, or other location parameter of the conditional distribution of the response 

variable given the explanatory variables. In all cases, the estimation target is a 

function of the explanatory variables called the regression function. In regression 

analysis, it is also of interest to characterize the variation of the response variable 

around the regression function, which can be described by a probability distribution 

[44]. 

In genetic studies, regression analysis can be applied to test for association or 

interaction (dependent on the model used) between multiple loci (explanatory 
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variables) and a phenotype (response variable) such as disease status (case-control). 

For categorical phenotypes logistic regression is typically applied to test for 

interaction between loci, while for continuous phenotypes linear regression can be 

used [45].  

2.2.3 Testing the null hypothesis 

Interpretation of statistical information can often involve the development of a null 

hypothesis (H0) in that the assumption is that whatever is proposed as a cause has no 

effect on the variable being measured [45]. Hypothesis testing works by collecting 

data and measuring how probable the data are, assuming the null hypothesis is true. If 

the data are very improbable, usually defined a-priory as observed less than 5% or 1% 

of the time, then the experimenter concludes that the null hypothesis is false. If the 

data do not contradict the null hypothesis, then no conclusion is made. In this case, the 

null hypothesis could be true or false; the data give insufficient evidence to make any 

conclusion [14,46]. 

Traditionally, research conducted in the biological fields relies on testing the null 

hypothesis as a way to provide a comparable and repeatable measure of an effect. The 

traditional interpretation of testing the null hypothesis is p-values. P-values represent 

the probability of obtaining a test statistic at least as extreme as the one that was 

actually observed, assuming that the null hypothesis is true. A key feature of p-values 

is that the probability provides a combination of both the size of the effect (for 

example, confidence in data mining or odds ratio in statistics) and the size of the 

supporting evidence for it (the number of samples in a dataset, such as the support 

measure from data mining). 
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2.2.4 Statistical significance and multiple testing problem 

The statistical significance of a result is the probability that the observed effect in a 

study occurred by pure chance, and that in the population from which the sample was 

drawn, no such relationship exist [47,48]. The higher the  probability of error that is 

involved in accepting an observed result as a representative of the population, the less 

confidence there is that the observed relation between variables in the sample is a 

reliable indicator of the relation between the respective variables in the population 

[14,42,46]. Specifically, a p-value of 0.05 (i.e.,1/20) indicates that there is a 5% 

probability that the relation between the variables found in our sample is a false 

positive. In other words, assuming that in the population there was no relation 

between those variables whatsoever, and we were repeating experiments, it’s expected 

that approximately in every 20 replications of the experiment there would be one in 

which the relation between the variables in question would be equal or stronger than 

the 0.05 cut-off [6].  

It follows that the more analyses you perform on a data set, the more results will meet 

by chance the conventional significance level. For example, if you perform 40 

independent tests, then you should expect to find by chance that about two (i.e., one in 

every 20) tests are significant at the p-value < 0.05 level, even if the values of the 

variables were totally random and those variables do not correlate in the population. 

Some statistical methods that involve many comparisons and, thus, a good chance for 

such errors include some “correction” or adjustment for the total number of 

comparisons. However, many statistical methods (especially simple exploratory data 

analyses) do not offer any straightforward remedies to this problem. Therefore, it is up 

to the researcher to carefully evaluate the reliability of unexpected findings. In this 



39 
 

dissertation this will be referred to as the multiple testing problem, a common 

terminology used [22,23,24].  

If there are very few observations (in the case of GWAS very few subjects), then there 

are also respectively few possible combinations of the values of the variables and, 

thus, the probability of obtaining by chance a combination of those values indicative 

of a strong relation is relatively high. This is the same problem as having to deal with 

low support but high confidence in data mining.  

Consider this example from research on statistical reasoning [49]. There are two 

hospitals: in the first one, 120 babies are born every day; in the other, only 12. On 

average, the ratio of baby boys to baby girls born every day in each hospital is 50/50. 

However, one day, in one of those hospitals, twice as many baby girls were born as 

baby boys. In which hospital was it more likely to happen? The answer is obvious for 

a statistician, but as research [49] shows, not so obvious for a lay person: it is much 

more likely to happen in the small hospital. The reason for this is that the probability 

of a random deviation of a particular size (from the population mean), decreases with 

the increase in the sample size. 

If a relationship between variables in question is small, then there is no way to identify 

such a relation in a study unless the research sample is correspondingly large. Even if 

our sample is in fact “perfectly representative”, the effect will not be statistically 

significant if the sample is small. Analogously, if an association in question is very 

large, then it can be found to be highly significant even in a study based on a very 

small sample. 

In the case of genetic analyses on high dimensional GWAS, the number of predictor 

variables is very high (on the dataset used to evaluate the performance of this system 

550,000). However, the number of samples (in this case subjects) is comparably small 
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(roughly 2000). This is due, in one hand the difficulty of finding criteria matching 

cases of a disease under study and second on the large cost of associated with finding, 

evaluating, collecting data and consent forms from large sample populations. To make 

matters even worse, it is commonly believed that the current classification of most 

diseases is likely to have multiple different genetic factors contributing to them. In 

terms of the biological mechanisms involved there may be completely different 

genetic mechanisms involved that exhibit the same phenotypes and were thus 

classified together as a single disease. This reduces further the statistical power of 

detecting such effects in GWAS but it also provides a good argument for the analyses 

of disease subtypes [50]. 

2.2.5 Main effect 

In the design of experiments and analysis of variance, a main effect is the effect of an 

independent variable on a dependent variable averaging across the levels of any other 

independent variables [51]. The term is frequently used in the context of factorial 

designs and regression models to distinguish main effects from interaction effects. 

2.2.6 Epistasis  

In genetics, epistasis is the phenomenon where the effects of one gene are modified by 

one or several other genes, which are sometimes called modifier genes. The gene 

whose phenotype is expressed is called epistatic, while the phenotype altered or 

suppressed is called hypostatic. Epistasis can be contrasted with dominance, which is 

an interaction between alleles at the same gene locus.  

In general, the fitness increment of any one allele depends in a complicated way on 

many other alleles; but, because of the way that the science of population genetics was 

developed, evolutionary scientists tend to think of epistasis as the exception to the rule 
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[3]. In the first models of natural selection devised in the early 20th century, each gene 

was considered to make its own characteristic contribution to fitness, against an 

average background of other genes [1].  

Epistasis and genetic interaction refer to different aspects of the same phenomenon. 

The term epistasis is widely used in population genetics and refers especially to the 

statistical properties of the phenomenon, and does not necessarily imply biochemical 

interaction between gene products. However, in general, epistasis is used to denote the 

departure from “independence” of the effects of different genetic loci. Confusion often 

arises due to the varied interpretation of “independence” between different branches 

of biology. For further discussion of the definitions of epistasis, and the history of 

these definitions, see [3]. For the purposes of this dissertation the term epistasis is 

used to refer to the statistical properties of the phenomenon.  

The presence of epistasis can have important implications for the interpretation of 

statistical models. If two variables of interest interact, the relationship between each of 

the interacting variables and a third “dependent variable” depends on the value of the 

other interacting variable. In practice, this makes it more difficult to predict the 

consequences of changing the value of a variable, particularly if the variables it 

interacts with are hard to measure or difficult to control [5]. 
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Chapter 3  Literature Review 

A detailed review of the areas of research associated with the original contributions of 

this work is presented in this chapter. Existing proposed solutions to these problems 

are identified and described. Performance parameters are identified for every problem 

to enable a structure comparison methodology for the different approaches to 

addressing each problem. The first look is at different ways of encoding GWAS data. 

Then a look at the measures used to quantify epistatic effects. Ways of computing 

contingency tables are looked at followed with literature on significance testing 

through replication. Finally, attempts to address the problem of providing a 2 SNP 

interaction testing  methodology are listed, split into two categories, those that focus 

on utilizing an HPC so that a near exhaustive search can be performed and those that 

rely on data mining techniques to identify significant effects while only spanning a 

small subset of the search space.  

3.1 Data encoding 

When the work for this framework started, the only widely available non proprietary 

format for storing GWAS data was the QTDT MERLIN format [12]. While however 

the work for research and development was taking place another format was 

developed by a different group referred to as PLINK binary format, after the software 

that it was introduced in [13]. Key limitations of the encoding in the PLINK binary 

format were discovered. Therefore through the work proposed in this dissertation an 

alternative format was developed and published. In this section the commonly used 

format introduced in the software MERLIN [12] and the newer binary encoding 
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introduced in PLINK [13] are discussed and in the following chapters a newer 

encoding that was proposed as part of this dissertation is introduced. 

3.1.1 The MERLIN format 

The file format described in MERLIN [12] is the one traditionally used for this type of 

data. It is split into three files: pedigree, map and data files. Pedigree files contain 

phenotypes for discrete and quantitative traits and marker genotypes for a specific 

number of subjects. They are usually white-space delimited files. The first (usually 6) 

columns contain information about the subject (Family ID, Individual ID, Paternal ID, 

Maternal ID, Sex, Phenotype). The combination of the information of each subject 

must be unique. The next columns contain bi-allelic markers; typically SNPs. Marker 

genotypes are encoded as two consecutive integers, one for each allele, or using the 

letters “A”, “C”, “T” and “G”. To denote missing alleles a sentinel value is used, 

typically “0”. An example of a sample ped file is provided in Table 1. It’s worth 

noting that the Merlin format is designed to support pedigree or lineage studies, were 

the subjects included in them are related. All studies relevant to this dissertation are 

case-control though and are designed to exclude related individuals, so each subject is 

from a single family family.  

Map files contain information for each single nucleotide polymorphism. They are used 

to analyze genetic markers into the equivalent pedigree file. Each line per marker 

usually contains 3, 4 or 5 columns (chromosome, SNP identifier, morgans or 

centimorgans and base-pair position). Each column is separated by white space.  

Dat files describe the pedigree file. They include one row per data item in the pedigree 

file, indicating the data type providing a one-word label for each item. 
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Table 1 A sample Merlin format pedigree file 

Family Person Father Mother Gender Disease SNP1 SNP2 ... SNPn 

1 1 0 0 m 1 AT GA ... CG 

2 2 0 0 m 1 00 GA ... CC 

3 3 0 0 f 1 AA AA ... CG 

4 4 0 0 m 1 TT 00 ... GG 

5 5 0 0 f 2 AT GA ... 00 

6 6 0 0 f 2 AA GA ... CC 

 

*0 is used to encode missing data.  
* Disease is given as 1 for controls, 2 for cases 
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3.1.2 PLINK’s Method for binary ped files 

PLINK is an open source program offering a comprehensive range of basic large-scale 

whole genome association analysis methodologies. It has been widely adopted since 

high dimensionality GWAS have become available as it enables researchers to 

efficiently analyze these large datasets in a computationally efficient manner.   

In PLINK there is an encoding format for transforming QTDT MERLIN data into 

binary formatted files. The approaches used in PLINK uses 2 bits for encoding bi-

allelic markers with 4 possible states. PLINK uses the encoding for each genotype 

given in [13]. 

Testing on PLINK binary format showed that the exported binary file was 15 times 

smaller than the original file. The drawback however is that encoding of the 

heterozygote allele is the same regardless of what strand it’s actually derived from. 

Therefore any analyses that rely on the sequence of the alleles on the strand will be 

missing this information.  

One analysis technique that needs the lost information is imputation.  Imputation 

analysis is the practice of “filling in” missing data with plausible values. It is a method 

for uncovering the genetic basis of human disease and it is used for inferring 

genotypes at observed or unobserved SNPs that can detect causal variants that have 

not been directly genotyped [9]. It is in essence an in-silico approach to discover the 

probability of the existence of a specific genotype for loci that haven’t been directly 

genotyped but are known to be in LD with genotyped markers. 
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Table 2 PLINK binary format data encoding [13,52] 

Allele On Strand + Allele On Strand - Marker Encoding 

A A 00 

A 

a 

a 

A 01 

A a 11 

Missing Data  Missing Data 10 
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3.2 Measures of epistasis 

The gold standard for a statistic that measures the epistatic effect is regression 

analysis. Since in this dissertation the focus is on categorical response variables, the 

gold standard used will be logistic regression. There are two different measures that 

researchers are most interested in. These are testing for interaction between two 

factors, and test for association allowing for interactions [3,8,26,32]. In this research 

work, the proposed test for interaction is referred to as the epistasis test, while the 

omnibus test falls in the category of tests for association allowing for interaction. The 

difference is that epistasis only measures the interaction between the two SNPs, while 

the omnibus effect represents the combined effect of the main effects of the SNPs and 

the epistatic effect itself. Logistic regression can be used to derive both a test of 

interaction as well as a test allowing for interaction, thus it traditionally forms the 

standard by which to benchmark any new proposed methodologies [32]. 

 However, logistic regression is computationally demanding. In order to develop any 

methodology that attempts to perform testing at the whole genome scan level even on 

a relatively small subset of SNPs faster measures are needed [32,53]. Thus some 

alternatives to logistic regression have been introduced. All of the proposed 

methodologies are compared to logistic regression. Similarly in this dissertation the 

proposed methodology will be compared with logistic regression as well. 

Table 3 gives an overview of each of the proposed methods in the literature for 

performing a two SNP interaction test,. The table indicates for each test the following: 

 Epistasis test: Does the method provide a statistic measure of the interaction 

between the two SNPs (epistatic effect). 
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 Allowing for epistasis test: Does the method provide a statistic measure of 

association between two SNPs allowing for the epistasis test, that is a test of 

the two main effects and the interaction between them combined as in the 

omnibus test proposed in this dissertation. 

 Response variable: List of all possible types of response variables the method 

can analyze. Some methods such as regression can analyze more than one type 

of response variable (i.e. logistic regression tests for categorical response 

variables and linear regression for continuous response variables). 

 Adjustment of covariates: Occasionally, a known bias may exist in a dataset, 

or it may be thought to exist. Adjusting by covariates removes this bias from 

the test performed.  

 Marker type: In genetics there are two possible ways to consider SNP data. 

The first is the allelic approach, where each allele is scored independently, and 

the second is the genotypic approach where each genotype, that is the alleles 

on both strands for a specific SNP is considered.  

 Tested on real data: Has the measure being tested on real data in a peer 

reviewed publication providing evidence to its performance.  

 Replicated Result: Has an analysis applying the specific measure produced 

replicated statistically significant results in independent datasets.  

 Bias: Are there any known biases in the proposed measure that may affect it’s 

accuracy.  

 Results interpretation: How are the results interpreted. The preferred 

interpretation is as the probability of getting the same result as a false positive 

(p-value). 
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 Computational requirements: The computational requirements of each method 

are ranked as high, medium or low based on published reviews of the methods.  

 References: A list of references related to each method, either publications 

introducing or reviewing the methods. 

 

 

 



50 
 

Table 3 Comparison of existing measures of epistasis using statistical or data mining approaches 

 

*MAF= minor allele frequency 

*LD= Linkage Disequilibrium 

 

Measures 
Epistasis 

test 

Allow 

for 

epistasis 

tests 

Response 

variable 

Adjustment 

by 

covariates 

Marker 

type 

Tested 

on real 

data 

Replicated 

results 
Bias 

Result 

interpretation 
Scalability References 

Regression 

analyses 
Yes Yes 

Categorical, 

linear 
Yes 

Genotypic 

Allelic 
Yes Yes 

*LD, in some 

cases 
p-values Low [13,54,55] 

Odds ratio 

Multiplicativ

e Interaction 

Yes No Binary No Allelic Yes No 

*LD, *MAF, 

size of dataset, 

Heterozygote 

effects 

Approximated 

p-values 
High [3,32,56] 

Case only 

analysis (χ
2
 

Yes No Categorical No Genotypic Yes No 
Non linkage 

equilibrium 
p-values, High [13,32] 

Recursive 

Partitioning 
No Yes Categorical No 

Genotypic 

Allelic 
Yes No 

*LD, main 

effects 

None, requires 

follow-up 

analyses 

Medium, 

parameter 

dependant 

[32,57,58] 

Multi-

dimensionali

ty reduction 

(MDR) 

No Yes Categorical Yes 
Genotypic 

Allelic 
Yes No 

*LD, main 

effects 

None, requires 

follow-up 

analyses 

Low [59,60] 
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3.2.1 Logistic regression  

The standard widely accepted measure of the effect of one or more terms in a 

regression model is provided by comparing the deviances obtained from fitting the 

model with and without the term(s) in question [55]. By using regression analysis, an 

allelic or genotypic test can be performed. Linear regression analyses can be used to 

perform interaction testing with continuous response variables rather than categorical. 

Implementations of epistasis test using logistic and linear regression models are 

available in the genetic analysis software PLINK [13] and are widely used [3,8,16,32]. 

This PhD dissertation is focused on categorical response variables and genotypic 

testing, therefore in order to provide a fair comparison between the proposed method 

and logistic regression the corresponding model of logistic regression for genotypic 

analysis of interaction is defined in the methods chapter, and implemented in R a 

statistical package [61].  

3.2.2 Odds ratio multiplicative interaction measure 

As a faster alternative to logistic regression, another measure of interaction for 

epistasis testing sometimes used is an odds ratio multiplicative interaction measure 

[13]. A recent publication [40] also proposed a new methodology for interaction 

testing that draws similarities to this measure. In that work, both a genetic and an 

allelic model of interaction testing based on odds ratio multiplicative interaction 

measure were presented and compared to a proposed pseudo-haplotype based measure 

[40]. They tested their hypothesis by analyzing GWAS in two independent datasets; 

however, they were not able to perform all possible two SNP interactions as in the 

proposed methodology in this dissertation. They cited the extreme computational 

complexity of the problem as the reason for that, although they do indicate it as their 
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future work goal to perform a complete test. They used a heuristic to limit the number 

of SNPs to those that were on genes reported to be involved in a total of 501 

assembled pathways generated by a simple computational approach to reduce the 

number of interactions to test, as well as to increase the likelihood that any results 

found would be in genes involved in pathways of interest. Although they report 

discovering replicated results, these are only evident after they completely analyzed 

both datasets and compared the top results of both analyses. Since this involves the 

creation of two large lists of top results and the testing for overlap between them, it’s 

not clear if the number they get as overlapping deviates significantly from what you 

would expect from a random association or not. An examination of the reported 

replicated interactions for evidence from the literature for their association to the 

disease is attempted in order to improve the confidence in the findings, however, since 

they limited the SNPs they tested by selecting pathways known to be associated with 

the diseases, it’s expected that any false positive results would also be associated with 

the disease. The conclusion reported in this paper is that further research needs to be 

conducted, so that complete two SNP interaction testing is possible in a GWAS.  

3.2.3 Case only analysis with chi-square 

Another proposed way of performing epistasis testing is through a simple association 

test between two markers performed in just the cases, under the assumption of linkage 

equilibrium [32,53]. In theoretical terms, this analysis carries more statistical power, 

but it’s this assumption of linkage equilibriums that doesn’t hold in real data that 

provides that additional statistical power [32]. This approach can easily be extended to 

perform either genotypic analyses or allelic. In genotypic analyses a contingency table 

with size 3*3 will be created with the first SNP having its three genotypes on each of 
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the three columns, while the second SNP’s genotypes will be represented in the rows. 

An allelic test follows a similar approach with a 2 by 2 contingency tables where the 

two alleles of each SNP are represented similarly in the corresponding rows and 

columns. A chi-square statistic or any other test for association applicable to a 

contingency table can reveal the level of association between the two SNPs.  

This approach assumes non independence between LD, much like all other analyses 

presented on Table 3. 

However, this method is affected to a considerably greater degree by non 

independence between markers. The test itself is a test of dependence, and the 

assumption here is that if there is dependence since there is an assumption of linkage 

equilibrium then that dependence must be caused by an epistatic effect associated with 

the disease the cases are subject to. This is not the case, even if two SNPs are on 

different chromosomes; they may still not be in linkage equilibrium. As an example, 

consider a case where two genetic locations do interact and polymorphisms 

combinations within these locations cause the subject’s probability to reproduce to be 

significantly reduced compared to those with different genotypes at those locations. 

The two regions are not in equilibrium since less of the subjects would be expected 

with those specific rare polymorphisms. Thus in this analytical approach, those two 

polymorphisms will be reported as epistatic effects for the disease the cases were 

taken from, even though they may have nothing to do with the disease, and the 

frequencies of those two polymorphisms even though not in equilibrium would be 

very similar to a matching control population.  

An implementation of this approach is presented in PLINK [13] called, case-only 

analysis. In an attempt to reduce the probability of having markers tested together for 

epistasis that are in LD, only tests on markers over a certain distance on the genome 
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are tested, however reviews of this method using real data revealed that the 

statistically significant results can be driven by non linkage equilibrium rather than 

true epistasis associated with the disease.  

3.3 Computing multidimensional contingency 

tables  

Often, data derived from natural sciences, fields that use a scientific method to study 

nature, come in the form of multidimensional tables of counts, referred to as 

contingency tables [62]. Generating contingency tables is a known P hard Problem 

[17]. The classic  problem that scientists have worked on over the years has been how 

to compute the expected cell counts for the different statistical models used in 

analyzing contingency tables efficiently with an acceptable accuracy. In this work 

however, effort was placed in avoiding any methodology that diluted information 

derived from the already weak in terms of statistical power analysis of two SNP 

interaction testing in GWAS. Therefore, when computing multidimensional 

contingency tables, focus was placed on efficiently computing the tables with no 

statistical power loss. In order to do this we focused on the need to count multiple 

contingency tables for different response variables [1,16,41].  

3.3.1 The classical data driven approach 

  Traditionally, when there is a need to count a multidimensional contingency table, 

the standard approach is to go through the data of each subject, and increment the 

count of the contingency table cell he belonged to. A complete pass through all the 

subjects will generate a contingency table for a response variable. However, as is 

often the case in analyzing data derived from natural science studies, there’s more 
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than one response variable that is of interest. In current analytical frameworks of 

GWAS, hypothesis testing is grouped into response variables. The analysis of all 

hypothesis tests relating to a response variable is performed through a single pass of 

the dataset as presented in the form of pseudo code in Figure 4. However, when more 

than one response variable is involved in the hypothesis to be tested the process needs 

to be repeated, resulting in at least as many passes through the data as there are 

response variables.  

Algorithm: Compute Contingency table  
Input: 

 SNP1 genotypes for all subjects 

 SNP2 genotypes for all subjects 

 Array of response variables for all subjects 
 

Output: 

 3dTable: a four dimensional table with all contingency tables in it scored  
 
Description: This function passes through all the subjects in the dataset once and scores 
based on the 2 inputted SNPs genotypes each of the contingency tables in the 3d matrix.   
 
 

1   FOR  all Subjects 
a. Z=ResponseVeriableCategory(Subject)  
b. X=SNP1genotype(Subject) 
c. Y=SNP2genotype(Subject) 
d. 3dTable(Z,X,Y)++;  

 

Figure 4 Computing contingency tables, the traditional approach 

3.3.2 The random walk approach, monte carlo sampling 

Random walk approaches have been tested for this problem [17,19]. The basic 

concept behind all random walk approaches, is that a subset of the population can be 

counted that is sufficiently large to get an acceptable estimate of the actual count, had 

a complete count of the data taken place. The second type of random walk approaches, 

are not done to increase the computational efficiency, but to increase the statistical 

power. A recent example is the use of monte carlo sampling methods using Markov 

chains as presented in [18]. Neither of these methods however has gained popularity, 

mostly because they only provide a linear improvement in time based at a cost of not 
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testing the entire dataset. Since lack of statistical power is a key problem in this type 

of analysis, counting all subjects in the contingency tables takes priority over any 

method that only provides a linear increase in computational performance. 

3.4 Evaluation of significance through replication 

Replication testing is the cornerstone of evaluation of any finding in genetics 

[11,27,29,32,63]. Many reported strong genetic associations that made sense based on 

the knowledge of the relation of the underlying gene and the disease it was tested for 

were reported from a single study, but later failed to replicate in follow up analyses of 

independent datasets [29,27]. Even though failure to replicate doesn’t necessary mean 

that the result is not a true positive as it could in theory be an effect with higher 

frequency in the population under study and therefore with more power of detection in 

that study. Generally, if a genetic marker is reported to have an association to 

phenotype in a single study if it’s not replicated in an independent dataset it is not 

considered robust. 

Replication testing methods can be split into two parts, the first being the verification 

of the effect size. This is easily performed by repeating the analyses with the same 

parameters in an independent dataset. However, even if there is statistical significance 

in both datasets, this may still be a false positive result if the distribution of the effect 

among the genetic markers categories is not the same between the two datasets. The 

next step is to try to acquire more confidence in the finding by examining if the effect 

is distributed similarly between all genotype combinations in both datasets. There are 

two ways to do this, merging the dataset and repeating the test, or examining the 

distribution of the effect across each of the genotype combinations. 
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3.4.1 Combine GWAS and repeat analyses 

 Traditionally to get a more statistical power in an analysis, the independent datasets 

are combined and the analysis is repeated in the resulting dataset that is larger since 

it’s an overset of the two dataset. The generated statistic will have considerably more 

statistical power since the sample size now is the combined of the two datasets, and if 

the effect carrying genotype combinations are matched in direction the resulting p-

value should be stronger than either of the two independent datasets. If it is not, then 

the replication success itself is not considered proof of validity of the result. Even if 

the p-value of the combined dataset is statistically significant though, this does not 

necessarily mean that all genotype combinations carried the same signal in both 

datasets. It just indicates that the ones that did combined with the increased number of 

subjects and the resulting increase in power, provided stronger evidence for the effect.  

3.4.2 Examine the distribution of effects across the genotype 

combinations  

The second way of examining if the replication across two independent dataset was 

successful is to study the distribution of each effect among each of the genotypes in 

cases and controls in the two datasets. Assuming that the result is a true positive then 

the effect size should be similar in both dataset for all genotype + response variable 

combinations. In Univariate allelic analysis the odds ratios are used to study this for 

the main effect. However, simple odds ratios can’t be used in the case of interaction 

testing since there are four degrees of freedom in Epistatic test, and 8 in the Omnibus 

test, and odds ratio’s can be generated only when there are 2 degrees of freedom.  
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The information generated by examining the distribution of effects to the genotypes, is 

interesting to the interpretation of the results as well, as it will identify the key 

conditions that are associated with differences in disease predisposition. 

 

3.5 Analytical frameworks for gene-gene 

interaction testing using GWAS data 

Any solution to two SNP interaction problems in GWAS would need to address the 

problem of the high demand for computing requirements. Thus different researchers 

have attempted different approaches to this problem. In this section the most notable 

of these approaches will be presented so that they can in later sections be compared to 

and discussed in comparison to the proposed framework. Priority was given in 

approaches that attempted to perform exhaustive search, such as in the proposed 

framework, or near exhaustive search.  

Table 5 provides an overview of the methods. These methods can be split into two 

broad categories, ones that rely on HPC computing resources to perform either 

exhaustive search, or near exhaustive search, and the second category is based on 

machine learning, or data mining techniques, that are attempting to identify effects of 

interest by going through only a small part of the search space. Finally, as part of this 

section, the two traditional techniques for filtering the data are explained, the 

candidate gene approach, and the main effect significance approach.  
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3.5.1 Two SNP interaction testing using HPC  

3.5.1.1 Cluster HPC 

 

In Marchini et al [54] highlighted the importance and feasibility of fitting interaction 

models using GWAS data. In that study a 10 node computing cluster was used to 

perform all pair-wise tests of association allowing for interaction on a simulated 

dataset of 300,000 loci in 1,000 cases and 1,000 controls. He quoted a time of 33 

hours on that specific system. The PLINK web site [13], quotes 24 hours to test all 

pair-wise interactions at 1,000,000 loci with 500 subjects although it doesn’t clarify 

what machine they used to verify this and their results are based on estimations using 

odds ratio interaction analyses that they recommend that they are validated trough 

follow up analyses with logistic regression.  

It needs to be kept in mind when considering these numbers that the typical 

association study performed today can have 500,000 or even 1,000,00 markers using 

today’s genotyping technology. And in the near future even higher dimensionality 

genotyping platforms are expected. In order to provide a level field for comparing the 

proposed methodology to the ones already conducted we estimate the runtime of each 

of the analyses if they had used the same dataset as the primary dataset used in this 

work that is composed of 550,000 SNPs with 1,000 case and 1,000 control subjects. 

The estimation is easy since the number of subjects (s) provides a linear change in 

time, and the number of SNPs (n) increases the number of pair wise combinations to 

test by: 

s
nn




2

)1(
  

Based on this estimation, the Marchini et al approach on the same hardware 10 node 

clusters would take 4.62 days. While the PLINK approach would take 166.28 days. 
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Obviously, it would be best if all approaches could be tested on the same hardware 

using the same dataset with possibility of replication. But as described in 0 the 

proposed framework includes a custom hybrid cluster-cloud high performance 

computing platform.  

3.5.1.2 GBOOST: a GPU-based tool for detecting gene-gene interactions in 

genome-wide case control studies 

 

GBOOST is an implementation of BOOST algorithm on a GPU (graphics processing 

chip) [56,64]. It’s based on the Compute Unified Device Architecture runtime 

application programming interface (CUDA) [65]. GBOOST is reported as having a 40 

fold performance improvement over BOOST’s x86 implementation [64] (Table 4). 

 The statistical measure used as described is a derivative of logistic regression but with 

computational optimizations based on the Kirkwood superposition approximation [66] 

is one that attempts to perform a filtering based on the probability of a SNP pair to be 

significant. However, no definitive evidence is provided as to the efficiency of this 

filtering scheme understandably so since a true complete two SNP interaction would 

need to be performed to provide that information. Furthermore, the Kirkwood 

approximation that this approach is based on does not generally produce a valid 

probability distribution (the normalization condition is violated). Watanabe [67] 

claims that for this reason informational expressions of this type are not meaningful, 

and indeed there has been very little written about the properties of this measure.  

The computational performance of BOOST was compared to PLINK in [64]. Results 

are shown in Table 4. 
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___________________________________________________________________________ 

Table 4 Reported time comparisons between PLINK BOOST and GBOOST 

Number of SNPs 
Number of 

Subjects 

PLINK 

(3GHz CPU) 

BOOST 

(3GHz CPU) 

GBOOST 

NIVIDIA 

GTX285 

1,000 5,000 106s <2s  

5,000 5,000 2,703s 42s 1.04s 

10,000 5,000 10,915s 170s 4.11s 

351,542 5,003  60h 1.34h 

These times were taken from [56].  

PLINK is tested with the fast epistasis option (odds ratio based interaction test, not 

regression). 

 The reported times are based on a 3.0GHz CPU with 4Gbytes memory running Windows XP 

pro for BOOST and PLINK while for the GBOOST test an NIVIDIA GTX285 graphics card was 

used [64]. 

Xiang Wan et al., “BOOST: A Fast Approach to Detecting Gene-Gene Interactions in Genome-

wide Case-Control Studies,” The American Journal of Human Genetics (AJHG), vol. 87, no. 3, 

pp. 325-340, September 2010. 

Ling Sing Yung, Can Yang, Xiang Wan, and Weichuan Yu, “GBOOST: a GPU based tool for 

detecting gene-gene interactions in genome-wide case control studies.,” Bioinformatics, vol. 

27, no. 9, pp. 1309-1310, May 2011. 
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3.5.2 Data mining methods 

Dealing with high dimensional data, and non-linear models using regression-based 

methods is often criticized when the data is expected to contain many interacting 

predictor variables resulting in sparse contingency tables (with many empty cells, or 

with cells with less than 5 counts) [68,69,70].  Data mining and machine learning 

methods have been applied as an alternative. These approaches do not attempt to fit a 

single pre-specified statistical model nor do they attempt an exhaustive search. They 

focus on stepping through the search space of possible models, not necessarily 

limiting to two SNP interactions but rather allowing for multi-way interactions. The 

goal is to identify the model that best fits the data in a computationally efficient 

manner. Based on this, in a review of methods for detecting gene-gene interactions in 

[32] Cordell argues, the distinction that is often made between data-mining and 

regression models is to some extend false. McKinney et al [69] provided a good 

overview of the most prominent machine-learning approaches for detecting gene-gene 

interaction. In the next few sections focus is given on approaches that have been 

applied to real data providing good performance indicators as to the validity of their 

results. 

3.5.2.1 Recursive partitioning  

 

Classification and regression trees are the basis of recursive partitioning approaches 

[58]. Trees are constructed based on rules that determine how well a split at a node (in 

this case representing SNP genotypes, or environmental factors) can differentiate 

observations with respect to the response variable. The traditional splitting rule is to 

use the variable that maximizes the reduction in a quantity known as the Gini impurity 

at each node [58]. Nodes are recursively split until either some preset stopping criteria 
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are met (such as the max number of SNPs involved in a rule) or if no further gain can 

be made (if all terminal nodes contain only cases or only controls). An example of the 

recursive partitioning approach steps is given in Figure 5. 

Recursive Partitioning approaches do not test for interactions; rather they test for 

association allowing for interactions by computing paths through the tree that 

correspond to strong associations to the disease. Since however, recursive partitioning 

approaches at the very first stage, are relying on the main effect of SNPs to pick the 

first node to split, the likelihood of finding pure interactions in the absence of main 

effects can be missed [71].  

In Figure 5, SNP 3 maximizes the reduction in the Gini impurity at the first node and 

is therefore chosen for splitting (according to the genotype at SNP 3) the original data 

set of 1,000 cases and 1,000 controls into two smaller data sets. Once a node is split, 

the same logic is applied to each child node (hence the recursive nature of the 

procedure). The splitting procedure stops when no further gain can be made (for 

example, when all terminal nodes contain only cases or only controls, or when all 

possible SNPs have been included in a branch) or when some preset stopping rules are 

met. At this stage, it is usual to prune the tree back (that is, to remove some of the later 

splits or branches) according to certain rules to avoid over fitting and to produce a 

final more parsimonious model [32]. 

 

  



64 
 

___________________________________________________________________________ 

 

Figure 5 Recursive partitioning approach example 

Heather J Cordell, “Detecting gene-gene interactions that underlie human diseases,” 

Nature Reviews Genetics, vol. 10, no. 6, pp. 392-404, June 2009. 

___________________________________________________________________________ 
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3.5.2.2 Recursive partitioning with ensemble of trees (forest) 

 

Substantial improvements in classification accuracy have been observed by growing 

an ensemble of trees rather than a single tree. A popular approach is the random forest 

approach which has been used in genetic studies [72,73]. In this type of analyses  

improvements in classification accuracy compared to the recursive partitioning 

approach of a single tree can be achieved by growing an ensemble of trees and letting 

them ‘vote’ for the most popular outcome class.  

The most widely used ensemble tree approach is probably the random forests method 

[32,57]. A random forest is constructed by drawing with replacement several 

bootstrap samples of the same size (for example, the same number of cases and 

controls) from the original sample. An un-pruned classification tree is grown for each 

bootstrap sample, but with the restriction that at each node, rather than considering all 

possible predictor variables, only a random subset of the possible predictor variables 

is considered. This procedure results in a ‘forest’ of trees, each of which will have 

been trained on a particular bootstrap sample of observations. The observations that 

were not used for growing a particular tree can be used as ‘out-of-bag’ instances to 

estimate the prediction error. The out-of-bag observations can also be used to estimate 

variable importance in different ways including through use of a permutation 

procedure [32,69].  

A key aspect of this approach is that there is no clear model identifying predictors 

either as associated or interacting. Therefore a follow up approach is required to 

actually test the important predictors output by the random forest approach. However, 

since the number of predictor variables (SNP) is small any method for testing for 

interaction or allowing for interaction can be applied without limitations in terms of 

computational complexity.  
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3.5.2.3 Multifactor dimensionality reduction 

 

Multifactor dimensionality reduction (MDR) seeks to identify combinations of loci 

that influence a disease outcome in a way that would classify it as a test allowing for 

interaction rather than discovering pure interactions. MDR reduces the number of 

dimensions by converting a high dimensional multi locus model to a one-dimensional 

model, thus avoiding the issues of empty or small count contingency table cells.  

The main problem with MDR, as with other exhaustive search techniques, is that it 

does not scale up to allow analysis of large numbers of SNPs. If an exhaustive search 

for the best n-locus combination (within each of ten cross-validation replicates) is 

performed, anything more than a two-locus screen on more than a few hundred 

variables will be computationally prohibitive [32]. For investigation of higher-order 

interactions, MDR is therefore perhaps best suited for use with small numbers of loci 

(up to a few hundred), which have perhaps been identified through some sort of 

informed filtering step. 

MDR’s output is a classification of genotypic classes as either high risk or low risk 

according to the ratio of cases and controls in each class. This approach is considered 

overly simplistic, and improvements that embed a more traditional regression-based 

approach allowing application of the method to continuous as well as binary traits and 

adjustment for covariates, have been proposed [74]. However these make the 

algorithm even slower increasing the problem of scalability.  

MDR has been used to identify potential interacting loci in several GWAS, including 

breast cancer, type 2 diabetes, rheumatoid arthritis and coronary artery disease, 

although to date it is unclear whether any of these identified interactions have been 

replicated in larger samples [32]. 
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3.5.3 Filtering approaches 

Since in all of the methods mentioned above, computational complexity is a major 

issue, one of the classic ways of enabling testing for two SNP interactions in available 

computational resources was to limit the search space. Filtering of the number of 

SNPs is the most obvious choice, due to the exponential growth of the search space 

based on the number of SNPs. The first and most common perhaps approach to 

filtering the number of SNPs was actually derived from the early approach of 

identifying what SNPs to genotype. Before high dimensional GWAS studies were able 

to genotype hundreds of thousands of SNPs at a time at low cost the typical approach 

to identify key SNPs to genotype was through candidate gene studies [75,76]. The 

methodology of filtering to a small number of SNPs in candidate gene studies relies 

on identifying genes, or regions in the genome that are thought to be associated with a 

disease. These are typically identified through an extensive literature review of the 

functional biological and genetic knowledge of the disease. Then once all regions of 

interest are identified tagging SNPs within them would be computed. Tagging SNPs 

are SNPs that are estimated through their LD in the general population to represent the 

majority of polymorphisms within their LD region. A common framework for 

identifying tagging SNPs in multiple populations and regions was provided through 

HapMap [36]. This approach however, limited the search to regions of known interest; 

as a result, it was impossible to identify effects that involved regions outside the 

candidate gene regions. Also, another negative effect that emerged with these 

candidate gene approaches was that once the analysis was complete, no matter what 

the top result was, it was certain to have some association with the disease, as that was 

the inclusion criteria in the study. Therefore, the opportunity of looking for replicated 
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information discovery from other types of experiments relating top results with the 

disease was lost.  

Another typical methodology for filtering of SNPs is to use the univariate analysis 

results to limit the number of SNPs to include in the analyses. In this approach, the 

main effect of each SNP in the GWAS is calculated, and then only SNPs that pass a 

preset threshold of main effect are included in the interaction tests. However, this 

approach will not test pairs of SNPs where one or both of the SNPs have no or very 

low detectable main effect in that specific study. There’s no reason to believe that 

SNPs with low or main effects won’t be involved in epistatic effects.  
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Table 5 Two SNP interaction testing frameworks 

Multi-locus 

Interaction 

testing 

framework 

Computing 

Platform 
HPC Scalable Measures 

Largest 

number of 

tests recorded 

Deterministic Accessibility 
Tested on 

Real data 

Replicated 

statistical 

significance 

References 

Simple 

exhaustive 

search Marchini 

et al 

10 node cluster Yes 

Simple 

association test 

allowing for 

interaction 

300k SNPs 

2000 subjects 
Yes Low No No [54] 

BOOST 
Single core x86 

cpu 
No 

Odds ratio 

based 

interaction 

measure 

351k SNPs 

5000 subjects 
Yes High Yes No [56] 

GBOOST GPU 
Limited 

Scalability 

Binary odds 

ratio based 

interaction 

measure 

351k k SNPs 

5000 subjects 
Yes High Yes No [64] 

Recursive 

Partitioning 

(Tree)  

Symmetric 

multiprocessing 

under 

development 

No 

Follow up 

analyses 

necessary to 

provide 

interpretable 

measure 

Limited to 

only a few 

dozen SNPs 

Depends on 

parameters. 

High for small 

number of tests 
Yes No [58] 

Random Forest 

Symmetric 

multiprocessing, 

in theory HPC 

compatible with 

many 

architectures 

No 

Follow up 

analyses 

necessary to 

provide 

interpretable 

measure 

Limited to 

only a few 

dozen SNPs 

No 
High for small 

number of tests 
Yes No [57] 
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Chapter 4  Two SNP Interaction Framework  

This section describes the methodology of the proposed framework and its evaluation.  

The first section describes the functional requirements that were defined following the 

initial literature review for this work. The algorithmic approach for each original 

contribution is then presented beginning with data encoding that enables lossless data 

size reduction. Then, the proposed statistical measures for testing and allowing for 

epistasis are presented, followed by an algorithm that improves computational 

efficiency when calculating multidimensional contingency tables in a four-

dimensional scoring matrix. An a-priory definition of the steps to verify the 

replicability of the results is also provided. Next an algorithm is proposed that enables 

the use of two independent HPC resources with different architectures in a way that 

significantly improves computational efficiency compared to using either HPC alone. 

Finally, the complete proposed framework for two SNP interaction testing is outlined 

in its entirety. 

4.1 Functional requirements 

Through the literature review it became evident that the following functional 

requirements are the most essential in any new methodology for multi-locus analyses 

to be widely adopted. Identifying and categorizing them helps in both providing the 

structure when presenting the methodology in this section as well as it helps with the 

evaluation of the proposed methodology in the chapters to follow.  

1. Algorithmic 

1.1. Deterministic methodology: Needs to be a deterministic methodology that 

will always produce the same results in the same dataset. 
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1.2. Dimensionality scalability: It should be capable of running GWAS of at least 

500,000 SNPs utilizing existing computational infrastructure and it should be 

capable of scaling up. 

1.3. Avoidance of locus inclusion criteria bias: Quick heuristics that rely on the 

main effects of loci to determine if they will be included in the multi-locus 

analyses should be avoided as this is contradictory to biological knowledge.  

2. Statistical Genetics 

2.1. Capability to test for the epistatic as well as the omnibus effect. 

2.2. Heterogeneity: Any effect of heterogeneity in the data such as linkage 

disequilibrium should be identified and accompanied with ways of detecting 

heterogeneity biased results.  

2.3. Feature bias: The statistical measures used should not be biased towards any 

features of a locus such as the minor allele frequency.  

3. Replication Testing 

3.1. Availability: Repeating the analyses in a possible future replication database 

should be possible.  

3.2. Exploration: The results produced by the method need to be presented in a 

user-friendly, familiar, and highly scalable environment that enables querying 

and visualization.  

 

4.2 Data encoding 

When designing the encoding of the data, focus was given to providing an encoding 

that doesn’t reduce the amount of information in the data in any way. This would 

enable backing up the data in this encoded format and keeping it in the HCC-HPC 

after the analyses. This would also enable the performance improvement of future 
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analyses of any other type that uses the same encoding since if the analysis is 

performed on the same distributed high performance computing resources the data 

transfer of the data to nodes will be significantly reduced. Performance improvement 

of future analyses is only applicable when the data remains on the nodes and some of 

the same nodes are available for the analyses however.  

Since some analyses such as imputation (a type of statistical analyses aimed at 

substituting missing values with ones estimated in-silico based on LD of the missing 

data with existing ones for every subject) requires knowledge of which strand the 

alleles of heterozygote SNPs exist on, we need to encode each allele on each strand 

separately for all cases. There are a minimum of three states each allele can be in, 

these include the two possible nucleotides (commonly denoted as A and a) as well as 

the possibility of missing data at that location. The smallest number of bits that can 

encode the 3 states of an allele is 2, however with 2 bits we can actually encode a 

fourth state. In many existing studies this may not be used, even though it will have no 

impact on the capacity requirements the databases will have for storage. However, we 

propose that the fourth state is set to denote markers that are in deleted regions. This 

utilizes the extra available coding to identify a deleted allele from a missing allele due 

to quality control concerns, or genotyping error when that information is available. 

This proposed encoding was peer-reviewed and published in [52].  

An analytical technique that enables the detection of these deletions that has started 

being applied is copy number variants (CNV) analyses. It refers to the genetic trait of 

differences in the number of copies of a particular region (for example a gene) present 

in the genome of an individual [10, 11]. To perform CNV analyses most algorithms 

rely on raw data from the genotyping platform. CNV algorithms are able to detect 
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deletion regions as well as regions that are duplicated that may exist in some 

individual’s strands. 

However it should be clearly noted that CNV incorporates more information than just 

deleted regions. It can also detect regions that exist in more than one copy per strand. 

This information is not reflected in the proposed protocol; therefore methodologies 

that use this information would still rely on an external file for that information. 

In the proposed format the data are structured as a two dimensional vector of alleles. 

The first dimension’s size is equal to the number of strands the subject has. Typically 

in humans all chromosomes have two strands with the exception of X and Y 

chromosomes in males that each have 1 strand. In these cases a second strand can 

exist listing the alleles of the second strand on males as missing [52]. 

Each element in the vector of each strand will encode an allele on a single strand. The 

allele will be 2 bits long enabling encoding of a total of four states per allele missing 

data, nucleotide 1, nucleotide 2 or deleted. Table 6 presents the four different states 

that can be coded per allele. The term “Unknown” is used rather than the more typical 

“missing” to denote alleles that it’s unclear what their genotypes are or if they are 

deleted so as not to confuse it with the deleted state that defines alleles that do not 

exist on that strand. 

The two strands in each Subject’s vector need to be perfectly aligned, that is, the i th 

element of each vector will point to the same marker’s alleles one for each strand. To 

access the i’th marker’s alleles the two bits at position i in each strand will carry a 

total of 4 bits, using the encoding column of Table 3. To access the i’th marker’s 

alleles the two bits at position i in each strand will carry a total of 4 bits, using the 

encoding column of Table 3 as shown in Table 7. 
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Table 6 Proposed allelic Encoding  

Allele Encoding 

Unknown 00 

A 01 

a 10 

Deleted 11 

 

Table 7 Proposed SNP genotype encoding 

Allele 1 Allele 2 Encoding 

Unknown Unknown 0000 

Unknown A 0001 

Unknown a 0010 

Unknown Deleted 0011 

A Unknown 0100 

A A 0101 

A a 0110 

A Deleted 0111 

a Unknown 1000 

a A 1001 

a a 1010 

a Deleted 1011 

Deleted Unknown 1100 

Deleted A 1101 

Deleted a 1110 

Deleted Deleted 1111 
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4.3 Measure of epistasis 

In order to provide a fair comparison between the proposed and traditional approaches 

to interaction testing, all test statistics need to be testing identical hypothesis as the 

proposed measures. Thus the statistical model used in the logistic regression analyses 

needs to be defined to match the test proposed. In PLINK, although a logistic 

regression measure is proposed, it is based on an allelic analyses, however this 

dissertation work has focused on a slightly more complex and perhaps closer to 

biological reality genotypic model, thus it needs to be defined.  

The input to both the proposed and the test statistic are the contingency table for the 

tests. In the case of the main effect, a two dimensional contingency table made up of 

categories of the response variable as rows and the three possible genotypes of the 

SNP tested as columns. In Table 8 the subject type phenotype that defines if a subject 

is a case or a control is used as the response variable. The number of columns will 

always be three in this type of analyses (the number of genotypes of a bi-allelic SNP); 

however the number of rows depends on the number of categories in the response 

variable used. To identify the different counts of the cells the label U is given to 

represent main effect contingency tables.  

Table 8 Contingency table for a single SNP 

 aa aA AA 

Case U00 U01 U02 

Control U10 U11 U12 
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Table 9 is used directly to estimate the omnibus effect by performing a Pearson’s chi 

square statistic analyses. It’s in reality not a two but three dimensional as shown in 

Figure 6, with each SNP taking up its own dimension. When referring to cells on this 

table the letter M will be used. 

 

Table 9 Contingency table for two SNPs (2d representation) and response 

variable disease status 

 aa bb aa Bb aa BB Aa bb Aa bB Aa BB AA bb AA bB AA BB 

Case M000 M001 M002 M010 M011 M012 M020 M021 M022 

Control M100 M101 M102 M110 M111 M112 M120 M121 M122 

 

 

___________________________________________________________________________ 

 

Figure 6 Contingency table for two SNPs (3d representation) and response 

variable disease status 

___________________________________________________________________________ 
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4.3.1 The proposed measure 

The effect of a single marker’s association to a phenotype (main effect) can be 

expressed by the following model [2][47]: 
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log  

where 

 pi = observed proportion of subjects having the ith genotype at Locus A that 

display the phenotype 

  = overall log(probability) that a subject displays the phenotype. 

 i = main effect of the ith genotype at locus A. 

 i = residual effect on the term on the left hand side of the equation (the 

response variable). 

Most current research in genetics is concentrated on this type of effect, testing the 

following null hypothesis: 

H0(1): i = 0 for all i. 

For the purpose of this dissertation study, this hypothesis is tested by the Pearson’s 

chi-square test [77] for association between the row and column classifications in the 

contingency tables presented in Table 8 and Table 9. 

There is a contingency table for each SNP that is used to estimate the Pearson’s chi-

square for the main effect (two degrees of freedom) of each SNP and a contingency 

table for each two SNP combination used to estimate the omnibus effect (eight 

degrees of freedom) with the proposed statistical measure as presented on Table 9. 

However, it is possible to extend this model to represent the combined effect of two 

SNPs on the phenotype, interpreted in terms of the main effect of the first SNP, the 
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main effect of the second SNP, and the interaction between the two. The extended 

model proposed in this study can be represented as follows: 

  ijijji
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where 

 pij = observed proportion of subjects having the ith genotype at Locus A and 

the jth genotype at Locus B that display the phenotype 

 i = main effect of the jth genotype at Locus B 

 ()ij = effect of interaction between the ith genotype at locus A and the jth 

genotype at locus B 

 ij = residual effect on the response variable.  

and the other terms defined as before. 

The following additional null hypotheses may then be tested: 

H0(2): j = 0 for all j 

H0(3): ()ij = 0 for all combinations of i and j. 

Chi-square statistics and p-values were obtained from the following significance tests: 

i. an omnibus test of the main effects and interaction, i.e. a test of H0(1), 

H0(2) and H0(3) simultaneously, and  

ii. a test of the interaction effect – also known to geneticists as the epistatic 

effect , i.e a test of H0(3) only. 

The omnibus test combines both the additive and interaction effects between two 

SNPs and the phenotype [2]. It was performed using the chi square test for association 

between the row and column classifications in a contingency table of two SNPs such 

as the one in Table 9. Yates’ correction for continuity [78] was used to prevent 
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overestimation of statistical significance when contingency tables have a less than 5 

count.  

Epistasis occurs when one genetic variant modifies the effect of another, i.e. when the 

two SNPs interact. The test of the epistatic effect is performed using the approximate 

additivity of chi-square statistics for orthogonal effects [46], to obtain the test statistic 

2
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where x is the number of categories of the phenotype [2]. 

The algorithmic steps of calculating the proposed omnibus and epistatic effects are 

focus around the Pearson’s chi-square test. The pseudo code for the implementation of 

the chi-square test is shown in Figure 7 . The first step is to generate the totals of each 

row and column entry and of the entire table. The contingency table with all totals is 

shown in Table 10. The expected contingency table is generated that represents the 

expected contingency table under the null hypothesis. The expected contingency table 

along with all the formulas to generate it is shown in Table 11. The formula for 

estimating the chi-square statistic with Yates correction [78] is: 

∑
(             )

 

    

   
     

where O and E are the observed and expected tables respectively, c and r are the 

columns and rows, and the subtraction by 0.5 is done for the Yates correction.  

The function that estimates the proposed omnibus and epistatic effect statistics is 

shown in Figure 8. This function first performs a direct call to the chi square function 

with the observed table of 2 SNP interaction (Table 9) as input. The result is the 
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proposed omnibus test. The next step is to estimate the main effects of the two SNPs. 

To do this there are two possible approaches. The first is to go through the steps as 

outlined in Figure 8, estimating the contingency table for each SNP by adding cells 

from the two SNPs contingency table and then performing a chi square on each 

resulting one SNP contingency table. The second is to estimate the main effect of each 

SNP at the beginning of the process and then just use those to estimate the proposed 

epistasis measure (Figure 8, Step 4) skipping two steps. Although this may seem like a 

nice optimization, in reality it’s not, as in the first approach the contingency tables 

used to generate each SNP would reflect the missing data of both SNPs, while in the 

second case, missing data in one SNP would not be reflected in the contingency table 

of the second. The actual program developed implements both approaches, but 

preference is given to the first, as it provides more accurate results and a fairer, 

estimation of the runtime required.  
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__________________________________________________________________________________ 
Algorithm:  Chi-square 
Input: 

Contingency table to calculate the Peasrson’s chi-square (table noted as O as in 
observed table) 

Output: 
Chi square statistic 

Description: 
  This function will perform the chi square test on a contingency table of any size. 

 
// First step is to estimate the contingency table totals. 

1   FOR  c=0; c<number of columns; c++ 
For r=0; r< number of rows; r++ 

Σc+=O(r,c) 
Σr+=O(r,c)  

FOR all totals in rows tr 
Σall+=tc                                 // Table 10 shows the totals estimated 

2   // Second step, generated expected table. E shown in Table 11 
FOR  c=0; c<number of columns; c++ 

FOR r=0; r< number of rows; r++ 
E(c,r)=(Σc * Σr) / Σall      
Chi_Square=  [O(r,c)- E(c,r) -0.5 ]

2
/ E(c,r) // the -0.5 is for the Yates correction 

 
*All variables are considered to be initialized to 0.  
 

Figure 7 Pseudo code for Pearson's chi-square test with Yates correction for 

continuity 

__________________________________________________________________________________ 
 
Algorithm:  OmnibusAndEpistasisTest 
Input: 

Contingency table for 2 SNPs and a single response variable. (Labelled M as in Table 9) 
Output: 

Omnibus measure 
Epistasis measure   

Description: 
  This function will perform the chi square test on a contingency table of any size. 

 
1. // First step is to estimate the Omnibus measure. This is a simple call to Chi-square. 

Omnibus=ChiSquare(O) // (Figure 7) 
2. // Estimate main effect observed tables (U) and chi square statistic of main effect for SNP1 

adjusted for missing data of both SNP1 and 2 Main1 
For r=0; r< number of rows; r++ 

Ur0= Or,0,0+ Or,0,1+ Or,0,2 
Ur1= Or,1,0+ Or,1,1+ Or,1,2 
Ur2= Or,2,0+ Or,2,1+ Or,2,2 

Main1= Chi-square(U) //main effect of first SNP 
3. // Estimate main effect observed tables (U) and chi square statistic of main effect for SNP2 

adjusted for missing data of both SNP1 and 2 Main2 
For r=0; r< number of rows; r++ 

Ur0= Or,0,0+ Or,1,0+ Or,2,0 
Ur1= Or,0,1+ Or,1,1+ Or,2,2 
Ur2= Or,0,2+ Or,1,2+ Or,2,2 

Main2= Chi-square(U) //main effect of second SNP 
4. //Estimate Epistasis 
5. Epistasis= Omnibus- Main1- Main2 

 

Figure 8 Pseudo code of omnibus and epistasis test function 

___________________________________________________________________________ 
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Table 10 Contingency table with totals estimated 

 aa bb aa Bb aa BB Aa bb Aa bB Aa BB AA bb AA bB AA BB Total 

Case M000 M001 M002 M010 M011 M012 M020 M021 M022 Σcases 

Control M100 M101 M102 M110 M111 M112 M120 M121 M122 Σcontrols 

Total Σaabb ΣaaBb ΣaaBB ΣAabb ΣAabB ΣAaBB ΣAAbb ΣAAbB ΣAABB Σall 

 

 

Table 11 Table of expected values (E) with formulas for estimating it’s cell values from the observed table (O)(Table 10) 

 aa bb aa Bb aa BB Aa bb Aa bB Aa BB AA bb AA bB AA BB 
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4.3.2 The logistic regression model used as a test statistic 

On the corresponding null hypothesis the change in deviance has a chi-square 

distribution with DF = number of terms dropped, and can be used as a test statistic. 

Thus H0(1) is tested by the change in deviance between the models: 
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Similarly, the omnibus test of H0(1), H0(2) and H0(3) is given by the change in 

deviance between: 
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H0(3) is tested by the change in deviance between: 
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A known bias of Pearson’s chi-square test is overestimation of the statistical 

significance of cells in the contingency tables with small values. Yates’ correction for 
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continuity [78] is used when calculating the chi-square statistic to prevent this. This is 

a very simple, yet very robust method that only involves a single subtraction and it has 

been widely accepted as a valid correction.  

The proposed methodology that relies on the additive property of Pearson’s chi-square 

will be compared to this method referred to in this paper from now on as the logistic 

regression method.   

4.4 Computation of multiple response variables  

Genetic studies, apart from the genetic data of each subject in the study also contain a 

large amount of phenotypical data [4,16,79]. Some common examples are gender, 

race, blood type, height, age at the time the data was collected and also some family 

history data, such as diseases of the subject’s parents, etc. Not all of these may be 

important for analysis but many are. Take gender as an example. It’s well established 

that some diseases even though they occur in both genders, they are more frequent in 

one. This may imply that there are different genetic effects associated with each 

gender. The most common methodologies of analysis of genetic data provide ways to 

either analyze sub-sets of subjects that are expected to have common effects 

independently or combined. In traditional methodologies, this would require running 

the analyses once per response variable. But it’s quite common that many response 

variables are of interest [16]. This has a linear but significant increase in the 

computational cost of the analysis. 

 An innovative methodology involving the use of a 4-dimensional scoring matrix to 

test all of the top results or if needed even of the entire dataset across multiple 

phenotypes with little impact on the computational cost is proposed in this work 

(Figure 9).  The four dimensional matrix is composed of the following dimensions: 
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1. SNP1 genotype 

2. SNP2 genotype 

3. Response Variable Categories 

4. Response Variable 

The example in Figure 9 represents a test between two specific SNPs, the contingency 

tables for the response variables shown underlined and bold are estimated at the same 

time with a single pass through the dataset. Note that the number of categories  

The pseudo code of the implementation of the 4-dimensional scoring matrix is shown 

in Figure 10. 

___________________________________________________________________________ 

 

Figure 9 Contingency tables for two SNPs  and multiple response variables(4d 

representation) 

___________________________________________________________________________ 
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___________________________________________________________________________ 

 
Algorithm: Score4dMatrix 
Input: 

 SNP1 genotypes for all subjects 

 SNP2 genotypes for all subjects 

 Array of response variables for all subjects 
 

Output: 

 4dTable: a four dimensional table with all contingency tables in it scored  
 
Description: This function access all the subjects in the dataset once and scores based on 
the 2 inputted SNPs genotypes each of the contingency tables in the 4d matrix.   
 
 
FOR  all Subjects 

1. //Determine genotypes of SNP1 and SNP2.  
X=SNP1genotype(Subject) 
Y=SNP2genotype(Subject) 

2.  //Loop through each response variable Identify the subject’s category and score appropriate 
cell of contingency table 

For all response variables K. 
Z=ValueofSubjectforReponseVariable(Subject, K); 
4dTable(K,Z,X,Y)++;  

 

Figure 10 Pseudo code of the 4-dimensional algorithm for generating multiple 

contingency tables on a single pass from the database. 

___________________________________________________________________________ 
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4.5 Evaluation of significance through replication 

With the introduction of high throughput genotyping technologies and genome wide 

associations studies, a “blizzard of positive findings” claiming discoveries of 

associations between genetic variants and diseases was reported [76]. However, it 

soon became clear that the majority of these were probably false positives since they 

could not be replicated [27]. Ioannidis et all [29] pointed out that these findings from 

single association studies should constitute “tentative knowledge” and must thus be 

interpreted with exceptional caution.  

In order to verify the reported results of this study and thus the validity of the 

analytical framework proposed, the top results of the analyses in the primary dataset 

will be tested for replication in an independent dataset. Since the number of tests 

performed in the second dataset will be very small, the multiple testing problem 

should not inhibit true positive findings from passing statistical significance.  

Furthermore, replicated results will be examined more closely by looking at the 

distribution of each genotype combination in each dataset to each effect. Results 

where the strongest effect signals exist on the same genotype combinations in both 

studies analyzed will result in significantly more confidence in the replication success. 

To quantify this level of confidence a correlation coefficient will be estimated that 

will represent the level of correlation between each of the effects of the two SNPs. 

This approach will also yield information discovery that will relate each genotype 

combination to disease predisposition.  
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4.6 Hybrid Cluster Cloud High Performance 

Computing (HCC-HPC) 

Two distributed HPC platforms were available for this work. Benchmarking each of 

the HPC platforms resulted in the identification of the bottlenecks associated with 

each HPC, as well as an estimation of the runtime for the given problem for each HPC 

system. The major differences of the two systems are the availability of computational 

processing power, ability to store large amounts of data, and the bandwidth available 

for network communication. 

4.6.1 Dedicated LAN grid  

The first HPC platform was composed of 200 dedicated backend machines in close 

geographical proximity linked together through a high speed Local Area Network 

(LAN), see Figure 11. All machines had access to the same shared storage facility 

through a 1,000 mbps LAN network, and had more than enough space available for 

the needs of this project. For the purposes of this proposal, these resources will be 

referred to as the dedicated LAN grid.  

The dedicated LAN grid is composed of a blade server farm and a front end load 

balancing server. All machines on the dedicated LAN grid have access to the same 

data repository through high-speed connections. All other computers on the network 

can also access the data repository although not at the same high speed as the LAN 

grid. Data in the repository are stored, mirrored and backed-up so there’s no need to 

move it after analysis is complete.   
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___________________________________________________________________________ 

 

Figure 11 Architecture of the dedicated LAN grid 

___________________________________________________________________________ 

4.6.2 WAN grid  

The second computational platform is referred to as the residual Wide Area Network 

grid (WAN grid) and it relies on harnessing residual personal computer cycles to 

create a High Performance Computing (HPC) resource. This resources is implemented 

through the GridMP platform [85,94]. Figure 12 provides a simplified overview of the 

HPC’s architecture.  It is composed of a front end that monitors the available 

computational capacity on several thousand non-dedicated geographically dispersed 

nodes. These nodes are desktop computers concurrently being used by employees at 

the company Glaxo Smith Kline (GSK). The 1500 nodes with the most resources 

available were selected to execute, in the lowest possible priority, work submitted to 
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them by the front end of this grid. The nodes do not share a common data storage 

resource so all data are transferred to the nodes from the front end server and all 

results are transferred back to the front-end server. Since the network bandwidth 

utilized to transfer data between the nodes and the front-end is the same as the one 

used in the day-to-day operations of GSK it is necessary to reduce the load by as much 

as possible so as not to interfere with other potentially critical operations. Also, the 

amount of data storage available on the front-end is limited and shared between all 

applications that utilize the system. Since there is no centralized information of the 

number, schedule or the importance of other operations in GSK that utilize the same 

network strict rules were applied to limit the utilization of the WAN grid to 

applications that do not under any circumstances overload the system.  

___________________________________________________________________________ 

User submitting job

Cloud server, provides 
access to the HPC as a cloud 
service and handles all 
communication and storage 
of the HPC. 

 

Figure 12 Architecture of the WAN grid 

_____________________________________________________________________ 
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The single WAN grid server monitors the available resources of thousands of 

machines around the globe that have an agent running on them responsible for 

reporting to the cloud server. When the WAN grid is requested to perform an analysis 

it selects in real time a subset of the computing nodes with the most available 

resources (processing cycles, main memory) and submits jobs to them. 

Communication is only allowed between each node and the server for security 

reasons.  

4.6.3 Benchmarking of existing HPC resources 

A random subset of the data was selected in order to run a test of the performance of 

the LAN and WAN grids for this specific application (1k, 5k, 10k, 20k SNPs for 1000 

cases and 1000 controls). The algorithm used in this benchmark was the same as in the 

final system and since it’s deterministic, the estimations on the execution time were 

consistent. However, since other users may at any point use either of the systems it 

was essential in order to provide a fair assessment to assume the optimal case where 

no other analyses are running on the systems during the tests. For the LAN grid, a 

high priority queue was used that does not allow any other analyses to take place until 

the benchmarking is complete. In the case of the WAN grid, it was impossible to 

monitor, limit or in any way control the user initiated applications. The cloud server 

did not submit any other work while the tests were running. Due to the high number of 

personal computers that were available in the WAN grid and the fact that the system 

selects only the 1500 (fixed number based on the licenses currently purchased) of 

them with the most available resources to use we expected that the average true 

capacity of the system would be relatively robust. In order to test this, the runtime of 

all analyses performed with the proposed framework where recorded, along with 
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detailed dates and times of the execution. Benchmarking using only the WAN grid 

wasn’t allowed due to the restrictions in data transfer by the operator of the grid, 

therefore execution for that platform can’t be presented. However, it is possible to 

estimate the execution times based on experiments using smaller samples. 

  

4.6.4 HCC-HPC proposed framework 

The residual WAN grid available for this project had significantly larger 

computational capacity available than the LAN grid but limited data transfer and 

storage capacity per. In order to utilize both HPC resources efficiently, a hybrid cloud 

HPC was designed and implemented as shown in Figure 13.  This enabled the 

utilization of the residual WAN grid for the computational needs of the analysis while 

the LAN grid was used to post-process, annotate, merge and query the end results. 

The meta-scheduler breaks up the analysis that needs to be performed into work units. 

Each work unit is responsible for a small number of two SNP interactions. The data 

are split into files each containing the phenotype status and a subset of the SNPs for 

each of the subjects. The analysis is performed by composing each work unit to take 

as input two files, and perform all unordered two SNP combinations in them.  

The maximum number of SNPs (m) in the files is estimated by 

 wm 2  

where w is the number of desired total work units to split the analyses. Having too 

many work units will increase the overhead of the WAN grid, whereas having too few 

will increase the runtime per work unit and therefore increase the frequency of data 

loss occurring from PCs on the WAN grid going offline. The range of acceptable 
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runtimes per work-unit for the system was obtained through trials on the actual system 

using worknodes of various sizes.  

 In order to identify how long a work node would run on average it was tested on a 

typical machine accessible by the WAN grid. Since the algorithm is deterministic, 

these estimations are quite accurate and deviation from them only has to do with 

different load availability on the computational resources. 

 

 

___________________________________________________________________________ 

 

Figure 13 The structure of the purposed built HCC-HPC proposed system 

___________________________________________________________________________ 
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Thresholds for each measure and phenotype are used to identify interesting two SNP 

patterns. Each pattern that passes at least one threshold is reported once by the 

identifiers of the two SNPs. When a work unit has completed the analysis of a 

combination of two input files the results are compressed and transferred to a result 

repository. There, they are accessed directly by the LAN grid to generate the final 

result tables to be used for sorting and creating visualizations of the epistatic and 

omnibus effects based on a-priory defined thresholds. 
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___________________________________________________________________________ 

 
Algorithm:  High level view of Hybrid Cluster-Cloud algorithmic steps 
Input :  

 A GWAS study dataset with all the SNP data and unique subject identifiers 

 The response variables data with subject identifiers to analyse in the entire genome.  

 The response variables data with subject identifiers to analyse for annotation purposes 
on top results 

 The thresholds to use for the first export of top results.  

 A SNP annotation file 
Output : 

 A database with all 2 SNP interaction tests that passed the complete analyses threshold 
in at least one of the measures in any of the response variables analyzed in the entire 
genome.  

 A single result file annotated with SNP information for the results the top results.  
Method 
__________________________________________________________________________________ 

RUNING ON ANALYST’S PERSONAL COMPUTER 
1. //Define data pre-processing parameters 

Define quality control parameters 
Binary Encoding if the data isn’t already encoded 

Define number of segments to split the data into ( w )* 

If data is not in permanent repository, encode and transfer there 
__________________________________________________________________________________ 

RUNNING ON DEDICATED LAN GRID 
2. //Perform pre-processing and initiate analyses on HCC-HPC 

Split data into  w2  segments* 

Initiate Analyses on HCC-HPC 
Wait to receive results from WAN grid 
 

__________________________________________________________________________________ 
RUNING ON WAN GRID SERVER 

3. //Submit worknodes to computational nodes 
For(all submitted worknodes) 

Pseudo code of selection algorithm for PC to use for running a worknode (Figure 15)  
__________________________________________________________________________________ 

RUNING ON WAN GRID NODES 
3   Pseudo code of algorithm followed by the WAN grid agent on each node (Figure 16) 
__________________________________________________________________________________ 

RUNING ON WAN GRID SERVER 
 

4   Pseudo code of WAN grid handling of worknode state reporting (Figure 17)  
__________________________________________________________________________________ 

RUNNING ON DEDICATED LAN GRID 
5   Pseudo code of the LAN grid algorithmic steps (Figure 18)  

__________________________________________________________________________________
  RUN ON ANALYST’S PERSONAL COMPUTER 

6   //Complete analyses transferring results and initiating visualization environment 
Transfer data to analyst’s selected machine 
Launch results query and visualization platform.  

 
 
*w : number of work nodes to be created, system and dataset dependent 
The orange box indicates the part of the algorithmic steps that take place in parallel.  
 

Figure 14 A high level view of HCC-HPC algorithmic steps 

___________________________________________________________________________ 
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In Figure 14 the pseudo code of the algorithmic steps that take place on the HCC-HPC is 

presented detailing the steps in an abstract manner. Different parts of the algorithm are run on 

different machines, as indicated by the break lines. The parts of the algorithm that are run in 

parallel on all machines are highlighted in the orange box. The analysis begins at any personal 

computer that has access to the system. The data is pre-processed then transferred to the data 

repository where it will be permanently stored.  

Once the above step is completed; all necessary data and parameters are stored in the 

permanent storage repository accessible by all machines except the nodes of the WAN grid. 

The web service controlling the Hybrid Cloud-Cluster HPC initiates the analysis on the 

dedicated LAN grid. At step 2the dedicated LAN grid will submit the data to the WAN grid. 

The WAN grid’s architecture required that all data to be used in the analyses resides in a 

temporary area on the grid’s main server thus this step is necessary. In parallel to this step as 

soon as all the data required for a worknode to be instantiated it’s entered into the queue to be 

executed. This is important, since even though the data transfer between the data repository 

and the WAN grid’s server is low, so long as it’s on average faster to transfer the data than to 

analyze them on the WAN grid the total runtime isn’t expected to be affected since the two 

steps are happening in parallel. The analyst from this point on has access to a web service that 

provides all information on the progress of the analyses as well as a detailed record of all 

messages (including errors) that are received.  

The cloud server identifies the 1500 machines on the network with the most available 

resources. The WAN grid performs this step by continuously requesting updates from all 

machines on the network and keeping a list of the top 1500, the list can be considered near 

real time since the machines are only reporting to the server about once every minute. The 

algorithmic steps used to identify the machine to use for analyzing a specific worknode are 

shown in Figure 15. Each machine is looked up to see if it has been used in previous 

analytical iterations with the same data that contained either of the two parts needed for each 

work node. The machine in the list of the ones with the most available resources that already 

has the most data required to run the analyses will be selected and the worknode will be 
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submitted to it. Since data parts are cached (as per the functionality provided by the GridMP 

platform), there is an improvement in efficiency in terms of reducing data transfer as well as 

providing a redundant backup storage location. Once a work node is identified, and all 

relevant data is available on it the analyses is launched on that node in the lowest possible 

priority. 

Algorithm: Selection of PC to use for running a worknode. 
Input :  

Identifier of files needed for the analysis.  
Identifier of worknode 

Output : 
Identifier of PC to be used to analyze the worknode 

 
Identify X machines with most resources available 
 
1   If (among the X machines one has all data parts)  

Submit worknode to machine with all data parts 
2   Else if (among the X machines one has 1 data parts)  

Transfer remaining data part 
Submit worknode  to the selected machine 

3   Else // 
Transfer both data parts to the machine with highest resources available 
Submit worknode to machine 

4   Else 
Submit to worknode with Max Resources both data parts 
Launch worknode analyses on node. 
 

Figure 15 Pseudo code of selection algorithm for PC to use for running a 

worknode 

The WAN grid node that received all the relevant data to analyze a worknode will 

start the analysis as soon as all transfers are complete. The steps followed by the 

WAN grid’s agent on the node are outlined in Figure 16. The agent will perform a 

parity check to verify that the data transferred without errors. Then it will decompress 

all necessary files, and instantiated the analyses wrapped within this agent. This is 

done for security issues and it’s what causes the worknodes inability to communicate 

with any machine other than the WAN grid server. Once the analyses is finished, 

either due to an error or if it’s successful, all outputted files, streams and exit code are 

packaged and send to the grid server.  
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Algorithm: Algorithm followed by the WAN grid agent on each node. 
Input :  

 Location of local repository of all files needed for the analyses 
Identifier of worknode 
Output : 

 All output of the program, including output streams, exit codes and files. 
 

1   A machine receives a worknode to analyze 
Test if data received is not corrupt 
Decompress data 
Run analyses storing stdout and stderr to separate files 
If process crashes, report error and all files generated. 
If process returns, report return code to server along with all the result files produced, 
stdout and stderr files. 

 
 

Figure 16 Pseudo code of algorithm followed by the WAN grid agent on each 

node 

Possible outcomes fall in three categories successful, unsuccessful, error. The algorithmic 

steps followed on the WAN grid to deal with each category are shown in Figure 17. 

Successful worknodes are ones that returned a success completion message to the server and 

transferred all their results to the cloud server with no errors detected. Unsuccessful are work 

nodes that either returned an error code or resulted in an error for more than five times on 

different machines. In the case of returned error codes, each code represents a specific error 

testing criteria, such as errors in the input data; errors found in the analyses step and in general 

if conditions that were predicted to happen and were error tested will return a message to help 

identify the issue. All relevant debugging information is made available through the cloud 

server to the end user. Error worknodes are ones that stopped communicating with the server. 

This could be caused by the work node application crashing or getting killed on the node, or 

the machine might have gone off line. Errors always occur due to the nature of the cloud so 

each work node is run up to five times on different machines before it’s reported as an 

unsuccessful indicating that perhaps there’s something wrong with the program causing the 

crashes. As an example, if a worknode takes too long to run and affects the primary user the 

probability that the primary users on five different machines will either identify it and kill it or 

reboot their machines is high.  
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Algorithm: WAN grid handling of worknode state reporting. 
Input :  

 Identifier of instantiation of a worknode on a specific PC.  
Output : 

 Update of all relevant databases including, overall worknode status reports, and output 
data.  

 
WORKNODE STATE REPORTING 

1   The grid server probes each machine.  
Grid server probes nodes.  

a. If a machine reports worknode completed 
i. Transfer data to cloud server database 

ii. Transfer data to cluster server database 
b. If machine reports worknode error 

i. Transfer all debugging data to cloud server 
ii. Send signal to halt operations on the cluster  
iii. Notify user of reported error.  

c. If machine stops responding. 
i. If worknode last running and incomplete on machine has not crashed more 

than 5 times.  
1. Remove machine from list of machines available.  
2. Mark worknode as not completed and resubmit it. 
3. Increment counter of worknode incomplete.  

ii. Else 5 machines running this worknode became unresponsive. 
1. Attempt to transfer any debugging data available to cloud server 

from all machines.  
2. Send signal to halt operations on the cluster.  
3. Notify user of reported error.  

 

Figure 17 Pseudo code of WAN grid handling of worknode state reporting 

Whenever a worknode is reported to the server as successfully completed the results from it 

are transferred to the permanent storage area on the cluster grid, and the analytical steps on 

lines 3.a.ix and 3.a.x are submitted to run on the cluster. The process on the WAN grid 

finishes when all worknodes get a success or an unsuccessful status. The processes on the 

cluster grid are run in parallel to the grid (Figure 18), beginning as soon as successful results 

become available, but depending on the load of the cluster by other applications completion of 

the steps on this machine might be delayed. Therefore, there might be a short waiting period 

until all worknodes have successfully completed on the cluster as well.  

Execution failures, or data loss are dealt by simply identifying them and reporting them to the 

user. There is an elemental error checking as well as testing return values in a similar way as 

the WAN grid; however there is no need to rerun the worknodes here since errors are very 

rare and usually have to do with something going wrong on the system level, or the worknode 

submitted.  
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Algorithm: LAN grid algorithmic steps. 
Input :  

 Worknode identifier 

 Link to result files on permanent data storage 
Output : 

 Annotated dataset of top results 

 Report on overall execution of system 

 

a. For each new result to complete transfer to the permanent data repository 
iii. Decompress results 
iv. Create first annotated results based on predefined parameters and store in 

the appropriate annotated result database.  
b. Wait for all worknodes to complete on both grids. 
c. If unsuccessful worknodes recorded 

v.  Report to user,  
vi. Break analyses. 

d. Else  
vii. Merge default datasets parts and return them in a user accessible location.  

 

Figure 18 Pseudo code of the LAN grid algorithmic steps 

Once the entire process is completed the first results database is available, along with routines 

to create more result datasets specific to queries performed by the analyst (specific genetic 

regions, top results with specified thresholds, etc)  

4.7 The proposed framework put together 

In this section the entire framework is looked at as well as the steps to take in order to 

evaluate the results it produces and by association the accuracy of the proposed 

framework.  

4.7.1 The analyses on the HCC-HPC 

The proposed framework is provided as a cloud service to all analysts with 

appropriate access. In reality the framework is controlled via a web service. The 

researcher initiating the analysis submits the data to use, if these are not already in the 

permanent storage (if the dataset is new) then it’s automatically transferred there, 

otherwise the existing copy is used. Quality control parameters are defined by the 

researcher and the data is pre-processed. Once this is completed the algorithm of the 
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hybrid cloud-cluster high performance computing system is initiated as described in 

figure 14. During this time, both HPC systems are utilized by the framework, the 

WAN grid running the computational part of each worknode, while the dedicated 

LAN grid as soon as results are delivered from the WAN grid, it decompresses them, 

re-analyzes just the potentially statistically significant ones both with response 

variables used in the primary analyses as well as ones defined as needed to be 

annotated on reported results only and generates the first database of the top results 

fully annotated.  

4.7.2 Post processing results 

The next step is query, visualize, and study the results. The first step is to adjust the 

top results for multiple testing using Bonferoni correction[5,46] and identify any that 

may pass significance after adjustment. Bonferoni correction as it has been stated 

previously is very stringent, meaning that it tends to over-adjust making finding 

statistically significant results very difficult. Also, the statistical power in these studies 

is relatively low due to the relative small number of subjects compared to the number 

of SNPs collected. Therefore it’s quite likely that even results that don’t pass 

statistical significance after Bonferoni adjustment for multiple testing may still be true 

positive effects.  

4.7.3 Replication test 

The first step when evaluating a newly proposed analytical framework is to 

quantifiably demonstrate how likely it is that the results it produces are true positive. 

In genetics, the classic approach for doing this as discussed in previous sections is 

through replication testing with an independent dataset [27,29].  A threshold is set to 

identify the top results with an independent replication dataset. This will both help in 
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discovering more evidence as to whether the top results are true positive or not but in 

extension it will also help validate the proposed framework in its entirety. Discovery 

of strong replicated results will indicate with a high degree of certainty that the 

proposed methodology is capable at detecting true positive effects [4,27,29].  

For the replication test, since the goal of this dissertation is to provide evidence to the 

validity of the framework, only the top results in the dataset used for the primary 

analyses that passed a preset threshold are tested for replication in the independent 

replication dataset, rather than the entire replication dataset. 
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Chapter 5  Results 

This chapter begins with a description of the datasets used to evaluate the proposed 

framework and continues with results generated from the analysis of these datasets. 

Results can be broken into two large categories. The first category refers to the 

Biological results, that relate to the findings of the system in relation to the actual 

analysis performed. The second category refers to the results related to the 

performance of the proposed analytical framework. The biological results are 

presented first, as they lay the foundation of the evidence that the method can produce 

innovative, statistically significant and replicable results. The second part will focus 

on each independent contribution of this dissertation in detail. Experiments were 

carried out to evaluate each of the contributions and the results are presented 

following the biological results in the same order as in the previous chapters.  

5.1 Datasets used for the evaluation of the 

proposed framework 

Two independent datasets were needed that would have the same subject inclusion 

criteria, and overlapping genetic markers genotyped. Two such GWAS were identified 

both designed to study genetic predisposition to Multiple Sclerosis (MS). These are 

presented in the next two subsections along with references to the first publications 

that provide their complete descriptions. 
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5.1.1 Primary dataset (GeneMSA) 

The first dataset was first presented in [80]. The dataset after reported stringent quality 

control data filtering included 551,642 SNPs based on the Sentrix HumanHap550 

BeadChip platform by Illumina (Illumina 550) in 978 MS cases and 883 matching 

controls. Susceptibility, age of onset, disease severity, as well as brain lesion load and 

normalized brain volume from magnetic resonance imaging exams were assessed for 

association with single genetic loci and are presented in [80]. An outline of the 

distribution of subjects and their relevant phenotypes as shown in [80] is presented in 

Table 13. 

The analysis of this dataset revealed 242 statistically significant associations involving 

single SNPs including 65 within the MHC locus [80]. These results were tested for 

replication with another dataset, the IMSGC dataset and confirmed a role for GPC5 

gene in disease risk.  

5.1.2 Replication dataset (ANZgene) 

ANZgene is a three year study that utilized the MS Research Australia (MSRA) Gene 

Bank and involved scanning the DNA of 1,618 people with MS and 3,413 people 

without MS (controls). The genotyping platform used in this GWAS was also made by 

Illumina, but it was the 300k model. ANZgene is a more recent GWAS with the first 

publication expected to be available in print in June 2011 [81]. This dataset will be 

used only to test for replication of the top GeneMSA case-control 2 SNP interaction 

results. The distribution of the phenotypes of interest are shown in Table 14, these are 

the only phenotypes that access was provided to for the ANZgene GWAS.  



105 
 

5.1.3 Addressing incomplete genetic marker overlap between 

primary and replication dataset  

Since ANZgene was genotyped using a different genotyping platform than GeneMSA 

there is not complete overlap between the available SNPs. However the company that 

developed both platforms is the same (Illumina) and it seems that they chose to extend 

the platform used in the ANZgene analyses to create the one used in the GeneMSA 

analyses. Therefore the roughly 300k SNPs in ANZgene seem to exist in the 550k 

SNPs in GeneMSA but obviously there are about 250k SNPs in GeneMSA that are not 

in ANZgene. To test for replication of a two SNP interaction test, it is necessary that 

both SNPs be present in both datasets. This is expected to reduce the number of tests 

possible to test for replication to about 1/3.  

There is an alternative method, sometimes used in genetics when there is a need to test 

for replication between two datasets that were genotyped on different platforms. This 

is called genotype imputation [63,82,83].  However to correctly analyze imputed data 

the probability that the imputed genotype is accurate needs to be taken into account 

[84], something that neither logistic regression nor the proposed methodology for the 

epistasis measure can do. Furthermore, imputation relies on LD between genotyped 

and imputed markers in order to predict each missing genotype with a high level of 

certainty. LD and its effect on the proposed results is one of the key elements of study 

in this dissertation. Relying on a method that is biased based on the level of LD 

between markers may impute markers and might have an undetectable effect on our 

final conclusions. Therefore for the purposes of evaluating the framework imputed 

genotypes will not be utilized.    
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5.2 Biological Results 

The GenMSA analyses resulted in statistically significant results, even after Bonferoni 

correction for multiple testing was applied. The cut-off p-value of 10e-8 was used to 

test for replications in ANZgene. This cut-off was decided a posterior, since it would 

be impossible to correctly define how strong the expected top results would be due to 

the lack of knowledge of the level of dependence between markers and thus the 

inability to correctly adjust for multiple testing. Therefore the cut-off was put at 10e-8 

so that it would include both results that were statistically significant in ANZgene as 

well as those that were high but perhaps lacked the statistical power in GeneMSA to 

reach statistical significance. Since ANZgene and GenMSA were genotyped using 

two different platforms (GeneMSA Illumina 550k, and ANZgene Illumina 300k) in 

order to test for replication of a result it was necessary that both SNPs involved in it 

would be available in the replication dataset. 

In Figure 19, the x-axis represents the ordered location of the two SNPs involved in 

the hypothesis tested; the y-axis represents the epistasis p-value on a negative 

logarithmic scale. Two vertical lines represent the Bonferoni multiple testing 

correction for p-values 0.01 and 0.05. The results where both SNPs are available in 

both datasets are tested for replication and are indicated in Figure 19 as green, if they 

are found to be statistically significant in ANZgene or red if they are not statistically 

significant. Results where one or both of the SNPs were not available for analyses in 

ANZgene are indicated as yellow and replication testing was not performed on them.  

All of the results tested for replication that had both SNPs in or near to the Human 

Leukocyte Antigen system (HLA) region of chromosome 6 replicated successfully, 

while all results outside this region failed to replicate in the replication dataset. 
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The omnibus measure is composed of both the two main effects and the omnibus 

effect. In Figure 20 the omnibus effect (x-axis) is plotted against the Epistasis effect 

(y-axis) both in negative logarithmic order of the resulting p-value. The two vertical 

and horizontal lines represent the p-values of 0.01 and 0.05 following correction for 

multiple testing using Bonferoni correction for each respective measure. By plotting 

the omnibus measure vs the epistasis it is possible to see the relation between the 

epistasis and the two combined main effects since the omnibus measure is composed 

of both the main and epistatic effects.  

Figure 21 has the same properties as Figure 20 but instead of GeneMSA the ANZgene 

replication results are plotted. Here all the tested replications are plotted. The failed 

replications clearly cluster near the origin with very small, if any, effects compared to 

the replication successes that are clearly statistically significant in both omnibus and 

epistasis measures.  

One of the sub-phenotypes analyzed for the top epistasis results is the PRP (a rare 

subtype of MS). Patients with the PRP subtype were tested versus patients with 

Multiple Sclerosis but not PRP. The number of subjects that passed QC and belonged 

to the PRP group was very small, so there was very small statistical power to detect 

effects. In order to limit the search space in an informative way that would improve 

the statistical power of detection after adjusting for multiple testing, only tests that had 

a multiple testing unadjusted p-value of 0.01 in the MS case-control analyses were 

included in this analysis.  

Females are associated with a higher predisposition to MS than males. It is not clear if 

this is due to genetic or environmental factors. In this project we spited the dataset in 

males and females and repeated the case-control analyses with subjects from each 

gender. Since the number of males was only about 1/3 of the total (numbers of males 
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and females) statistical power of detection was significantly higher in females than 

males.  

The parameters of Figure 22 and Figure 23 are the same as in Figure 20. Figure 22 

represents the analyses performed with only male subjects, while Figure 23 represents 

the analyses with only female subjects. Notice that none of the replicated results are 

strong when testing only males, while all of them seem to be driven by females.  

All of the results that replicated involved SNPs that were on chromosome 6. A closer 

look revealed that all of these replicated tests were in or close to the HLA region. 

Figure 24 provides a visualization of the region and the detected epistasis effects. The 

horizontal axis represents the genetic location with base pair position on chr 6 

indicated on the lower horizontal line. Above that line is a gene map of selected genes 

in the region. The horizontal line in the middle of the graph has a short vertical line 

indicating the location of every SNP that was genotyped in GeneMSA. All detected 

epistatic effects in this region that were tested for replication were included in this 

graph and were represented by diagonal lines forming an isosceles triangle connecting 

the two SNPs in each test. The height of the triangle represents the distance between 

the SNPs. The colour represents replicability with red being replication successful 

while blue being replication not possible due to not having both SNPs in ANZgene. 

None of the results in this region that came up in ANZgene and were tested for 

replication failed; therefore there is no colour to indicate replication failure. 
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Figure 19 Top Epistasis results of complete GenMSA case-control analyses. A strong peak is visible were both markers are on 

chromosome 6 in the HLA region some passing statistical significance after multiple testing correction 
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Figure 20 Epistasis vs Omnibus measures of the top Epistasis results in the complete GenMSA case-control analyses  
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Figure 21 Epistasis vs Omnibus measures in ANZgene on the results tested for replication.  
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Figure 22 Epistasis vs Omnibus measures of the top Epistasis results in the analysis of only males in GenMSA 
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Figure 23 Epistasis vs Omnibus measures of the top Epistasis results in the analysis of only females in GenMSA  
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Figure 24 Zoom in of region with high replicated interaction frequency 
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Table 12 GeneMSA dataset description from [80] Table 13 Distribution of Subjects in GeneMSA 
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Table 14 Distribution of Subjects in ANZgene 

 
Entire dataset Males Females *Primary Progressive MS *Not Primary Progressive MS 

Cases 1618 445 1173 407 1211 

Controls 1988 757 1231 NA NA 

Total 3606 1202 2404 NA NA 

*Primary progressive is an MS disease subtype. 

NA: Not applicable.  
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Table 15 Results of MS cases vs controls in primary and replication datasets. 

SNP identifiers Annotations SNP1 Annotations SNP2 
Primary Dataset 

(GeneMSA) 

Replication dataset 

dataset (ANZgene) Case Control 

Analyses 

Case Control 

Analyses 
SNP1 SNP2 Gene SNP1 

Chrmosomal 

Position SNP1 
Gene SNP2 

Chrmosomal 

Position SNP2 
Omnibus Epistasis Omnibus Epistasis 

RS3129890 RS9268832 HLA-DRA 06:032522251 
 

06:032535767 29,1 13,1 58 31,69 

RS3130320 RS6457536 
 

06:032331236 C6ORF10 06:032381743 27,6 15,0 56,3 31,55 

RS3130320 RS6935269 
 

06:032331236 C6ORF10 06:032368328 27,7 15,1 55,3 30,94 

RS3115553 RS3130320 
 

06:032353805 
 

06:032331236 27,9 15,3 55,3 30,94 

RS3130320 RS3130340 
 

06:032331236 
 

06:032352605 27,9 15,3 55,3 30,94 

RS3129890 RS7192 HLA-DRA 06:032522251 HLA-DRA 06:032519624 29,1 12,6 57,1 29,76 

RS3096700 RS6935269 
 

06:032329760 C6ORF10 06:032368328 22,2 11,7 48,5 26,38 

RS3096700 RS3115553 
 

06:032329760 
 

06:032353805 22,4 11,9 48,5 26,38 

RS3096700 RS3130340 
 

06:032329760 
 

06:032352605 22,4 11,9 48,5 26,38 

RS3115553 RS3096700 
 

06:032353805 
 

06:032329760 22,4 11,9 48,5 26,38 

RS3130340 RS3096700 
 

06:032352605 
 

06:032329760 22,4 11,9 48,5 26,38 

RS3096700 RS6457536 
 

06:032329760 C6ORF10 06:032381743 22,1 11,4 47,3 24,8 

RS4959089 RS926070 
 

06:032327703 
 

06:032365544 28,6 13,0 54,5 23,8 

RS926070 RS9296015 
 

06:032365544 
 

06:032326967 28,7 12,9 54,5 23,8 

RS3129943 RS3130320 C6ORF10 06:032446673 
 

06:032331236 24,6 11,2 48,3 23,71 

RS2395174 RS9275141 
 

06:032512856 LOC650557 06:032759095 18,6 9,5 48 23,69 

RS3135363 RS6932542 LOC642071, 

LOC642040, 

LOC646668 

06:032497626 
 

06:032488240 20,9 8,0 45,3 21,62 

RS2076537 RS547261 C6ORF10 06:032425613 C6ORF10 06:032390011 20,7 11,0 41,9 20,93 

RS2076537 RS547077 C6ORF10 06:032425613 C6ORF10 06:032397296 20,6 10,9 41,8 20,9 

RS2076537 RS9268132 C6ORF10 06:032425613 
 

06:032362632 21,1 10,8 41,7 20,7 

RS2076537 RS9268368 C6ORF10 06:032425613 C6ORF10 06:032441933 20,6 10,5 41,5 20,62 

RS2076537 RS9268384 C6ORF10 06:032425613 C6ORF10 06:032444564 20,8 10,7 41,5 20,62 
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SNP identifiers Annotations SNP1 Annotations SNP2 
Primary Dataset 

(GeneMSA) 

Replication dataset 

dataset (ANZgene) Case Control 

Analyses 

Case Control 

Analyses 
SNP1 SNP2 Gene SNP1 

Chrmosomal 

Position SNP1 
Gene SNP2 

Chrmosomal 

Position SNP2 
Omnibus Epistasis Omnibus Epistasis 

RS1033500 RS2076537 C6ORF10 06:032415360 C6ORF10 06:032425613 20,9 10,7 41,5 20,62 

RS2076537 RS9405090 C6ORF10 06:032425613 C6ORF10 06:032406350 20,9 10,8 41,5 20,62 

RS9405090 RS2076537 C6ORF10 06:032406350 C6ORF10 06:032425613 20,9 10,8 41,5 20,62 

RS3096700 RS3129943 
 

06:032329760 C6ORF10 06:032446673 20,2 9,0 42,4 20,13 

RS2076537 RS3130320 C6ORF10 06:032425613 
 

06:032331236 30,1 15,5 45,1 18,31 

RS2076537 RS3096700 C6ORF10 06:032425613 
 

06:032329760 25,8 13,4 42,3 17,87 

RS2076537 RS3115573 C6ORF10 06:032425613 
 

06:032326821 18,7 11,4 38 17,22 

RS2076537 RS3130315 C6ORF10 06:032425613 
 

06:032328663 18,7 11,4 38 17,22 

RS3115573 RS2076537 
 

06:032326821 C6ORF10 06:032425613 18,7 11,4 38 17,22 

RS3130315 RS2076537 
 

06:032328663 C6ORF10 06:032425613 18,7 11,4 38 17,22 

RS1077393 RS2242660 BAT3 06:031718508 BAT2 06:031705732 12,9 8,0 33,6 16,65 

RS2076537 RS2239804 C6ORF10 06:032425613 HLA-DRA 06:032519501 17,3 8,4 30,5 15,3 

RS1046089 RS1077393 BAT2 06:031710946 BAT3 06:031718508 13,5 8,1 31,5 14,48 

RS2395150 RS6907322 C6ORF10 06:032434023 C6ORF10 06:032432923 22,4 9,5 40,1 13,99 

RS2395150 RS411326 C6ORF10 06:032434023 
 

06:032319295 23,4 8,2 43,3 13,71 

RS3115573 RS411326 
 

06:032326821 
 

06:032319295 21,4 10,6 34,5 12,82 

RS3130315 RS411326 
 

06:032328663 
 

06:032319295 21,4 10,6 34,5 12,82 

RS411326 RS3115573 
 

06:032319295 
 

06:032326821 21,4 10,6 34,5 12,82 

RS411326 RS3130315 
 

06:032319295 
 

06:032328663 21,4 10,6 34,5 12,82 

RS1053924 RS2269425 PRRT1, 

LOC653870 

06:032228693 LOC653870 06:032231617 18,2 8,9 32 11,2 

RS3129941 RS4959089 C6ORF10 06:032445664 
 

06:032327703 30,3 8,4 51 9,156 

RS3129941 RS9296015 C6ORF10 06:032445664 
 

06:032326967 30,4 8,4 51 9,156 

RS2076537 RS2395150 C6ORF10 06:032425613 C6ORF10 06:032434023 20,0 8,3 35,2 6,65 

RS3115573 RS6907322 
 

06:032326821 C6ORF10 06:032432923 16,8 8,2 22,4 4,116 

RS3130315 RS6907322 
 

06:032328663 C6ORF10 06:032432923 16,8 8,2 22,4 4,116 
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SNP identifiers Annotations SNP1 Annotations SNP2 
Primary Dataset 

(GeneMSA) 

Replication dataset 

dataset (ANZgene) Case Control 

Analyses 

Case Control 

Analyses 
SNP1 SNP2 Gene SNP1 

Chrmosomal 

Position SNP1 
Gene SNP2 

Chrmosomal 

Position SNP2 
Omnibus Epistasis Omnibus Epistasis 

RS6907322 RS3115573 C6ORF10 06:032432923 
 

06:032326821 16,8 8,2 22,4 4,116 

RS6907322 RS3130315 C6ORF10 06:032432923 
 

06:032328663 16,8 8,2 22,4 4,116 

RS3746115 RS761226 MATK 19:003734070 PAK7 20:009769007 6,7 8,0 0,74 1,512 

RS2170239 RS17085 
 

08:014919295 
 

13:047312488 6,8 8,4 1,02 1,319 

RS12705099 RS866482 
 

07:100356394 CADPS 03:062568930 6,5 8,0 1,48 1,119 

RS12705099 RS833632 
 

07:100356394 CADPS 03:062569490 6,7 8,2 1,53 1,094 

RS206789 RS11706107 DEPDC1B 05:059939728 
 

03:074070374 6,7 8,4 0,66 0,954 

RS4326096 RS11706107 
 

05:059926035 
 

03:074070374 6,6 8,3 0,61 0,918 

RS918060 RS1914854 LOC400958 02:065009962 
 

03:111227300 8,0 8,5 0,63 0,773 

RS7527828 RS11909106 WDR64 01:239915670 
 

21:014852044 7,3 8,1 0,34 0,706 

RS555017 RS13235422 MBOAT1 06:020293030 
 

07:017020565 8,3 8,6 0,66 0,646 

RS2268474 RS2059421 TSHR 14:080594160 PLEKHB2 02:131592500 6,8 8,0 0,42 0,568 

RS1202201 RS2165662 MBOAT1 06:020270857 CNTN5 11:099647982 7,3 8,4 0,91 0,512 

RS876594 RS550391 PRMT8 12:003531820 
 

13:068988875 6,9 8,2 0,14 0,402 

RS201247 RS2874146 OFCC1 06:010122547 TRA@ 14:021444239 8,0 8,3 0,25 0,383 

RS1206988 RS2874146 OFCC1 06:010132793 TRA@ 14:021444239 8,1 8,4 0,21 0,354 

RS16945681 RS6139898 
 

18:003926384 CRLS1 20:005962954 7,7 8,0 0,15 0,314 

RS6429288 RS2822767 
 

01:239897499 
 

21:014844910 6,9 8,0 0,05 0,248 

RS6845037 RS2644262 
 

04:182355503 FHOD3 18:032477564 8,1 8,5 0,31 0,193 

RS10909918 RS663003 PRDM16 01:003198235 
 

11:118328358 6,6 8,5 0,13 0,188 

RS6429288 RS11909106 
 

01:239897499 
 

21:014852044 8,0 9,8 0,06 0,181 

RS9894630 RS7889974 SPAG9 17:046526413 
 

X::140992709 9,1 9,7 1,41 0,176 

RS17661532 RS6472762 ANK1 08:041710431 
 

08:074300848 6,6 8,4 0,03 0,17 

RS3750736 RS4238282 OIT3 10:074341617 LOC644725 13:110436314 7,6 9,3 0,02 0,131 

RS9316160 RS368416 
 

13:045210726 
 

15:072301706 6,4 8,3 0,23 0,119 
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SNP identifiers Annotations SNP1 Annotations SNP2 
Primary Dataset 

(GeneMSA) 

Replication dataset 

dataset (ANZgene) Case Control 

Analyses 

Case Control 

Analyses 
SNP1 SNP2 Gene SNP1 

Chrmosomal 

Position SNP1 
Gene SNP2 

Chrmosomal 

Position SNP2 
Omnibus Epistasis Omnibus Epistasis 

RS4238641 RS2029347 
 

16:017629616 KIAA1458 04:048108676 7,2 8,5 0,03 0,096 

RS6877916 RS10490018 
 

05:135269537 TRPM8 02:234582471 9,2 8,2 0,27 0,069 

RS10428541 RS10461060 
 

05:052760915 ATP8A1 04:042242207 6,8 8,6 0,06 0,063 

RS6429288 RS2178933 
 

01:239897499 SAMSN1 21:014831652 6,5 8,2 0,01 0,058 

RS6477190 RS7024902 
 

09:007371520 
 

09:032261795 8,0 8,1 0 0,038 

RS10500737 RS6761029 
 

11:011002835 
 

02:170345142 7,1 8,4 0 0,035 

RS1971156 RS1513536 CNTN5 11:099263024 
 

04:060111325 6,8 8,4 0,82 0,031 

RS1466971 RS9830450 CNTNAP4 16:075056976 ADAMTS9 03:064607296 7,0 8,1 0,01 0,008 

RS2410936 RS4334611 
 

05:106501648 FOXP1 03:071289593 6,8 8,1 0 0,001 

RS10773806 RS9548097 
 

12:129693670 
 

13:037384449 6,7 8,1 0,07 3E-04 

RS1548577 RS5910109 
 

07:019015687 ODZ1 X::123734843 6,4 8,1 0,01 9E-05 

RS4524788 RS4786850 
 

08:084793776 A2BP1 16:006285925 6,8 8,5 0,02 0 
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5.3 Data Encoding 

To evaluate the proposed binary encoding of the data and the PLINK binary encoding 

format the size of the resulting files was considered in relation to the original QTDT 

MERLIN format. Also the amount of information lost through the encoding of the 

original QTDT MERLIN format and the ability of each format to retain different types 

of information available today was computed. Table 16 provides a summary of the 

comparison. 
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Table 16 Results of Data Compression 

QTDR MERLIN Proposed Protocol PLINK ‘s protocol 

Information Loss for bi-allelic markers 

Used as Reference None 

strand location of 
heterozygote alleles 
Aa,aA 
Missing one of the two 
alleles 
A0, 0A, a0,0a 

Added Information capability 

tri or quad allelic 
markers 

Alleles deleted from a 
specific strand 

None 

Size* 

Pedigree File 
3.6 GB 

One binary file 
496 MB 

.bed file : 229.6 MB 

.fam file : 30 KB 

Map File 
12.6 MB 

.bim file : 14.1 MB 

Total:  3.612 GB 
Total : 243.7 MB 

*Using a dataset containing 1804 subjects with 532578 SNPs per subject. 
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5.4 Measure of epistasis 

In order to compare the proposed method for testing for epistasis and testing for 

association allowing for epistasis with the respective logistic regression models, a 

random subset of 218 SNPs were selected from a study that contained half a million 

SNPs and 1868 subjects described in [63]. All pairs of the randomly selected SNPs 

were tested on both methods with omnibus and epistasis as well as the 218 main 

effects. The Pearson’s correlation was then estimated for the main, omnibus and 

epistasis test performed with each approach. The cut-off for the Pearson’s correlation 

is set a-priori for accepting two tests as having a reasonable agreement to r > 0,95 

[47,61].  

An effort was made to keeping all variables that affect runtime for each test constant. 

The same computer was used for all analysis, the analysis were set up to run 

sequentially, while no other program was running on the computer. To make sure the 

implementation of each method was fair, the statistical package R was used to 

implement both methods [61]. R provides all required functions for these tests pre-

implemented and open sourced; all scripts used in the benchmarking of the two 

solutions are also available.  

In order to evaluate the performance of the proposed measures of interaction testing a 

random sample of genetic data was analyzed and the results of the proposed method 

were compared to those of logistic regression. Although both the logistic regression 

and the Pearson’s chi-square test are well established methods for obtaining 

estimations of the main effect of a single marker it is important to compare the two in 

this instance since the chi-square test for the main effect forms the basis for estimating 

the proposed epistasis effect measure between two markers. In Figure 25 a 
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comparison of the main effect estimations is presented. The Pearson’s correlation 

between the two main effect measures is 0.98755. 

The Pearson’s chi-square test performed on a contingency table for 2 SNP genotypes 

is compared in Figure 26 with the omnibus test performed using the logistic regression 

model fitting approach. The Pearson’s correlation for the two omnibus measures is 

0.99287. 

The comparison between the tests of the interaction between the two SNPs for 

association with the categorical phenotype, estimated with the two methods, is 

presented in Figure 27. The Pearson’s correlation for the two epistasis measures is 

0.9616. 

The complete set of all 2 SNP tests (23.6k tests) took 332.5 seconds to run with the 

proposed methodology based on the Pearson’s chi-square test, while the Logistic 

Regression took 6628.37 seconds to run. This constitutes an increase in speed of 

1993% or roughly twenty times faster than the currently commonly used approach of 

logistic regression.  

The two approaches’ results have a reasonable agreement with a correlation 

coefficient greater than 0.95 for each of the main effect, omnibus and epistasis effect 

tests. Non-independence between SNPs can occur due to Linkage Disequilibrium, and 

that will result in wrong results for the epistasis but not the omnibus test since this 

affects the additive property of Pearson’s chi-square. However, well established 

methods exist that can test for LD between markers and therefore detection of false 

positive results because of this issue are minimized.  
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_____________________________________________________________________ 

 

Figure 25 Main effect comparison between logistic regression (y-axis) and 

Pearson’s chi-square test with Yates correction for continuity (x-axis). 

_____________________________________________________________________ 
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_____________________________________________________________________ 

 

Figure 26 Comparison between the omnibus measures produced using the 

Pearson’s chi-square test with Yates correction and the logistic regression model 

fitting test. 

_____________________________________________________________________ 
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___________________________________________________________________________ 

 

Figure 27 Comparison between the Epistasis measures produced using the 

Pearson’s chi-square test with Yates correction and the logistic regression model 

fitting test. 

___________________________________________________________________________ 
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5.6 Computation of multiple response variables  

Testing the efficiency of the proposed algorithm for computing the multidimensional 

contingency tables involved the analysis of 1, 5 and 10 response variable within the 

same dataset (the primary dataset) was carried out. The variables were all randomly 

generated to match the distribution of the case-control data in the real data. The 

analysis of each group of different phenotypes were run in sequence once using the 

proposed algorithm (Figure 10) and then the sequence was repeated for a total of 3 

times to get the average runtime s. For the traditional approach (Figure 4) [4,50] since 

the analyses is identical when analyzing 5 phenotypes or the first 5 of a total of 10 

phenotypes, in order to reduce the consumption of computational capacity on the 

HCC-HPC the phenotypes were run 3 times generating average runtimes for the first 

1, the first 5 and all 10. The results are shown in Table 17.  

 

Table 17 Performance of proposed contingency multidimensional contingency 

table computing algorithm 

Response variables Proposed algorithm Traditional approach 

1 315min 311min 

5 311min 1584min 

10 320min 3320min 

 All times given in minutes 
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5.7 Evaluation of significance through replication 

The replication test provides two ways to test if the results replicate between two 

independent datasets. The first and more obvious approach is the replication of high 

significance results in both datasets. The second and often overlooked approach is the 

replication of the effects between the different genotype combinations. When testing a 

pair of SNPs for interaction the total number of genotype combinations is nine 

(columns in Figure 9). Each of the effects (omnibus representing the two main effects 

and epistasis, and also the epistatic effect alone) should be distributed in the same 

manner between the two datasets. Figure 28 shows an example of such a test for 

correlation. The graphs represent the odds ratio for each genotype for a specific 

response variable and effect. The X and Y axis represent the main and replicating 

dataset respectively. For a valid replication we expect the majority of the genotype 

combinations, especially the more frequent ones, to be on the x=y diagonal. 

Another way to visualize if a test replicated between two datasets across all genotypes 

with strong associations to disease is shown in Figure 29. In this figure the algorithmic 

steps are followed to estimate the chi square for the omnibus measure between the two 

SNPs as described in section 4.3.1(page 77). In this figure though, in order to get a 

visualization of the distribution of the measure across the genotype combinations for 

each cell  

∑
(         )

 

  

 

 

 

 

The result is a chi square measure of the effect of each column (genotype 

combination). In order to add some more information in the visualization a sign is 
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added to indicate if a genotype combination is more frequent in cases or controls. 

Positive indicates that the genotype combination’s effect is associated with 

predisposition towards having the disease (being a case) while negative with being 

healthy (control). 
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___________________________________________________________________________ 

 

Figure 28 Replication test for correlation of distribution of effects on genotype 

combinations between the two diseases 
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Chi square measure (arbitrary units) per genotype combination sign based on effect direction (cases negative, control positive) 

 

Figure 29 Bar chart of the chi-square metric per genotype in the two datasets signed for phenotype predisposition direction at each 

column. 
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5.8 Hybrid cluster cloud high performance 

computing (HCC-HPC) 

Each HPC system was found to have significant disadvantages [30] that disabled it 

from being used alone for this analysis. Specifically the WAN grid had very limited 

data bandwidth between the nodes and the grid’s server and did not allow for inter-

node communication, while the LAN grid did not have these disadvantages but has 

significantly less computational resources available.  

However, it was found that their advantages and disadvantages were complementary, 

suggesting that utilizing both resources in parallel utilizing a new purpose built load 

balancing algorithm with access to both systems could provide the computational 

capacity necessary to carry out the complete 2 SNP interaction testing of a GWAS 

more efficiently. Existing models of Hybrid Multi-Cloud architectures [85] were 

examined; these did not provide enough control to the developer as to what grid each 

part of the analysis would execute on.  

A benchmarking application was developed that replicates the algorithmic approach of 

this analysis enabling the estimation of the total runtime on each HPC system and 

identifying the bottlenecks that would be encountered if the analysis were to be 

performed on it.   

A feasibility study focused on the computational complexity and statistical power of 

detecting significant gene-gene interactions associated with disease was performed in 

the beginning of this work. The results indicated the need to develop fast algorithmic 

approaches to perform complete analyses of whole genome data producing robust 

statistically accurate measures of the probability that each hypothesis tested is a false 
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positive. The load capacity of the available HPC systems (one relying on load 

balancing clusters, and the other relying on a cloud utilizing desktops simultaneously 

used by their primary users [85]) was tested in order to identify significant bottlenecks 

associated with each [86].  

The results were performed with a 2000 subject dataset (1000 case and 1000 controls) 

and with a datasets with 1k, 5k, 10k and 20k SNPs. The WAN grid server required 

that all results are transferred to the server until the analysis is complete therefore to 

avoid filling up its storage space (only 200GB were available for all projects running 

on it and for both input and output files) all results were deleted after they were 

transferred to the server. This may be a technical limitation, but it’s an important one 

that is worth mentioning since the required analyses required several orders of 

magnitude larger storage capacity that would not be possible under the current 

architecture even if it was to undergo a conservative upgrade. Thus the runtimes 

include the data transfer to the server, but the limitation of the disk size was bypassed. 

The results are shown in Table 18.  

The results in the Table 18 were further expanded to include estimations based on the 

20k SNPs dataset of how long each HPC would take to run in 300k SNPs 550k SNPs 

and 1000k SNPs respectively with the same number of subjects (2000). These 

estimations were computed by taking the 20k SNP datasets runtimes and estimating 

the runtime per work node. Since the computational requirements per worknode 

remain constant (two 1000 SNPs subsets and all 2000 subjects) the only variable that 

changes when the number of markers in the GWAS is increased is the number of 

worknodes. Estimating the number of work nodes each theoretical GWAS dataset 

would generate is done through the steps provided in section 4.6.4. However since 

each HPC system has a different total number of nodes, the estimations reflect the best 
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case scenario for each HPC system assuming all nodes are utilized for performing the 

proposed analysis.  

The results indicated that neither HPC could perform the analyses by itself. The WAN 

grid required a large amount of data to transfer to and from the nodes, as well as to 

store the data on the grid’s main server. Since the machines were spread across a large 

geographical region and were connected through a dedicated private network, the 

impact on performing two SNP interaction testing on the cloud server alone was 

significant to the available networking resources of the network. The majority of 

connections between sites were T1 connections (1.5Mbit upload and 1.5Mbit 

download), with some having T3 (44Mbit) connections. Within each site the majority 

of computers were connected on a 100Mbit LAN network with a few exceptions with 

1000Mbit LAN speed. Since all of these and other machines share these connections, 

and since high priority communications took place constantly throughout the network, 

initiating an analysis that would have had consumed too much of this resource would 

have had an impact on the global operations of the company.  

Thus a preliminary assessment on the amount of data needed was performed. This was 

done by analyzing a randomized sample dataset of 5000 SNPs on the cloud alone. The 

analyses was identical to the one proposed in the HCC-HPC section of chapter 4, with 

the exception that now all results that were returned to the server would be fully 

calculated and annotated. In order to reduce the transfer of data and keep a level field, 

results transferred were limited to those with a p-value for epistasis less than 0.01. The 

result was a file with a size of 1,9 Gbytes. Since the method is deterministic and the 

dataset used had a normal distribution, we can estimate the minimum size needed for 

the 550,000 SNP dataset. That’s 2,30e4 Gbytes, i.e. several orders of magnitude 

higher than the limit of 200GB on the server’s hard drive. It’s important to note that 
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this number only represents the 1% distribution of random top results, in reality true 

positive results will require extra space (although they may not be that many for the 

epistatic effect alone). 

With runtimes for the proposed framework on the 300k, and 550k SNP GWAS 

available it was also possible to estimate the expected system runtime of the proposed 

framework with the current hardware for larger datasets that may become available in 

the future (Figure 30).   
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_____________________________________________________________________ 

 

Figure 30 Estimated runtime based on the number of tests for GWAS up to 3.1 

million SNPs. 

___________________________________________________________________________ 

 



138 
 
 

Table 18 Experimental and estimated runtime on each HPC and proposed framework. 

Number 

of SNPs 

Number of 

tests 

Number 

of Work 

units 

LAN grid (200 nodes) WAN grid (1500 nodes) Proposed HCC-HPC 

CPU time* System time* 

CPU 

time* 

System 

time* 

CPU time* System time* 

Times derived experimentally with 1000 SNP size work units on a dataset with 1000 case and 100 controls 

1,000 5.00e05 1 3.01 3.01 5.4 5.40 3.5 3.68 

5,000 1.25e07 12 34.9 2.9 65.16 5.43 44.16 3.7 

10,000 5.00e07 50 154 3.00 272.5 5.45 185 3.79 

20,000 2.00e08 200 618 3.09 1092 5.46 727 3.64 

Times Estimated by assuming linear increase with respect to number of tests performed with 20k SNPs test 

300,000 4.50e10 45000 139090 695 179999 164 163.5 109 

550,000 1.51e11 151250 467499 2337 604999 550 549000 366 

1,000,000 5.00e11 500000 1545453 7727 2727270 1818 1818000 1212 

 

* All times are given in minutes. 
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Chapter 6  Discussion 

This chapter begins with a discussion on the biological results generated through the 

use of the proposed framework. Focus is given on the impact of the biological result’s 

replication success with statistically significant results to the confidence of the 

proposed methodology in performing complete 2 SNP interaction testing in GWAS 

datasets. 

The rest of this chapter goes through each of the innovations proposed as part of this 

framework and discusses the results of specific experiments aimed at evaluating the 

performance of each.  

6.1 Biological Results 

The proposed methodology’s results in the analysis of the primary dataset yielded 

statistically significant results even after adjusting for multiple testing. This is a great 

achievement since none of the previously conducted two SNP interaction frameworks 

succeeded in discovering statistically significant results after adjusting for the multiple 

testing problem with the stringent Bonferoni correction.  

Replication testing was conducted on all results that passed the threshold of –log p-

value > 8 in the primary dataset and had both SNPs represented in both datasets. This 

resulted in a total of 84 tests that were repeated in the replication dataset, an 

independent MS study. The a-priory expected number of replications under the null 

hypothesis was that less than 1 (0.84) tests would replicate by chance with the 
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threshold for statistical significance set at a p-value of 0.01. However, a total of 49 

tests were replicated having statistically significant values in the second dataset as 

well. Moreover, nearly all of these tests revealed very strong epistatic effects with 

many orders of magnitude greater than the a-priory defined threshold for statistical 

significance. An even closer look into the distribution of effects on genotypes between 

all of the 49 replicated tests, revealed that the distribution of effects between the 

genotype combinations of each replicated two SNP pair were nearly identical, 

providing further evidence that the replicated results are probably true positive.  

Furthermore, a closer look at the replicated results indicates that they all come from 

within a very specific region commonly referred to as the Human Leukocyte Antigen 

(HLA) region. The HLA region has been considered as a primary suspect for 

immunodeficiency diseases such as MS, with many reported associations across many 

studies[15,80,81] (see Figure 31). 

To summarize the following evidence were found supporting the success of the 

proposed framework: 

(1) Analysis on the primary dataset yielded statistically significant results even 

after Bonferoni correction for multiple testing.  

(2) The top 84 results that were made up of SNPs also genotyped in the 

replication dataset were tested for replication with 49 replicated 

statistically significant results.  

(3) An examination of the distribution of the effect size on each of the 

genotype combinations of the two SNPs revealed matching distributions 

between the two datasets for the replicated, but not for the non-replicated 

results.  
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(4) All the replicated results implicate SNPs in and around a region called 

HLA, known to be associated with MS (see Figure 31).  

The key to note here is that all the above evidence is independent. Thus the probability 

of the combination of the above evidence existing by pure coincidence is highly 

unlikely. This clearly meets all criteria for validation testing of the results 

[29,5,1,54,87]. Comparing to all other methods in the literature that attempted to 

perform two SNP interaction testing, this is the first method based on the literature 

review conducted as part of this work that has provided statistically significant results 

and replication success in an independent dataset [32,54].  

 

 

Figure 31 PubMed search linking Human Leukocyte Antigen to multiple 

sclerosis where 1829 publications were found 
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6.2 Data Encoding  

Compressing data requires a balance between readability, loss of information and 

required reduction in data size. In order to make a decision on how to balance these 

parameters it is important to keep in perspective how the data will be used.  

6.2.1 Information Loss  

On one hand loosing information due to encoding is undesired; however, if the 

encoding is used to simply speed up analyses then it’s not an issue so long as the 

original un-encoded file is kept for future analyses. However if an algorithm that 

needs the information of which strand each heterozygote marker’s alleles are on is 

developed[83], or if there are deletion regions overlapping the markers in either 

strand, then utilizing the encoding methodology proposed in this dissertation will in a 

single table or file encode all of that information efficiently. Another issue is the 

actual storage of the data for long term use or for transferring over the internet. 

Utilizing a non-lossy approach to compressing the data that incorporates all genetic 

information into a single file can reduce the resources required[13,52].   

6.2.2 Added Information Capability  

In this dissertation the focus was on bi-allelic markers as they are the ones that current 

high throughput genotyping technologies are able to genotype. However, it should be 

noted that the format of QTDT Markers enables encoding of tri or quad allelic 

markers as well since each allele is encoded as an ASCII character. Neither PLINK’s 

neither binary ped file nor the format proposed could handle tri or quad allelic 

markers. Large datasets with tri-allelic markers do not exist today (to the knowledge 
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of the author) while information on deleted markers is available through CNV 

analyses and other methodologies available to the various genotyping platforms. Tri-

allelic and quad allelic markers were ignored in this encoding since they are very rare 

and unlikely to be included in GWAS analyses in the future[31,36].  

 

6.2.3 Size of encoded data  

The compression rate can easily be estimated since both encodings are deterministic, 

however an actual test performed using an average dataset size of 1806 subjects and 

532,579 markers is also provide as an example. The PLINK binary ped file was able 

to compress the file to 1/15
th

 of its original size while the proposed method 

compressed the file to exactly double the size of that achieving just 1/7.5
th

 of the 

original size[13,52]. However, both encodings produce enough of a compression to 

overcome the issue of the large data since the data can now fit on the average 

computer’s physical memory (RAM) as today’s typical computer has at least 1 GB 

available[52].   

6.3 Measure of epistasis 

The proposed measures of epistasis and the omnibus measure (testing for association 

allowing for epistasis) were compared to the equivalent logistic regression test. Both 

the correlation between the results, as well as the computing of runtime of each 

approach was evaluated.  First the issue of correlation with logistic regression, the 

traditional analytical approach for this type of analyses is addressed.  
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The a-priori defined threshold for the Pearson’s correlation was passed in the omnibus 

and epistasis measures indicating that there is a reasonably good agreement between 

the two approaches to measuring main, omnibus and epistasis effects.  

An expected problem of the proposed methodology might be caused by non-

independence between markers. This dependence would cause epistasis test results 

estimated relying on the Pearson’s chi-square additive property as described in this 

work to be incorrect. However, well established techniques exist for testing for 

dependence between markers, commonly caused by Linkage Disequilibrium [37]. It’s 

also possible to test for Linkage Disequilibrium in various populations based on other 

datasets that have been fully analyzed and made the results available through the 

HapMap project [36]. The omnibus measure does not utilize the additive property of 

the Pearson’s chi-square test, therefore its validity is not affected by LD [47].  

Runtimes of the two methods were compared, while keeping all other parameters that 

affect runtime of the analyses constant. The proposed Pearson’s chi-square approach 

to estimating epistasis was twenty times faster. This could be translated in savings in 

terms of computational resources needed to perform specific analyses or in the case 

where more tests are needed to be performed than the resources can provide, a 

significant boost by a factor of 20 for the number of possible tests to perform on a 

given computational resource. 

Furthermore, the proposed methodology provides both a measure of interaction 

(epistasis) as well as a measure of association allowing for interaction (omnibus), 

through the analyses of a single contingency table.  
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*MAF= minor allele frequency 

*LD= Linkage Disequilibrium 

 

Table 19 Comparison proposed versus existing measures of epistasis using statistical or data mining approaches 

 

Measures 
Epistasis 

test 

Allow for 

epistasis 

tests 

Response 

variable 

Adjustment 

by 

covariates 

Marker 

type 

Tested on 

real data 

Replicated 

results 
Bias 

Result 

interpretation 
Scalability References 

Proposed 

Method 
Yes Yes Categorical No Genotypic Yes Yes 

Negative on 

LD for 

epistasis 

p-values High [2] 

Regression 

analyses 
Yes Yes 

Categorical

, linear 
Yes 

Genotypic 

Allelic 
Yes Yes 

*LD, in 

some cases 
p-values Low [13,54,55] 

Odds ratio 

Multiplicati

ve 

Interaction 

Yes No Binary No Allelic Yes No 

*LD, 

*MAF, size 

of dataset, 

Heterozygot

e effects 

Approximate

d p-values 
High [3,32,56] 

Case only 

(χ
2
) 

Yes No Categorical No Genotypic Yes No 
Non linkage 

equilibrium 
p-values, High [13,32] 

Recursive 

Partitioning 
No Yes Categorical No 

Genotypic 

Allelic 
Yes No 

*LD, main 

effects 

None, 

requires 

follow-up 

analyses 

Medium, 

parameter 

dependant 

[32,57,58] 

Multi-

dimensiona

lity 

reduction 

(MDR) 

No Yes Categorical Yes 
Genotypic 

Allelic 
Yes No 

*LD, main 

effects 

None, 

requires 

follow-up 

analyses 

Low [59,60] 
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6.4 Computation of multiple response variables 

In tests performed with the analysis of a single response variable or multiple response 

variables, the expected reduction in runtime was successfully recorded as expected 

(Table 17). The minor deviations between the computational resources available to the 

analyses during each test seem to provide a stronger effect to the runtime than adding 

more than one response variables to test the proposed methodology. However, using 

the traditional approach the computational time of the analysis was consistently 

linearly increased with the addition of each response variable. This result was 

consistent both in terms of the primary analyses of the complete whole genome scan, 

as well as in terms of the annotation stage where response variables were used to 

simply annotate top results from other analyses. Since the algorithm does not attempt 

to estimate but rather attempt to completely compute all contingency tables there’s no 

loss of power associated with this increase in efficiency.  

This algorithm only provides a performance boost when more than one contingency 

table based on the same explanatory variables and different response variables is 

needed. In GWAS associations studies this is the typical case, thus the performance 

increase is valuable since even though linear, it has a pragmatic impact on the runtime 

as it can enable researchers to include a number of the response variables in a single 

analysis run.  
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6.5 Evaluation of significance through replication 

Replication testing is considered the holy grail of verification of reported genetic 

associations to disease [8,27,29,32]. In order to perform a replication test, an 

independent GWAS dataset is needed that has near identical inclusion criteria (same 

disease definition) and the same genetic markers (genotypes). For the purposes of this 

dissertation, the validity of results needs to be determined in order to provide by 

extension the validity of the proposed framework that was used to derive them.  

The replicating dataset had matching subject inclusion criteria, had more subjects, but 

unfortunately it was genotyped on a platform that only included 300k SNPs compared 

to the 550k SNPs in the primary dataset. However, both genotyping platforms were 

generated by the same company (Illumina) and it seems that the 550k platform is in 

fact an extension of the 300k platform. That is the Illumina 550k platform contains all 

300k SNPs from the Illumina 300k platform plus 250k extra SNPs.  

This limited the replication tests to only those that were composed of SNPs genotyped 

in both platforms. However, since the goal of the replication test was primarily to 

provide evidence as to the performance of the proposed framework that is not a 

problem as long as the remaining replicable tests produce successful replications. The 

results with markers not in the replication dataset will be published in order to provide 

the opportunity to researchers conducting new studies to attempt to replicate them in 

future studies of other independent datasets. The threshold of -log p-value >8 was set 

as the threshold for performing replication tests.  

In order to gain further evidence of the replication success between the two datasets, 

two types of figures were generated for all replicated results (Figure 28 and Figure 

29).  
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Figure 28 presents the odds ratio between the two datasets on a specific result plotted 

with each dataset on an axis. We expect that if a result is indeed a true positive then 

the odds ratios of all genotype combinations will be presented across the y=x 

diagonal, as is the case in the example of Figure 28.Figure 29 presents the chi-square 

metric across each genotype combination in each dataset with a sign added to indicate 

if the effect indicated predisposition towards being either a case or a control. It’s clear 

from Figure 29 that the genotype combinations with the strongest effect sizes match in 

both effect size and in predisposition sign between both datasets even though the 

measures used to identify top results and test for replication do not consider the 

distribution of effects across the genotypes. It’s also useful to note that in this graph 

the predisposing genotypes are identified, a key question that needs to be answered as 

a post processing step in all genetic analyses results[8,25] as it can be used to generate 

further hypothesis on the biological mechanisms that form the causality of the 

detected epistatic effect.  
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6.6 Hybrid cluster cloud - high performance 

computing (HCC-HPC) 

6.6.1 Performance of WAN grid alone 

Utilizing the WAN grid alone for this analysis was prohibitive for multiple reasons. 

First, the server that was controlling the entire system only had a 200GB storage space 

and a requirement that all input, output data and debugging data be stored on it for all 

analysis taking place on the WAN grid. That is, not only analyses using this proposed 

framework. The size of the resulting data are several orders of magnitude larger. 

Secondly, the data would need to be transferred to and from the nodes of HPC that are 

scattered around the world and connected through the private network of one of the 

biggest companies in the world, generating that amount of traffic on the network is 

expected to have an impact on the day to day operations of the company and was thus 

prohibited to even try by the IT (Information Technology) administration. Thirdly, 

and perhaps more significant, the results showed, that for large datasets using the 

proposed HCC-HPC platform the runtime was reduced. This is because considerably 

less time was spent waiting for data transfers to complete when using only the WAN 

grid alone.  

6.6.2 Performance of dedicated LAN 

The dedicated LAN performed faster than either the WAN grid or the proposed HCC-

HPC platform but only for very small datasets where the number of work nodes 

created was less than 200. The reason is that it only has 200 processing nodes, while 

the WAN grid had 1500, and by extension the HCC-HPC can utilize both the 1500 
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WAN and the 200 LAN grid simultaneously. When the number of work nodes created 

to analyze a dataset exceeds 200 the analyses on the LAN grid significantly slows 

down since it can only run 200 work nodes in parallel while the WAN grid can 

analyze 1500.  

Considering that the benchmarking was conducted under ideal load conditions for the 

LAN grid given that it was the only application running (tests utilized a special high 

priority queue that suspended all other work on the HPC until all jobs in the priority 

queue finished). The average usage of the system is at around 80%, and genetic 

analyses were considered highly risky exploratory work. So the slots allocated for 

analysis were actually of very low priority, that only ran when no other queues request 

resources.  

6.6.3 Performance of the HCC-HPC proposed platform 

Overall the HCC-HPC performed better than using either HPC alone providing the 

necessary computational resource to perform the complete 2 SNP interaction testing 

framework in a reasonable time. 

The intermediary results coming from the WAN grid that are highly compressed and 

include all results that pass a threshold of p-value < 0.01 in either omnibus or epistatic 

measures in any of the analyzed phenotypes are stored in a permanent storage to 

enable quick future queries testing hypothesis that involve a subset of the search 

space. These are accessible to all machines in the private network equipped with a 

web service that enables query and visualization of all results generated in real time. 

This way, even though the primary 2 SNP interaction analyses was only interested in 

the top results in this case to provide evidence to the effectiveness of the method, in 

the future it’ quite possible that researchers will want to data mine the results buried 
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within the top results to test individual hypothesis they may have. Multiple testing 

only applies to the number of tests a researcher performs, thus if someone were to 

generate a list of tests that he had a-priory defined a hypothesis for, then the multiple 

testing will only apply to the number of tests he will perform, and not to the entire set 

of possible tests performed to generate the dataset. This is assuming of course that 

there was no bias towards the generation of the hypothesis tested by the actual results 

of this analysis.   

The proposed HCC-HPC system has provided the computational requirements needed 

to perform the analyses in a reasonable time frame and considerably faster than using 

either of the two HPC platforms it utilizes individually. However, it is applicable only 

to the problem of testing all pair wise SNPs in a GWAS study for an effect, and even 

though it is an innovative contribution, it’s only a minor one.  

6.7 The proposed framework versus other gene-

gene interaction testing methodologies 

Table 19 provides an overview of the proposed and existing gene-gene interaction 

methodologies. It’s clear that from all tests conducted so far with any methodologies 

the proposed method utilizes the most computational resources. It’s also the only one 

that provides a complete framework for storing all results with a p-value of 0.01 or 

less on any measure and response variable analyzed giving the opportunity to 

researchers to test their future hypothesis without needing to re-run the analyses. 

Furthermore the WAN grid used that provided the majority of the computational 

resources is actually rarely utilised and relies on redundant computing resources on 

personal computers. Thus although it’s a large resource, it’s impact to the cost, and 
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power consumption are minimized since it’s designed to identify machines that are 

already switched on and running (otherwise their resources would had been wasted). 

In doing so, the proposed framework can within a reasonable time span, analyze even 

the largest reported GWAS datasets in existence today (1 million SNPs).  

The proposed method is scalable and provides both a measure of interaction (epistasis) 

and also a measure of the association allowing for interaction (omnibus). It’s the only 

method to have discovered statistically significant results, after Bonferoni correction 

for multiple testing. Also, it’s the only method that has replicated its top findings in an 

independent replication dataset yielding statistically significant results in the second 

replication dataset as well. 

Marchini et al. [54], proposed an exhaustive search for association allowing for 

interaction only on simulated data. The proposed framework presented in this thesis 

dissertation allowed testing for epistasis (epistasis measure)as well as testing for 

association allowing for epistasis (omnibus measure).  

The BOOST [56] and the complementary GBOOST [64] algorithms compute epistasis 

through the use of odds ratios.  Furthermore, even though these algorithms were tested 

on real data, and also tested for replication they did not succeed in generating 

statistically significant results after Bonferoni correction. The replication test although 

it did produce some top results in both datasets, the number of these was not greater 

than what was expected assuming no true positive effects were included in them 

[56,64].  

Recursive Partitioning Tree, and also Random forests techniques [57,58], offer some 

key features, specifically, they enable testing for more than 2 SNP interactions and 

they could also be used to test for interactions between multiple genetic loci, and 

environmental factors. Their key disadvantage though is that they can only be applied 
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to small subsets of data, and not to an exhaustive search of a GWAS. To date, 

statistically significant or replicated results have not been discovered with either 

method [57,58]. 

6.8 Potential pharmaco-genetic impact of the 

proposed framework 

Drugs function by binding and selectively interacting with specific pharmaceutical 

targets. Each drug has its own target(s) that is a protein that it can bind to or interact 

with to modulate its function in a way that inhibits, stimulates or modifies its 

action[88]. With the complete sequencing of the human genome one might expect a 

plethora of drug targets for many diseases to be discovered[7]. This however isn’t the 

case, since the analytical techniques applied to this data were focused on simple 

Mendelian diseases (diseases where a single genetic polymorphism was responsible 

for a phenotypical trait) while the majority of common diseases in humans are 

complex diseases (multiple genetic polymorphisms and environmental factors 

predispose a subject’s disease status)[8].  

The proposed analytical framework attempts to discover evidence of interactions 

between genetic polymorphisms. Thus, looking for epistatic effects, that are closer to 

what is expected to be the underlying causative effect of complex diseases.  

Once statistically significant and replicated results are identified (as is the case in the 

work presented in this dissertation), these can be used to generate new hypothesis that 

can lead to: 
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New drug targets and by extension to new drugs that attempt to inhibit, stimulate or 

modify the action of one or both of the proteins generated by the epistatic effect 

detected[3,32,88]. 

Personalized medicine, by identifying interactions associated with adverse events or 

drug susceptibility, and thus creating the possibility to provide efficient widely 

available genetic tests that will help doctors decide what drug to give to a patient so as 

to increase the likelihood of positive outcome [3,32,79]. 
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Table 20 Two SNP interaction testing frameworks and the proposed method 

Multi-locus 

Interaction 

testing 

framework 

Computing Platform 
HPC 

Scalable 
Measures 

Largest number 

of tests recorded 

Deterministi

c 
Accessibility 

Tested 

on Real 

data 

Replicated 

statistical 

significance 

Refe

renc

es 

Proposed 

method 

Computing cloud of 1500 PC 

nodes, cluster with 200 nodes 
Yes 

Interaction, allowing 

for interaction 

550k SNPs, 

2000 subjcets 
Yes Low Yes Yes  

Exhaustive 

search Marchini 

et al 

10 node cluster Yes 

Association test 

allowing for 

interaction 

300k SNPs 

2000 subjects 
Yes Low No No [54] 

BOOST Single core x86 cpu No 
Odds ratio based 

interaction measure 

351k SNPs 

5000 subjects 
Yes High Yes No [56] 

GBOOST GPU 

Limited 

Scalabilit

y 

Binary odds ratio 

based interaction 

measure 

351k k SNPs 

5000 subjects 
Yes High Yes No [64] 

Recursive 

Partitioning 

(Tree)  

Symmetric multiprocessing 

under development 
No 

Follow up analyses 

necessary to provide 

interpretable measure 

Limited to only 

a few dozen 

SNPs 

Depends on 

parameters. 

High for 

small 

number of 

tests 

Yes No [58] 

Random Forest 

Symmetric multiprocessing, in 

theory HPC compatible with 

many architectures 

No 

Follow up analyses 

necessary to provide 

interpretable measure 

Limited to only 

a few dozen 

SNPs 

No 

High for 

small 

number of 

tests 

Yes No [57] 
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Chapter 7  Conclusions and Future Work 

7.1 Conclusions 

The proposed framework presented in this thesis dissertation looks at all possible pair-

wise interactions between the loci studied, performing an exhaustive search of a 

GWAS dataset. The proposed framework for performing complete two SNP 

interaction test on a GWAS dataset is broken up in the key original contributions of 

this work that had to be developed to address key issues relating to the problem and 

also provide computational efficiencies. Each original contribution performance on 

addressing it’s corresponding problem was evaluated through experiments designed at 

exposing the difference between the proposed approaches and the current approaches 

used in the field as described in the literature.  

The framework, involves first encoding the data in a lossless, binary format that 

significantly reduces its size. The proposed format encodes genotypic data into a 

binary format in order to compress it and at the same time preserve all the information 

relating to the bi-allelic markers and the strand location of each allele. However it 

does double in size the resulting datasets from existing encoding methodologies that 

are lossy, but looses information only necessary to certain type of analytical 

approaches. The analytical approaches that would benefit from the proposed format of 

encoding are primarily the ones that take into account the strand on which 

heterozygote alleles are based on. That is, the existence of the marker on a specific 

DNA strand, identifying if the second wasn’t available due to genotyping errors or a 

deletion over the marker on that strand. Due to the need to use two bits per allele for 
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encoding while only needing 3 states for each allele we were left with an available 

fourth state. That fourth state we proposed that is used to denote markers that were 

deleted as that information is becoming commonly available from genotyping 

platforms available already; however, future researchers may choose to use the fourth 

state to code a different state an allele can be in. Also in cases where compression of 

the data in a non-lossy way for storage, backup or data transfer is needed, the 

methodology proposed would be preferable. 

The proposed frameworks addresses the problem of identifying a measure of epistasis 

and a measure of association allowing for epistasis by proposing a new measure and 

algorithmic approach to estimating it based on Pearson’s chi-square association test 

and it’s additive property. The proposed method, which utilizes the Pearson’s chi-

square to estimate main effects and omnibus tests and uses its additive property to 

estimate the epistasis effect test is twenty times faster than the currently commonly 

used approach of logistic regression. The two approaches’ results have a reasonable 

agreement with a correlation coefficient greater than 0.95 for each of the main effect, 

omnibus and epistasis effect tests. Non-independence between SNPs can occur due to 

LD, and that will result in wrong results for the epistasis test only since this affects the 

additive property of the Pearson’s chi-square test. However this error results in a 

negative bias towards SNP pairs with LD between them. Even though this is not ideal, 

considering all other currently published methods for performing 2 SNP interaction 

most of them exclude SNP pairs that are in LD. Since this problem is not one that 

other methodologies address, the fact that this method only has a negative bias is an 

advantage since it can be looked at as the minimum score of the interaction between 

the two SNPs.  
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In GWAS studies, one key common observation is that more than a single response 

variable is interesting and needs to be analysed. In this dissertation, an algorithmic 

approach was introduced that enabled the analyses of multiple response variables on 

the same explanatory variables with minimal increase in computation time compared 

to analyzing a single variable at a time. The algorithm is based on counting the 

contingency tables, a p-hard problem, simultaneously with a single pass through the 

dataset for explanatory variables rather than a pass for each test.   

The framework presented in this dissertation study addresses the need for a high 

performance computing system capable of performing a test on all possible pair-wise 

interactions between two SNPs through the use of a proposed hybrid cluster-cloud 

high performance computing framework (HCC-HPC).  The combined effect of two 

SNPs on a phenotype can be interpreted in terms of the effect of a single marker’s 

association to the phenotype, commonly referred to as the main effect of the first SNP, 

the main effect of the second SNP, and the interaction between the two, commonly 

referred to as the epistatic effect. The total of these effects is considered as the 

omnibus measure, a term used in statistics to identify tests that are composed by 

multiple independent effects as in this case. The interaction between the two SNPs is 

also considered through a proposed new epistasis measure using logistic regression to 

compare and evaluate the performance of the proposed measure of epistasis.  

The proposed framework is used to perform analyses on GeneMSA, a GWAS with 

multiple sclerosis matching cases and controls that is used as the primary dataset. 

Stringent statistical significance thresholds were defined a-priory adjusted for the 

multiple testing problem. The validity of reported statistically significant results, and 

also of the top results with a p-value less than 10e-8 were tested for replication in an 

independent GWAS called ANZgene. Both the analyses of the main dataset and the 
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replication test of the top results of the main dataset revealed statistically significant 

results after Bonferoni correction for multiple testing. This provides evidence for the 

validity of the replicated statistically significant results, and by extension it also 

provides the evidence that the proposed framework, can discover validated through 

replication statistically significant results. 

7.2 Future Work  

7.2.1 Measure of epistasis for n SNPs 

In the proposed framework SNP pairs were tested for epistatic effects with success. A 

follow up question could be are there any three SNP epistatic effects associated with 

the disease. The search space grows exponentially when increasing the number of 

SNPs in every test, however, filtering, dimensionality reduction and other data mining 

techniques or heuristics could be applied to limit the number of SNPs to test to a small 

subset. However, even though the technology to reduce the search space is available, a 

computationally efficient statistical test to apply in testing for n SNP interaction does 

not. The epistasis measure proposed and accompanied algorithm that also produces 

the omnibus measure can be expanded to test for n SNP interactions. This work is 

ongoing and preliminary results indicate that the performance increase compared to 

applying a logistic regression model is increased even more than the 20 times increase 

in the 2 SNP approach.  
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7.2.2 Distributed Neural Network (NN) approach for subject 

cluster discovery 

Through the application of the two MS dataset to the two SNP analytical framework 

proposed a list of replicated statistically significant 2 SNP interactions were derived. 

These replicated interactions all lie on or very close to a region on chromosome six 

known to be associated with immunodeficiency disorders. This region is in high LD 

and also has many genes in it making it difficult to interpret the results from two SNP 

interactions to two gene interaction effects. The problem then arises on how to further 

analyze the results in the region in order to be able to identify exactly how many 

independent disease factors exists.  

As part of the future work of this dissertation, an analytical work is being designed 

that involves the creation of an efficient distributed Self Organizing Feature Maps 

(SOFM) framework. This framework attempts to cluster the subjects based on the 

genotypes in the region of interest. SOFMs were selected due to their unsupervised 

learning behaviour; this provides a way to test the produced results. If it successfully 

identifies clusters with mostly cases than controls, then we know that the cluster is 

driven by genetic markers associated with the disease.  

This method is already under development, some preliminary results are shown in 

Figure 32. The analysis was run on only cases, only controls and on all subjects, 10 

times. On all runs the largest cluster in both cases and in all subjects seemed to be the 

same involving 42 cases and 9 controls.  
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7.2.3 Gene-gene interaction testing in a box 

One of the key problems of the proposed framework is that it relies on two specific 

HPC resources that belong to a corporation. In doing so, the availability of the system 

is reduced only to that cooperation. In an attempt to provide an alternative that can be 

accessible by any group of researchers new iterations of the proposed framework need 

to be created for different types of computing resources available. A currently 

considered approach is the use of a single server machine with smp x86 processors as 

well as multiple GPU processors. GPU’s have already being applied in performing 

two SNP interaction testing by others (GBOOST program) using alternative analytical 

frameworks [64]. 

The goal is to develop a system prototype based on the compute unified device 

architecture CUDA[65] that utilizes the GPU cores for the analytically intensive part 

and the x86 CPU’s for dealing with annotating, sorting and storing the results. Once 

the system is up and running, estimation on its performance will reveal if it’s a 

direction worth pursuing. The system once completed will be used to provide an open 

analytical platform for analyzing GWAS.  
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Figure 32 Sample run of Neural Network for clustering subjects based on their genetic data at specific loci. 
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