
Assignments for The Road to Live Programming:

Insights From the Practice

Juraj Kubelka, Romain Robbes, Alexandre Bergel

February 9, 2018

1 Sessions and Assignments

The following Table 1 describes session assignments on unfamiliar source code.
Each assignment is described in detail in a corresponding session, referenced in
the table.

Table 1: Unfamiliar Session Assignments.
Session Id Assignment Reference
S1 Section 2
S2 Section 3
S3 Section 3, Section 4
S4 Section 5
S5 Section 6
S6 Section 7
S7 Section 8
S8 Section 9
S9 Section 10
S10 Section 11, Section 12

Two programming sessions had two assignments because the participants
finished the first task before 40 minutes limit and therefore there was a time to
work on another task.

All tasks were discussed at the before the session started to be sure that
participants understand them.

1

2 Assignment 1: Roassal Double Click

Introduction. Roassal supports single mouse click. It can be used as follows:

1 view := RTView new.
2 element := RTBox new color: Color random; size: 40; element.
3

4 element when: TRMouseClick do: [:event |
5 event element trachelShape color: Color random.
6 event signalUpdate.].
7 view add: element.
8 view open.

When you execute the code snippet, the following window appears:

Figure 1: Roassal view with a single box element.

If you click on the box element, it will change the color.

Task. Implement a support for double click in Roassal with a similar use.

Info. It is not supposed to finish the task within the session.

2

3 Assignment 2: Roassal Menu Background Color

Introduction. Currently, menu in Roassal may be defined using RTMenuBuilder.
For example:

1 | v |
2 v := RTView new.
3

4 RTMenuBuilder new
5 view: v;
6 menu: 'add' submenu: 'circle' background: Color blue callback: [v add: (RTEllipse new size:

40) element @ RTDraggable. v signalUpdate];
7 menu: 'add' submenu: 'box' background: Color blue callback: [v add: (RTBox new size: 40)

element @ RTDraggable. v signalUpdate];
8 build.
9 v open

When you click on ’add’. then you have a small menu that appear. As for
example:

Figure 2: Roassal menu builder.

Task. However, Circle and box do not have the color background. You basically
have to add a box behind each of the appearing submenu.

Info. It is not supposed to finish the task within the session.

3

4 Assignment 3: Implement edgesToAll: method
in Roassal

Introduction. Roassal offers the RTMondrianViewBuilder class to build graphs
and trees. For example, you can do:

1 | b |
2 b := RTMondrianViewBuilder new.
3 b nodes: Collection withAllSubclasses.
4 b edgesFrom: #superclass.
5 b treeLayout.
6 b open

It display a window as the following figure:

Figure 3: Roassal graph example.

The edgesFrom: method does the following: “The message edgesFrom: de-
fines one edge per node. For each node that has been added in the visualiza-
tion, an edge is defined between this node and a node lookup from the provided
block.”

Task. Now, we need additional way to build edges. For example, we need to
have a method RTMondrianViewBuilder>>edgesToAll: that can be used as:

1 | b |
2 b := RTMondrianViewBuilder new.
3 b nodes: Collection withAllSubclasses.
4 b edgesToAll: #dependentClasses.
5 b forceBasedLayout.
6 b open

Implement the edgesToAll: method to satisfy the previous code snippet.
You can similarly implement the edgesFromAll: method.

Info. It is not supposed to finish the task within the session.

4

5 Assignment 4: Roassal SVG Path Bugfix

Introduction. Roassal supports drawing SVG paths. Recently, the trans-
formation matrix was introduced in the Roassal. This code change probably
caused the functionality issues of the translatedBy: method while using the
SVG path element.

Task. Fix the issue of the translatedBy: method on the SVG path element.

Info. It is not supposed to finish the task within the session.

5

6 Assignment 5: Nautilus History of Navigation
Widget as a Plug-in

Introduction. Nautilus System Browser is a main development tool in Pharo
which can be extended by plug-ins. Existing plug-ins are accessible using Nau-
tilus Plugins Manager; the manager is available from top-left context menu of
Nautilus window, see Figure 4. Here one can activate or inactivate existing
plug-ins and define position.

Nautilus includes a history of navigation widget which is visible in the middle
part of the tool window. Developer can see last few navigated elements (classes
or methods) and choose any in order to go back to a particular element.

Figure 4: Pharo IDE: Nautilus System Browser, history of navigation, and
Nautilus Plugin Manager accessible from top-left context menu.

Task. Refactor History navigation list as plugin and make this plugin default.
In the end the current behavior and look-and-feel should not change.

You will likely need another browser for code editing. Particularly when
Nautilus browser become broken because of your changes. You can use a basic
one, which can be opened by calling Browser open. Or you can even register
the basic browser as default:

1 Smalltalk tools register: Smalltalk tools browser as: #nautilus.
2 Smalltalk tools register: Browser as: #browser.
3

4 Smalltalk tools register: Smalltalk tools nautilus as: #browser.

Info. It is not supposed to finish the task within the session.

6

7 Assignment 6: Nautilus Code Editor using
Rubric framework

Introduction. Nautilus System Browser uses for code editing area a TextMor-
phForEditView, an old framework for code view and editing. Pharo already
includes a new text editor framework, called Rubric. It permits rich text edit-
ing, highlighting, icons on the side, etc. Rubric is already used by Pharo 4
Inspector (GTInspector) or Workspace (GTPlayground).

The advantage of new Rubric framework can be shown on the following
example: the current solution explains any syntax error by inserting a message
in to the source code, see Figure 5. On other hand, Rubric can highlights a
particular code and display an error icon on the side.

Figure 5: Pharo IDE with (1) Example of Rubric workspace, (2) Rubric editor
supporting text highlighting and icons with assigned actions, (3) and Nautilus
System Browser with current code editor. The examples are accessible in Rubric
package as it is shown in Nautilus System Browser.

Task. Change Nautilus implementation the way it uses Rubric framework for
code editing. When you are done, improve syntax error handling the way, it
displays the error message as an error icon on the side with a particular message.

You will likely need another browser for code editing. Particularly when
Nautilus browser become broken because of your changes. You can use a basic
one, which can be opened by calling Browser open. Or you can even register
the basic browser as default:

1 Smalltalk tools register: Smalltalk tools browser as: #nautilus.
2 Smalltalk tools register: Browser as: #browser.
3

4 Smalltalk tools register: Smalltalk tools nautilus as: #browser.

Info. It is not supposed to finish the task within the session.

7

8 Assignment 7: Apparent Fast Navigation

Introduction. Various tools, e.g., Nautilus Browser, ImplementorsOf, and
SendersOf, allow to click to a source code with CMD key or CMD+SHIFT (on
Apple OS X) to show implementors, senders, definition, or users of a method or
class. This behavior is not apparent.

Task. Make this behavior apparent by adding a dynamic visual clue. Get
inspired by Eclipse IDE as in Figure 6. In that case the menu is displayed when
mouse is hovering over a code and CMD key is hold. It highlights considered
part of a source code and displays context menu with a particular options.

Figure 6: Eclipse IDE with fast navigation

Info. It is not supposed to finish the task within the session.

8

9 Assignment 8: Responsive Glamour Frame-
work

Introduction. Glamour is a framework for building UI tools widely used by
Moose and Pharo community. Someone can simply define new visual presenta-
tion of a data. Building some visual presentation however takes time and the
current Glamour framework does not come with a simple solution how to let
a user know that something needs to be computed and it is necessary to wait.
Users then are regularly confused and do not know whether the application is
working or frozen.

An example could be Moose Panel and Complexity Graph: when a moose
model is large and someone clicks on the complexity tab, there is no visual clue
that the click was received and the tool is building the graph.

Figure 7: Moose Panel and Complexity Graph.

Task. Extend the Glamour framework the way, that developers can indicate
to Glamour complex data representations. In that case Glamour should use
some kind of progress bar or other visual indication to inform a user that it is
building the representation. Ideally the building process should have possibility
to cancel it.

Info. It is not supposed to finish the task within the session.

9

10 Assignment 9: Nautilus Code Editor and Tem-
porary Variables Management

Introduction. When developers write new method code and use undefined
variable names, Pharo IDE asks for each variable if it should be defined as
instance variable or as temporary variable and Pharo IDE makes particular
changes to class or method definition.

When Pharo IDE identifies that some temporary variables are not used, it
asks for each variable if it can be removed. In that case it does not change the
source code well; it usually keeps one more space left and in case of removing
variable2:

1 methodName
2 | variable1 variable2 variable3 |

it ends up like this:

1 methodName
2 | variable1 variable3 |

In case it removes all the temporary variables, it ends up as following exam-
ple:

1 methodName
2 | |

Task. Change the method modification the way, it keeps only one space between
variable names and in case there are no other variables, it removes the whole
line with the two pipelines | | .

When you are done, ensure that the IDE does not ask removing each variable
separately but in one dialog.

Figure 8: Pharo IDE asking for (1) declaring an unknown variable, and (2)
removing unused temporary variable.

Info. It is not supposed to finish the task within the session.

10

11 Assignment 10: Workspace Interprets CMD+.
as Input

Introduction. Keyboard shortcut CMD+. (in Apple OS X system) is used
for interruption of an active process. It raises an user interrupt exception and
opens a debugger. When a Playground (Workspace) window is active and the
keyboard shortcut is pressed, apart from the user interrupt, it interprets the
shortcut as an input. Moreover, if a text is selected in the Workspace, it is
replaced by the dot character.

You can reproduce it as following:

• Open Workspace from the World menu,

• press CMD+. (a debugger should open, you can click proceed),

• check the Workspace where a dot character should appear.

Task. Fix the issue: CMD+. should serve as a keyboard shortcut for user
interruption, but it should not be interpreted as an input by any input field.

Info. It is not supposed to finish the task within the session.

11

12 Assignment 11: TAB key is broken in GT-
Playground

Introduction. When a user writes a code in the Workspace, the TAB keystroke
is ignored. This keystroke should move cursor forward and indent the text on a
current line.

You can reproduce it as following:

• Open Workspace from the World menu,

• press TAB key,

• nothing should happened.

Task. Fix the issue: TAB key should move cursor forward together with a text
ahead.

Info. It is not supposed to finish the task within the session.

12

	Sessions and Assignments
	Assignment 1: Roassal Double Click
	Assignment 2: Roassal Menu Background Color
	Assignment 3: Implement edgesToAll: method in Roassal
	Assignment 4: Roassal SVG Path Bugfix
	Assignment 5: Nautilus History of Navigation Widget as a Plug-in
	Assignment 6: Nautilus Code Editor using Rubric framework
	Assignment 7: Apparent Fast Navigation
	Assignment 8: Responsive Glamour Framework
	Assignment 9: Nautilus Code Editor and Temporary Variables Management
	Assignment 10: Workspace Interprets CMD+. as Input
	Assignment 11: TAB key is broken in GTPlayground

