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Abstract—The design of sustainable mobile networks is key
to reduce their impact on the environment, and to diminish
their operating cost. As a solution to this, we advocate Energy
Harvesting (EH) Base Stations (BSs) that collect energy from
the environment, use it to serve the local traffic and/or store
it in a battery for later use. Moreover, whenever the amount
of energy harvested is insufficient to serve their traffic load,
BSs purchase energy from the power grid. Within this setup,
a smart energy management strategy is devised with the goal of
diminishing the cost incurred in the energy purchases. This is
achieved by intelligently controlling the amount of energy that
BSs buy from the electrical grid over time, by accounting for the
harvested energy, the traffic load, and hourly energy prices. The
proposed optimization framework combines pattern forecasting
and adaptive control. In a first stage, harvested energy and traffic
load processes are modeled through a Long Short-Term Memory
(LSTM) neural network, allowing each BS to independently
predict future energy and load patterns. LSTM-based forecasts
are then fed into an adaptive control block, where foresighted
optimization is performed using Model Predictive Control (MPC).
Numerical results, obtained with real-world energy and load
signals, show cost savings close to 20% and reductions in the
amount of energy purchased from the electrical grid of about
24%, with respect to a heuristic scheme where future system
states are not taken into account.

Index Terms—Energy management, energy harvesting, fore-
casting, adaptive control, energy self-sustainability, mobile net-
works.

I. INTRODUCTION

The large use of Information and Communications Tech-
nologies (ICT) is increasing the amount of energy drained by
the telecommunication infrastructure and hence its footprint
on the environment. As an example, ICT account for 8-10%
of the European electricity consumption and up to 4% of its
carbon emissions [1]. Moreover, forecasts for 2030 are that
51% of the global electricity consumption and 23% of the
carbon footprint by human activity will be due to ICT [2].
These figures are going to worsen due to the increasing trend
in the traffic demand, and in the number of connected devices,
especially mobile [3]. Besides its environmental impact, the
energy drained to operate ICT infrastructures largely affects
the revenue of mobile network operators. Therefore, the design
of sustainable mobile networks is a priority for any future
development in the ICT sector.

In this work, we advocate sustainable mobile networks
deployments where BSs are equipped with EH hardware,
namely, solar panels and energy storage devices. Base stations
collect energy from the environment, store it and use it to serve

their local traffic demand over time. Whenever the harvested
energy is insufficient to seve the traffic load, BSs can purchase
energy from the power grid.

A large body of work has recently appeared on the use
of energy harvesting in mobile networks. A base station
power management scheme is presented in [4] considering
exogenous processes such as: renewable power generation,
power price, and wireless traffic load. The scenario is modeled
as a stochastic optimization problem and then transformed into
a linear programming one. However, the exogenous processes
are modeled through simplified models, i.e., as stochastic
time series with values defined within finite state sets, which
fail to faithfully capture the actual system behavior. The
authors of [5] consider BSs with energy harvesting capabilities
connected to the power grid as a means to carry out the
energy trading. A joint optimization tackling BS operation
and power distribution is performed to minimize the on-grid
power consumption of the BSs. Moreover, wired energy trans-
fer to/from the power distribution network, and a user-BS
association scheme based on cell zooming are investigated.
The problem is split into two subproblems, which are solved
through heuristics. A similar approach is considered in [6],
where two problems are considered: the first one consists
of optimizing the energy allocation at individual BSs to
accommodate for the temporal dynamics of harvested energy
and mobile traffic. Considering the spatial diversity of mobile
traffic patterns, the second problem’s objective is to balance
the energy consumption among BSs, by adapting the cell size
(radio coverage) in an attempt to reduce the on-grid energy
consumption of the mobile network. Again, the solutions
are obtained through heuristic algorithms. An optimal energy
management strategy to minimize the energy cost incurred by
a set of cellular base stations is presented in [7]. In this paper,
base stations can exchange energy with the power grid and
are equipped with batteries (energy storage) and renewable
energy harvesting devices. Simulation results show that a cost
reduction can be achieved by increasing the battery capacity
of each BS and/or the number of base stations.
Paper contribution: in the present work, we present a
smart energy management framework with the objective of
diminishing the monetary cost incurred in purchasing energy
from the power grid. This is achieved by controlling the
amount of energy that BSs buy from the electrical grid over
time, considering the energy that they harvest, the traffic
load, and hourly energy prices (set by the power grid oper-

978-1-5386-4920-6/18/$31.00 ©2018 IEEE



ator). The optimization process employs pattern forecasting
and adaptive control techniques. Specifically, the harvested
energy and traffic load processes are predicted through a
Long Short-Term Memory (LSTM) neural network, allowing
each BS to independently track its own energy and load pat-
terns. These forecasts are then fed into a subsequent adaptive
control phase, where foresighted optimization is performed
through MPC. The combined use of prediction and optimiza-
tion makes it possible to make informed decisions, which take
the future system evolution into account. Numerical results,
obtained with real-world harvested energy traces, traffic load
patterns, and power energy prices show that the proposed
strategy achieves cost savings close to 20% and reduces the
amount of energy purchased from the power grid of about
24% with respect to energy management policies that do not
take into consideration future system states.
Paper novelty: despite the existence of previous papers on this
topic, such as those aforementioned, in this paper we consider
a more realistic setup, where the energy harvesting process and
the BS traffic load are unknown and fully stochastic, and come
from real-world traces. Also, although pattern forecasting has
already been used in combination with control theory, to
the best of our knowledge, this is the first time where the
combination of LSTM neural networks and MPC-based adap-
tive control is used in an energy harvesting mobile network
scenario. Lastly, the overall optimization framework that we
put forward uses online and convex tools. This limits the
complexity and computation time of the energy scheduler,
making it applicable to real-world cases.

The paper is organized as follows. In Section II, we describe
the network scenario. The optimization framework is described
in Section III, where the two stages are presented: pattern fore-
casting in Section III-A and adaptive control in Section III-B.
The numerical results are presented in section IV, and final
remarks are given in section V.

II. SYSTEM MODEL

We consider a mobile network setup comprising N EH BSs,
where each BS is equipped with a solar panel, an energy
conversion module and an energy storage device. All BSs can
also obtain (purchase) energy from the electrical grid. The
network is controlled in a time-slotted fashion, where the time
slot duration ∆ is fixed, but can be tuned to meet energy and
load dynamics. In this work, the time granularity of the control
is set to ∆ = 1 hour.

A. Harvested Energy Traces

The amount of solar energy harvested by each BS
n = 1, . . . , N in time slot t, denoted by Hn(t), has been
obtained through the SolarStat tool [8]. For the solar modules,
the commercially available Panasonic N235B photovoltaic
technology is considered, and each solar panel has an area of
0.44m2, which is deemed practical for installation in a urban
environment. An example of energy harvested trace is shown
in Fig. 1.
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Fig. 1: Traces example: harvested energy (black curve), BS traffic load (blue
curve) and energy price (red curve).

B. Base Station Energy Consumption

Traffic load traces have been obtained using real mobile
data from the Big Data Challenge organized by Telecom Italia
Mobile (TIM) [9]. The dataset is the result of a computation
over the Call Detail Records (CDRs), logging the user activity
within the TIM cellular network for the city of Milan during
the months of November and December 2013. For the traffic
load traces we use the CDRs related to SMS, calls and Internet
activities, performing spatial and temporal aggregation. In this
way, we obtain a daily traffic load profile for each BS (see,
e.g., the blue curve in Fig. 1). Clustering techniques have
been applied to the TIM dataset to capture the behavior of
the mobile data. Specifically, the X-means algorithm [10] is
used to classify the load profiles into several categories. In our
numerical results, each BS n = 1, . . . , N has an associated
load profile Ln(t), representing the percentage of the total
bandwidth that BS n allocates to serve the users in its radio
cell, which is picked at random as one of the five possible
clusters identified from the TIM dataset. Given the normalized
load Ln(t) ∈ [0, 1], the BS energy consumption within a
time slot, On(t), is computed using the linear model of [11]:
On(t) = ∆×(P0+αLn(t)), where ∆ is the time slot duration,
P0 [W] is the load independent BS power term and α > 0
depends on the BS type.

C. Electric Retail Pricing

Hourly electric supply charges have been taken from the
US National Grid database [12], considering the energy cost
for the state of New York between January 2015 and August
2017. The price that BS n has to pay to purchase energy at
a certain time slot t is denoted by p(t). An example energy
price trace is shown in Fig. 1, over a full day.

D. Energy Storage Devices

Energy storage devices are interchangeably referred to as
Energy Buffers (EBs). The EB level for BS n = 1, . . . , N is
denoted by Bn(t). A reference energy threshold is defined as



Bref , with 0 < Bref < Bmax (where Bmax is the EB capacity).
Bref is used in the benchmark strategy that we compare against
the proposed energy management scheme (more details are
provided in Section IV). For a certain BS n, if t is the current
time slot, the buffer level is updated at the beginning of the
next time slot t+ 1 as:

Bn(t+ 1) = Bn(t) +Hn(t)−On(t) + Un(t) , (1)

where Un(t) represents the energy purchased by BS n from
the power grid during time slot t. Bn(t) is the EB level at the
beginning of time slot t, whereas Hn(t) and On(t) respectively
represent the amount of energy harvested and the energy that is
locally drained (to serve the connected users). Note that Bn(t)
is updated at the beginning of time slot t, whereas Hn(t)
and On(t) are only known at the end of it. The expected
behavior E[Hn(t)−On(t)] is obtained through the theory in
Section III-A to make foresighted decisions, where E[·] is the
expectation operator.

III. OPTIMIZATION FRAMEWORK

Next, we propose an energy management framework with
the objective of decreasing the monetary cost incurred by
energy purchases from the power grid. This is achieved by
controlling the amount of energy that BSs buy from the
electrical grid over time considering harvested energy, traffic
load and energy prices. The framework consists of two main
blocks: (i) pattern forecasting and (ii) adaptive control. In the
first block, the harvested energy and traffic load processes are
predicted through a machine learning approach, specifically a
Recurrent artificial Neural Network (RNN) [13]. The details
of this RNN are provided in Section III-A. This allows each
BS to independently track its own energy and load processes,
capturing their statistical behavior and obtaining forecasts for
the corresponding time series. Note that energy prices are
available one-day ahead, thus their forecasting is not needed.
Energy and load forecasts are then fed into the foresighted
optimization approach of Section III-B. Their use allows for
making informed decisions, which take the future system
evolution into account. This results in an effective energy
management scheme, that reduces the amount of energy that
has to be purchased from the power grid. In the second block,
the BS system is controlled using MPC, by determining the
amount of energy Un(t) that each BS n has to purchase from
the electrical grid at each time slot t. The MPC block takes
online actions, considering not only the current system state,
i.e., harvested energy, traffic load, energy price and EB levels,
but also future ones (based on the forecasts from the forecast-
ing block), anticipating events and acting accordingly. More
details about the MPC block are provided in Section III-B.

A. Pattern Forecasting

An LSTM neural network [13] has been used to forecast
the harvested energy H(t) and the traffic load L(t) profiles
for each BS. The neurons in the hidden layers of this LSTM
are Memory Cells (MCs). A MC has the ability to store
or forget information about past network states by using
structures called gates, which consist of a cascade of a

Fig. 2: LSTM memory cell diagram.

neuron with sigmoidal activation function and a pointwise
multiplication block. Thanks to this architecture, the output
of each memory cell possibly depends on the entire sequence
of past states, making LSTMs suitable for processing time
series with long time dependencies [14]. An example LSTM
memory cell is presented in Fig. 2. The input gate is a neuron
with sigmoidal activation function (σ). Its output determines
the fraction of the MC input that is fed to the cell state block.
Similarly, the forget gate processes the information that is
recurrently fed back into the cell state block. The output
gate, instead, determines the fraction of the cell state output
that is to be used as output of the MC at each time step.
Gate neurons usually have sigmoidal activation functions
(σ), while the input and cell state use the hyperbolic tangent
(tanh) activation function. All the internal connections of the
MC have unitary weight [14].

Experimental setup: to assess the performance of the pro-
posed forecasting approach, we utilize the datasets introduced
in Sections II-A and II-B. The solar generation dataset contains
175,200 samples taken every hour during a period of 20 years
in the city of Los Angeles, US. The traffic load dataset has
1,440 samples taken every hour for a period of two months
in the city of Milan, Italy. For both datasets, we perform
M -steps ahead forecasts, where M is the optimization horizon
(we use M = 24 hours), using sequences of 24 past time
samples. 80% of the dataset is used for training, while the
remaining samples are used to evaluate the accuracy of the
obtained forecasts. The LSTM network has one hidden layer
composed of 16 memory cells and one output neuron with
linear activation function. It has been trained using the ADAM
optimizer [15] and the mean squared error as the objective
function. The whole setup has been implemented in Python
using the high-level neural-networks-API Keras [16], running
on top of Tensorflow [17].

Fig. 3 shows a prediction example. Harvested energy fore-
casts (H(t) in Fig. 3a) are more precise than load forecasts
(L(t) in Fig. 3b), as solar energy traces follow quite reg-
ular bell-shape patterns, which are easier to predict. This
fact is confirmed by the average Root Mean Square Error
(RMSE) over the test samples: in the case of H(t) we obtain
RMSE = 0.033, whereas for L(t) we get RMSE = 0.08.
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(a) Harvested energy profile H(t) forecast.
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(b) Traffic load L(t) forecast.

Fig. 3: LSTM forecasting examples.

B. Adaptive Control
A general MPC framework is composed of (i) an input

section, (ii) an MPC controller and (iii) a real system [18]. The
first block contains the prediction model (see Section III-A).
The MPC solves a control problem at runtime (see below).
Finally, the real system block receives the optimal actions
from the MPC controller and behaves accordingly.

Notation: the system to be controlled is described through the
following discrete-time model:

Bt+1 = Bt +Ut +Wt, (2)

where t is the current time slot. The M × N matrix Bt

with elements bkn denotes the system state, representing for
each BS n = 1, . . . , N the energy buffer level for time slots
k = t, t+ 1, . . . , t+M − 1, were M = 24 hours is the
optimization horizon. The M×N matrix Ut with elements ukn

denotes the control matrix, representing the amount of energy
that each BS n shall purchase in time slot k = t, . . . , t+M−1.

The M ×N matrix Wt with elements wkn models the system
disturbance, i.e., the stochastic behavior of the forecast profiles
(harvested and consumed energy).

Eq. (2) relates to the problem setup of Section II-D as
follows: symbol Bt = [bkn] contains the buffer state for
all BSs, i.e., bkn = Bn(k), Ut = [ukn] is the control,
which corresponds to the amount of energy that BS n must
purchase in time slot k = t, t + 1, . . . , t + M − 1, i.e.,
ukn = Un(k), and Wt = [wkn] contains the exogenous
processes, i.e., wkn = Hn(k)−On(k), which are predicted
through the framework of Section III-A.

In addition to the previous variables, we define an M ×N
energy demand matrix, Dt = [dkn], where dkn represents the
power grid energy that BS n needs to serve the expected traffic
load in time slot k. It is calculated as follows:{

dkn = 0 if wkn ≥ 0,

dkn = |wkn| if wkn < 0.
(3)

Objective function: the goal of the MPC controller is to
determine the amount ukn that each BS n should purchase
from the electrical grid in time slot k = t, . . . , t + M − 1.
The following cost function tracks the total amount of energy
purchased by the BSs (p(k) is the energy price at time k):

fMPC(Ut,p(t)) =

t+M−1∑
k=t

N∑
n=1

p(k)ukn. (4)

Control problem: the following finite-horizon multi-objective
optimization problem is formulated:

min
Ut

fMPC(Ut,p(t)) (5a)

subject to: E rBt+1 = Bt +Ut +Wts (5b)
dkn ≤ bkn ≤ Bmax, (5c)
0 ≤ ukn ≤ Bmax, (5d)
with: k = t, t+ 1, . . . , t+M − 1 .

Constraint (5c) defines the energy buffer limitations, ensuring
through dkn that the energy buffer of BS n contains enough
energy to fulfill the expected demand. Constraint (5d) defines
the limits in the energy purchasing process. Since the
optimization problem must be solved at runtime, it is strongly
preferable to choose a convex optimization formulation
such as Eq. (5). Here, we have used the CVX tool [19] to
obtain the optimal solution U∗

t = [u∗
kn], stating the optimal

amount of energy that each BS n shall purchase in time slot
k = t, . . . , t+M − 1.

Optimization algorithm: the MPC controller performs as
follows [20]:

1) Step 1: at the beginning of time slot t, the system state
is obtained, that is: energy buffer levels for all BSs, the
harvested energy, traffic load forecasts and energy price
for the next M hours (the optimization horizon).

2) Step 2: the control problem of Eq. (5) is solved, yielding
a sequence of control actions over the time horizon (M
slots).



TABLE 1: System parameters used in the numerical results.
Parameter Value
Number of BSs, N 25

Number of BS traffic load clusters 5

Minimum BS energy consumption, P0 13.6W

Parameter α 1.1

Energy buffer capacity, Bmax 100Wh

Reference energy threshold, Bref 100Wh

MPC optimization horizon M 24 h

Time slot duration, ∆ 1h
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Fig. 4: MPC behavior over one day.

3) Step 3: only the first control action is performed and the
system state is updated upon implementing the required
energy purchases.

4) Step 4: at the next time step t+1, forecasts are updated
and the optimization cycle is repeated from Step 1.

IV. PERFORMANCE EVALUATION

In this section, we discuss some selected numerical results
for the scenario of Sections II and III. The parameters that
were used for the simulations are listed in Table 1. Our
proposed energy management framework, termed MPC, is
compared against a benchmark strategy, termed B1. With B1,
each BS n at time slot t purchases the amount of energy
max(0, Bref −Bn(t)), so that its EB levels remains as much
as possible equal to Bref . This approach is not taking into
account future system states such as traffic load, harvested
energy and energy price, unlike MPC does.

In Fig. 4, we show the system operation of the MPC
approach for a certain BS n. Based on the energy price
p(t) and on the expected behavior of E[Hn(t) − On(t)],
the adaptive control block purchases energy over time. Two
peaks in the purchase process (blue curve) can be observed:
one is around four in the morning (t = 4), due to the low
energy price at that time. The other one is around t = 16
(4 pm) when E[Hn(t)−On(t)] (green curve) decreases, which
corresponds to an increase in the expected traffic load and to
a corresponding decrease in the expected harvested energy.
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Fig. 5: Average EB level vs traffic load [%] in the system.

A comparison of the average BS EB level is presented in
Fig. 5 as a function of the traffic load. In B1, all BSs maintain
the EB level completely full for every traffic load, since Bref

has been set equal to Bmax. On the other hand, EB levels for
MPC decrease with an increasing load, due to the fact that
only the energy that is strictly required to serve the expected
demand is purchased at each time slot t.

It should be noted that also with MPC the EB levels can
be kept above a certain minimum threshold Bmin > 0, if
needed. To achieve this, it is sufficient to replace dkn with
max(dkn, Bmin) in constraint (5c). In Fig. 5, we consider that
there is no need to have extra stored energy, as long as the
traffic demand is fully served. With MPC, no BS can run out
of service and, if threshold Bmin is set to any value greater
than zero, then energy will be purchased as soon as any BS
buffer level decreases below it.

The amount of purchased energy is compared between both
schemes across different traffic load configurations in Fig. 6.
As expected, the higher the traffic load, the higher the amount
of energy that is purchased from the power grid. However,
MPC leads to a reduction in the purchased energy of about
24% on average. Finally, a comparison of the energy cost
(measured in $ over watts-hours) of the two schemes is shown
in Fig. 7. As in the previous plot, the higher the traffic load,
the lower the gap between the two schemes, as more energy
is to be purchased. The biggest savings are achieved when
the traffic load is in the range [20− 60]% and MPC provides
cost savings close to 20%, on average. In conclusion, the use
of the proposed approach is beneficial for two reasons: (i) it
maintains the EB levels as low as possible, while still serving
all users and minimizing the energy losses due to an inefficient
utilization of the energy storage; and (ii) it reduces the amount
of energy that the BSs purchase from the electrical grid.

V. CONCLUSIONS

The management of sustainable mobile networks has been
tackled in this work. We advocate base stations equipped
with energy harvesting and storage capabilities, where each
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of them can acquire energy from the environment, use it to
serve its local traffic or keep it in a local energy storage
for later use. Whenever the harvested energy is insufficient
to serve the traffic demand, BSs can purchase energy from
the power grid. Within this setting, a management strategy
has been proposed to reduce the amount of energy that is
purchased from the power grid. This strategy controls the
amount of purchased energy from the electrical grid over time,
considering the amount of energy harvested, the traffic load,
and hourly energy prices (set by the power grid operator). This
framework combines pattern forecasting and adaptive control.
In the forecasting block, the harvested energy and traffic load
processes are predicted through an LSTM neural network,
allowing each BS to independently predict its behavior over
time. Hence, these forecasts are fed into an adaptive control
block, where foresighted optimization is performed through
MPC. Numerical results, obtained with real-world traces, show
cost savings close to 20% and reductions in the amount of

purchased energy from the electrical grid of about 24%, when
compared to the case where future system states are not taken
into account.
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