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Abstract— This paper presents an adaptive sensor fault
diagnosis and accommodation scheme for multiple sensor bias
faults for a class of input-output nonlinear systems subject to
modeling uncertainty and measurement noise. The proposed
scheme consists of a nonlinear estimation model that includes
an adaptive component which is initiated upon the detection
of a fault, in order to approximate the magnitude of the
bias faults. A detectability condition characterizing the class of
detectable sensor bias faults is derived and the robustness and
stability properties of the adaptive scheme are presented. The
estimation of the magnitude of the sensor bias faults allows the
identification of the faulty sensors and it is also used for fault
accommodation purposes. The effectiveness of the proposed
scheme is demonstrated through a simulation example.

I. INTRODUCTION

In recent years various fault diagnosis schemes have been
proposed for detecting, isolating and accommodating faults
for various classes of linear and nonlinear systems (see,
for instance, [1]–[5] and references therein). One of the
techniques that has been used for fault diagnosis is adaptation
and learning. Since the first work on proposing a learning
approach for fault diagnosis [6], such techniques have been
widely used for learning the modeling uncertainty to enhance
fault detectability (i.e. [7], [8]) and for learning the fault
function to achieve fault isolation and identification (i.e.
[4], [9], [10]). Moreover, learning algorithms have also been
used to facilitate the identification of the fault type, that is
whether the fault is a process or a sensor one, by learning
the potential fault function that has occurred and, providing
an estimation of the fault function so that it can be used
in fault accommodation schemes (i.e. see [7] and references
therein). Specifically, various fault accommodation schemes
have been considered in [11], [12].

Generally, the identification of multiple sensor faults in
nonlinear systems is a very challenging task. Among the var-
ious methods employed for sensor fault diagnosis are model
based-ones using either a nominal mathematical model of
the system (quantitative) [7], [13]–[16] or qualitative system
representation [17].
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This work falls in the class of quantitative methods for sen-
sor bias fault diagnosis. Regarding the system representation,
in previous works [10], [14], the nominal system nonlinearity
function was considered as a function of output variables.
More recently, in [18], [19], the system nonlinearity is broken
into two terms, one comprising of output variables and the
other based on the overall state vector (which may contain
unmeasurable variables). Based on the assumption that there
exists a suitable state transformation, fault diagnosis can
be conducted for the system under the new coordinates.
The work in this paper extends these results by considering
a more general system formulation, in which the nominal
system nonlinearity is a function of the state vector (not of
the output variables).

Moreover, in earlier works [14], [18], the case of single
sensor faults was considered and individual estimation mod-
els utilizing learning were designed for each potential sensor
fault, so that the identification of the faulty sensor could be
made on an exclusion-based logic. As it is the always the
case with this approach, there is the risk of non-conclusive
fault isolation due to the inability to exclude potential faults.
Recently, in [8] the problem of multiple sensor fault detection
and isolation was investigated for the same class of systems
considered in this paper and the use of learning was made
for enhancing fault detectability by estimating the modeling
uncertainty. However, the task of sensor fault isolation is
based on a different approach than in this work and relies
on decomposing the sensing system (matrix C of the output
variables) into smaller sensing subsystems (with matrices
C(I)) and constructing all the possible combinations of these
sensing subsystems (along with their respective estimation
models) such that the pair (A,C(I)) is observable. As a
result, by the use of a combinatorial decision logic the faulty
sensors can be identified either uniquely or at least in smaller
sensor sets. More details regarding the design and analysis
of the methodology for detecting and isolating multiple
sensor faults under that framework can be found in [16].
In addition, in [20] a distributed adaptive estimation scheme
for isolation of sensor faults is presented, for a specific
class of systems (multizone HVAC systems) with full-state
measurements. Moreover, in our previous recent work [7], a
fault diagnosis approach for process and sensor faults was
designed by utilizing the filtering framework devised in [5]
and by considering again full-state measurements.

This work, is differentiated from the aforementioned
works, in the following ways: a) the problem of multiple
sensor bias fault estimation for a more general class of input-
output nonlinear systems is addressed, b) the sensor faults



identification is based solely on the sensor bias fault estima-
tion obtained from the adaptive fault diagnosis scheme and
c) a fault accommodation scheme is presented allowing for
fault tolerant operation. More specifically, regarding points
b) and c), once a fault is detected, the adaptive approach
is initiated with the task of approximating the magnitude
of all potential sensor faults (by considering all sensors as
potentially faulty). The robustness and stability properties of
the adaptive scheme are presented. Based on the estimation
of the magnitude of the sensor bias faults, the identification
of the faulty sensors can be made and a fault accommodation
scheme is presented.

The paper is organized as follows: the problem formulation
is given in Section II, in Section III the details of the
nonlinear estimation model are presented and, in Section IV
a detectability condition that characterizes the class of de-
tectable faults is derived. In Section V, the stability and
performance properties of the proposed adaptive scheme are
presented. The fault accommodation strategy is presented
in Section VI and, in Section VII a simulation example
is demonstrated. Finally, in Section VIII some concluding
remarks are provided.

II. PROBLEM FORMULATION

Consider a nonlinear dynamic system described by:

Σ :

{
ẋ(t) = Ax(t) + f(x(t), u(t)) + η(x(t), u(t), t)(1)
y(t) = Cx(t) + ξ(t) +By(t, T y)σ(t), (2)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state, input and
measured output vectors respectively, the matrix A ∈ Rn×n
and the function f : Rn × Rm 7→ Rn represent the known
(nominal) function dynamics and η : Rn ×Rm ×R+ 7→ Rn
represents the unknown modeling uncertainty. The matrix
C ∈ Rp×n is the known nominal output matrix and the
vector ξ ∈ Dξ ⊂ Rp (Dξ is a compact set) represents
the measurement noise. The state vector x is considered
unknown whereas the measurements y are known. The term
By(t, T y)σ(t) characterizes the time-varying magnitude of
the sensor faults. More specifically, each component σ(k)(t),
k = 1, 2, . . . , p, of the sensor fault vector σ : R+ 7→ Rp, rep-
resents the time varying bias due to a sensor fault that occurs
in the k-th sensor and the diagonal matrix By(t, T y) ∈ Rp×p
represents the time profile of the faults, i.e.: By(t, T y) =
diag

(
βy(t− T y1 ), . . . , βy(t− T yp )

)
, where T yk is the time of

occurrence of the k-th sensor fault and T y , [T y1 , . . . , T
y
p ]>.

Each time profile component βy represents the time profile
of each sensor fault. In this work, we consider only the case
of abrupt sensor faults, and therefore the function βy takes
the form of a step function:

βy(t− T yk ) =

{
0 if t < T yk
1 if t ≥ T yk

k = 1, . . . , p.

Without loss of generality and, in order to simplify the
notation and presentation, we consider that all the sensor
faults occur at the same time T y0 . In the general case, in
which the sensor faults do not occur simultaneously, the
results contained in this paper still hold, by considering T y0 as

the time of the first sensor fault, i.e. T y0 , min(T y1 , . . . , T
y
p )

and replacing σ(t) with By(t, T y)σ(t) in what follows.
In this paper, we do not deal explicitly with the control de-

sign problem, and therefore, the formulation is independent
of the controller used, which may either be a generic one
achieving some desired control objectives.The notation | · |
used in this paper denotes the Euclidean 2-norm for vectors
and, the matrix norm induced by the 2-norm for matrices. In
addition. the following assumptions are used:

Assumption 1: The state variables x and the local input u
remain bounded in some region of interest D = Dx×Du ⊂
Rn × Rm (which is a compact set), before and after the
occurrence of a fault (well-posedness).

Assumption 2: The pair (A,C) is detectable.
Assumption 3: The modeling uncertainty η is an unstruc-

tured and possibly unknown nonlinear function of x, u and t
but whose norm is bounded by a known positive functional
η̄(y(t), (u(t)):

|η(x(t), u(t), t)| ≤ η̄(y(t), (u(t)),

for all t ≥ 0 and for all (x, u) ∈ D, where the region D is
a known compact set.

Assumption 4: The function f(x, u) satisfies the local
Lipschitz condition:

|f(x1, u)− f(x2, u)| ≤ λf |x1 − x2|

where λf is the Lipschitz constant for the function f(x, u)
with respect to x in the region Dx.

Assumption 5: The rate of change of the sensor bias
σ(k)(t) is unifromly bounded as follows:

|σ̇(k)(t)| ≤ ψ ∀ k = 1, . . . , p,

where ψ is an unknown positive scalar.
Assumption 2 is required for the design of the estimation
model. Assumption 3 characterizes the class of modeling
uncertainties being considered as it is required to discrimi-
nate between the effects of the modeling uncertainty and the
fault. Assumption 5 assumes a bounded rate of change of
each sensor bias fault which is not required to be known.
This is required for the stability analysis of the adaptive
scheme. Of course, it is a reasonable assumption since some
a priori information regarding the bias evolution can be used
to determine such a bound if needed.

III. ADAPTIVE FAULT DIAGNOSIS ARCHITECTURE

In this Section, we explain in detail the architecture of the
proposed fault diagnosis scheme which is robust with respect
to the modeling uncertainty and the measurement noise. The
proposed scheme consists of a nonlinear estimation model, in
which under healthy mode of operation, the output estimation
error is always bounded by the detection threshold and thus,
no false-positive alarms are guaranteed. Once a fault is
detected, an adaptive scheme is initiated to determine the
potential sensor bias faults for all sensors by estimating their



magnitudes. The estimation model is given by:

˙̂xs(t) = Ax̂s(t) + f(x̂s(t), u(t)) + Lεys(t) + Ω(t) ˙̂σ(t) (3)

Ω̇(t) = A0Ω(t)− L (4)
ŷs(t) = Cx̂s(t) + σ̂(t) (5)
˙̂σ(t) = Pσ

(
Γy(CΩ(t) + I)>D[εys(t)]

)
, (6)

where εys(t) , y(t) − ŷs(t) denotes the output estimation
error, the matrix L ∈ Rn×p is selected such that A0 , A−
LC is Hurwitz (according to Assumption 2 this is always
feasible), Γy ∈ Rp×p is a symmetric and positive definite
learning rate matrix, I ∈ Rp×p is the identity matrix and
σ̂ ∈ Rp denotes the sensor fault estimation. Finally, the initial
conditions are x̂s(0) = 0, Ω(0) = 0 and σ̂(0) = 0. In the
sequel we denote the state estimation error as εxs (t) , x(t)−
x̂s(t). The projection operator Pσ restricts the estimation
vector σ̂(t) in a predefined and convex region Θσ ∈ Rp
in order to guarantee stability of the learning algorithm in
the presence of noise and modeling uncertainty. Here, Θσ is
considered to be a hypersphere of radius Mσ , and hence the
adaptive law for ˙̂σ can be expressed as [14], [21]

˙̂σ(t) = Γy(CΩ(t) + I)>D[εys(t)]

− χ∗Γy σ̂(t)σ̂>(t)

σ̂>(t)Γyσ̂(t)
Γy(CΩ(t) + I)>D[εys(t)] (7)

where χ∗ denotes the indicator function

χ∗ =


1 if |σ̂(t)| = Mσ and

σ̂>(t)Γy(CΩ(t) + I)>D[εys(t)] > 0.

0 otherwise.

The dead-zone operator D[·] is given by

D[εys(t)] =

{
0 for t < Td

εys(t) for t ≥ Td,

where Td is the detection time of a fault (Td > T y0 ), which
is defined as the first time instant such that |εys(t)| > ε̄ys(t),
where ε̄ys(t) is the detection threshold (to be specified later
on). More specifically, Td , inf{t > 0 : |εys(t)| > ε̄ys(t)}.
Due to the presence of the modeling uncertainty and noise,
the output estimation error deviates from zero even in the
absence of faults. Therefore, the dead-zone operator is used
in order to prevent adaptation whilst the residual is below
the detection threshold. After a fault is detected, the dead-
zone operator is not necessary and can be disabled. By
design, the adaptation for estimating the sensor fault in the
estimation model (3)-(6) is initiated upon the detection of a
fault. This is because, initially, σ̂(0) = 0 and from the dead-
zone operator definition, D[εys(t)] = 0 for t < Td (where the
residual is bounded by the detection threshold), and hence
σ̂(t) = ˙̂σ(t) = 0 for t < Td.

Prior to the occurrence of a fault, where the adaptation is
not being used, the estimation model (3)-(6) is equivalent to

˙̂xs(t) = Ax̂s(t) + f(x̂s(t), u(t)) + Lεys(t) (8)
ŷs(t) = Cx̂s(t) (9)

and hence a suitable detection threshold ε̄ys(t) which guar-
antees that |εys(t)| ≤ ε̄ys(t) under healthy mode of operation
(for all t ≤ T y0 ) is given similarly as in [8]:

ε̄ys(t) , |C|
(
E(t) + Z(t)

)
+ ξ̄d(t) (10)

E(t) , µe−ρtx̄d +

∫ t

0

µe−ρ(t−τ)
(
η̄(y(τ), u(τ))

+ |L|ξ̄d(τ)
)

dτ (11)

Z(t) , µλf

∫ t

0

E(τ)e−(ρ−µλf )(t−τ) dτ, (12)

where µ, ρ are positive constants such that |eA0t| ≤ µe−ρt

for all t > 0 (note that, since A0 is Hurwitz this is always
feasible [22]) and also satisfy the condition ρ−µλf > 0 (in
order to guarantee the boundedness of the state estimation
error), x̄d(t) is a bound on the state in the region of
operation Dx, i.e. |x(t)| ≤ x̄d and, ξ̄d(t) is a bound on the
measurement noise, i.e. |ξ(t)| ≤ ξ̄d(t).

The nonlinear adaptive fault diagnosis scheme is robust
in terms of the measurement noise and the modeling uncer-
tainties satisfying Assumption 3. As a result, the designed
detection threshold guarantees no false-positive alarms.

IV. FAULT DETECTABILITY ANALYSIS

In this section, a fault detectability condition is presented
which constitutes a theoretical result that provides a quanti-
tative characterization (and in non-closed form) of a class of
faults detectable by the proposed scheme. The detectability
condition given in the sequel is different from the one
given in [8], due to different treatment of the mathematical
analysis, and as a result the classes of detectable faults
are different. It must be stressed though, that it cannot be
determined if one condition is less conservative than the
other, or if each condition contains a class of faults that are
not contained in the other condition.

Theorem 1: Consider the nonlinear system (1), (2) with
the nonlinear estimation model described by (3)-(6) and the
detection scheme described by the output estimation error
εys(t) and its detection threshold ε̄ys(t) given by (10). A sensor
fault occurring at time T y0 is detectable at some time Td >
T y0 if the following inequality is satisfied

|σ(Td)| − |C|
(
K1(Td) +K2(Td)

)
> 2ε̄ys(Td), (13)

K1(t) ,
∫ t

0

µe−ρ(t−τ)|Lσ(τ)|dτ

K2(t) , µ2λf

∫ t

0

∫ τ

0

e−ρ(τ−w)e−(ρ−µλf )(t−τ)|Lσ(w)|dwdτ.

Proof: After a sensor fault occurs at T y0 and prior to the
start of the adaptation (since it has not been detected yet), i.e.
for T y0 < t < Td, the state estimation error εxs (t) satisfies (the
analysis is similar to the derivation of the detection threshold)

ε̇xs (t) = A0ε
x
s (t) + ∆fs(t) + η(x(t), u(t), t)− Lξ(t)− Lσ(t),



where ∆fs(t) , f(x(t), u(t))−f(x̂s(t), u(t)) and hence its
solution is given by

εxs (t) = eA0tεxs (0) +

∫ t

0

eA0(t−τ)
[
∆fs(τ)

+ η(x(τ), u(τ), τ)− Lξ(τ)− Lσ(τ)
]
dτ.

Following a similar procedure as in the derivation of the
detection threshold, we obtain that

|εxs (t)| ≤ E′(t) + Z ′(t), (14)

E′(t) , µe−ρtx̄d +

∫ t

0

µe−ρ(t−τ)
(
η̄(y(τ), u(τ))

+ |L|ξ̄d(τ) + |Lσ(τ)|
)

dτ (15)

Z ′(t) , µλf

∫ t

0

E′(τ)e−(ρ−µλf )(t−τ) dτ. (16)

After some mathematical analysis (15), (16) are rewritten as

E′(t) , E(t) +K1(t) (17)

Z ′(t) , Z(t) +K2(t). (18)

The output estimation error εys(t) satisfies

εys(t) = Cεxs (t) + ξ(t) + σ(t) (19)

and by using (14), (17) and (18), (19) becomes

|εys(t)| ≥ −|C||εxs (t)| − |ξ(t)|+ |σ(t)|
≥ −|C|

(
E′(t) + Z ′(t)

)
− ξ̄d(t) + |σ(t)|

≥ −ε̄ys(t)− |C|
(
K1(t) +K2(t)

)
+ |σ(t)|.

For fault detection, the condition |εys(t)| > ε̄ys(t) at time
t = Td must be satisfied and hence the fault detectability
condition given in (13) is obtained.

Note that the detectability condition given in Theorem 1 is
sufficient, but not a necessary one, and hence, the class of the
detectable faults is possibly significantly larger. Intuitively,
the magnitude of the fault needs to be sufficiently large so
it can be distinguished from the effects of the modeling
uncertainty and measurement noise.

V. STABILITY AND APPROXIMATION PERFORMANCE

In this Section, the stability properties and learning prop-
erties of the proposed adaptive estimation scheme are pre-
sented. Due to space constraints, the proof is omitted but,
in general, it relies on similar results (i.e. [7], [14]), with
necessary modifications carried out in order to address the
difficulties incurred by the more general system formulation
considered in this paper. The following theorem describes
the properties of the proposed adaptive estimation scheme:

Theorem 2: In the event of a sensor fault that occurs
at time T y0 and is detected at time Td > T y0 , the adaptive
nonlinear estimation scheme described by (3), (4), (5), (6)
under Assumptions 1 - 5 and, by selecting the positive
constants µ, ρ such that |eA0t| ≤ µe−ρt for all t > 0 and
ρ− µλf > 0, guarantees that:
(a) The state estimation error εxs (t), the output estimation

error εys(t) and the sensor fault estimation vector σ̂(t)
are uniformly bounded, i.e. εxs (t), εys(t), σ̂(t) ∈ L∞.

(b) There exist a positive constant q and a bounded function
v(t) such that, for all finite t > Td the output estimation
error εys(t) satisfies:∫ t

Td

|εys(τ)|2d τ ≤ q + 4

∫ t

Td

|v(τ)|2d τ. (20)

(c) In the absence of measurement noise (i.e. ξ(t) = 0),
if the bounded function v(t) is square integrable (i.e.
v(t) ∈ L2), then limt→∞ εys(t) = 0.

Theorem 2 guarantees the uniform boundedness of the
nonlinear adaptive estimation model, along with the state
and output state estimation errors.

VI. SENSOR FAULT ACCOMMODATION

In this section, we propose a simple approach for accom-
modating sensor failures utilizing the sensor fault estimation
vector σ̂ which contains the estimation of the magnitude
of the sensor faults σ. Note that, when a fault is detected
the sensor fault estimation is initiated in order to learn the
potential sensor faults, and thus, tries to estimate the sensor
faults magnitudes for all sensors; healthy and faulty. So, the
sensor fault estimation σ̂ can be used to identify which of
the sensors are healthy and which are faulty. Obviously for
healthy sensors their respective sensor bias estimate should
converge near zero, whereas for the faulty sensors their
estimated bias will deviate significantly from zero. Based
on this fact, the faulty sensors can be identified. More
importantly though, and differently from other works, the
estimation of the magnitudes of the sensor faults provides
additional information that can be further exploited in fault
accommodation schemes, through control reconfiguration.

When a fault is detected, it is desirable to compensate
the fault effects to safeguard the operation of the system.
In the case of sensor faults, these can affect the system
performance through the feedback control law which is
usually a function of the measurements and/or estimated
states obtained from an observer scheme. Sensor faults also
deteriorate state estimation schemes, and result in providing
erroneous state estimates, which can also magnify the fault
effect when these estimates are used in the feedback control
law. Therefore, in order to increase the system performance,
the correct output measurement must be reconstructed so
that it can be used by the nonlinear observer and/or the
feedback control law. To this end, the estimated sensor
fault vector σ̂ provides the necessary information for this
reconstruction. Specifically, for a control law and/or any
potential nonlinear observer used for state estimation which
use the (potentially faulty) measurements y, a simple fault
accommodation strategy is to replace the measurements y
with the compensated measurements y − σ̂. This way, the
control law and the nonlinear observer use the correct output
information without the effect of the sensor bias fault σ since
it is canceled out by σ̂ and therefore this fault compensation
strategy allows for fault tolerant operation. Note that, due to
the fact that σ̂(t) = 0 for t ≤ Td, there is no need for control
reconfiguration or observer modification, and hence, both the



control law and the nonlinear observer can be implemented
to use the compensated values y − σ̂ instead of y.

The effectiveness of this sensor fault accommodation
strategy is demonstrated in the simulation results where a
nonlinear observer is employed to provide state estimates
and a feedback control law based on the measurements and
the estimates is used for achieving the desired control task.

VII. SIMULATION RESULTS

In this section, we consider a one-link manipulator with
revolute joints actuated by a DC motor, as described in [23],
[24]. The system model can be described by (1), (2) where
x = [x1, x2, x3, x4] is the system state comprising of: x1 the
angular rotation of the motor, x2 the angular velocity of the
motor, x3 the angular position of the link and x4 the angular
velocity of the link and

A =


0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −19.5 0

 , η =


0
0
0

0.1sin(x3)

 ,

f =


0

21.6u
0

−3.33sin(x3)

 , C =

[
1 0 0 0
0 1 0 0

]
.

The term η(x) results by considering a -3% inaccuracy in
the mass. The initial conditions of the plant are set as x =
[0 0 1 0]. The measurement noise is generated from a uniform
distribution with 3% uncertainty of the state and the bound
used for the task of fault detection is ξ̄d = 0.07.

As stated in [23], one can measure only the motor position
and velocity (x1 and x2), but the measurement of the other
states is non-trivial. That is why in our simulation we used
this physical restriction, which adheres with the problem
formulation (so that the nonlinearity function f(x, u) com-
prises of unmeasurable variables), in contrary to previous
works which required (some of) the other measurements
x3 and x4 (i.e. [8], [14], [18]). Although the problem
becomes more challenging now, the results also demonstrate
the effectiveness of the proposed approach. The value of the
Lipschitz constant for the nominal system is λf = 3.33.
In order to ease fault detection, we use a linear coordinate
transformation z = Tx, where T = [1, 1, 1, ε] with ε =
0.02 which effectively reduces the Lipschitz constant to ελf
[23] and therefore the bound on the modeling uncertainty
is set as η̄ = 0.1ε. The control task is to stabilize the
system around the origin x = 0. Spong [24] presents a
nonlinear linearizing control which guarantees closed-loop
stability, but the control law requires measurements of all
the states. To address the unavailability of x3 and x4, we
use the nonlinear observer designed in [23] to obtain their
estimates and use these in the control law implementation.
This observer is of the same type (Luenberger) that is
being used in the current paper prior to the initiation of
the learning, and therefore the designed nonlinear observer
gain L is perfectly suited also for the fault detection
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Fig. 1: Fault detection.
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Fig. 2: Sensor fault estimation.

task. The observer gain matrix L is given by [23]: L =
[0.830 0.451; 0.451 6.23; 0.823 1.307; 0.070 0.257].

Through a suitable nonlinear state transformation and
feedback linearization, the system is transformed in a 4-th
order linear system in Brunovsky canonical form ẇi = wi+1

i = 1, 2, 3 and ẇ4 = v and the linear state feedback law
v = −Kw is then designed to place the poles of the closed
loop system at -10, -12, -14, -16.

We consider the occurrence of two constant bias sensor
faults which occur with 5 s difference as: σ1 = 0.2 at t =
35 s and σ2 = −0.2 at t = 30 s and affect the measurements
y1 and y2 respectively (in addition to noise). Figure 1 shows
the residual and detection thresholds signals and as can be
seen the fault that appears first (in second sensor) is detected
very fast at time t = 30.13 s.

After the fault detection, the estimation of the sensor faults
is initiated which adaptively tries to estimate magnitude of
the potential sensor faults that have occurred. For this task
we use the constant learning matrix Γy = 0.15I and the
radius of the hypersphere for the sensor fault estimation is
set to Mσ = 0.4. The results are shown in Figure 2, in which
it can be seen that both sensor faults are estimated correctly.

Moreover, in order to demonstrate the effectiveness of
the proposed approach for the fault accommodation task,
we demonstrate two cases. In the first case, adaptation is
not used, and therefore the nonlinear observer and feedback
control law rely on the (faulty) measurements y1 and y2.
In the second case, adaptation is used and the proposed
fault accommodation scheme is implemented so that the
estimates of the potential sensor faults are used in order
to accommodate the sensor faults. Hence, in the second



System states with and without without fault accommodation
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Fig. 3: System states with and without fault accommodation.
When fault accommodation is used, the control task of
stabilizing the system states at the origin is maintained.

case the nonlinear observer and feedback control use the
accommodated values y1 − σ̂1 and y2 − σ̂2. Note that in all
cases, the feedback control law makes use of the estimated
states x3 and x4 obtained from the nonlinear observer.
Figure 3 shows the actual system states in the two cases.
Note that, prior to the fault occurrence, in both cases the
control objective of maintaining the states at the origin is
achieved. After the fault occurrence though, in the first case
(no fault accommodation) all the system states except x4
deviate significantly from zero, whereas in the second case
(with fault accommodation) all system states converge to
zero and therefore the control objective of maintaining the
states at the origin is achieved.

VIII. CONCLUSION

In this paper, an adaptive sensor fault diagnosis and
accommodation scheme for multiple sensor bias faults is
designed for a class of input-output nonlinear uncertain
systems, that is robust in terms of modeling uncertainty and
measurement noise. The nonlinear estimation scheme utilizes
an adaptive scheme that is initiated upon the detection of
a fault for estimating the sensor bias faults. The robustness
and stability properties of the proposed scheme are presented
and, a fault detectability condition is derived. The estima-
tion of the magnitude of the sensor bias faults allows the
identification of the faulty sensors and can also be used for
fault accommodation purposes. Future research efforts will
be devoted in designing a comprehensive framework for fault
diagnosis for both process and sensor faults.
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