

11th Conference on Stochastic Models of Manufacturing and Service Operations (SMMSO 2017)

193

Optimal Buffer Allocation in Serial Production Lines
Operating under IB, EB, and CONWIP Policies

George LIBEROPOULOS

Department of Mechanical Engineering, University of Thessaly, Volos, Greece, email: glib@mie.uth.gr

We consider a production line consisting of several machines in series with finite intermediate buffers. The
machines have geometrically distributed processing times. We address the problem of determining the optimal
buffer sizes to maximize the average profit of the line subject to a minimum average throughput constraint, under
three operating policies. The average profit is defined as the weighted average throughput of the line minus the
sum of the weighted average WIP plus total buffer capacity. The considered policies are: installation buffer (IB),
echelon buffer (EB), and CONWIP. IB is the traditional policy under which a machine can store the parts that it
produces only in its immediate downstream buffer. Under EB, it can store them in any of its downstream buffers.
CONWIP is a special case of EB where the capacities of all buffers, except the last one, are zero. To find the
optimal buffer allocation for each policy, we use a two-step gradient algorithm, where the average profit for given
buffer sizes is estimated using decomposition-based approximation. Numerical results show that the optimal EB
policy outperforms the optimal IB and CONWIP policies.

Keywords: production line; installation buffer; echelon buffer; CONWIP; buffer allocation

1 Introduction
We consider a production line consisting of 𝑁𝑁 machines in series denoted by 𝑀𝑀𝑛𝑛, 𝑛𝑛 = 1, … ,𝑁𝑁, with 𝑁𝑁 − 1
finite intermediate buffers denoted by 𝐵𝐵𝑛𝑛, 𝑛𝑛 = 1, … ,𝑁𝑁 − 1. Time is broken in discrete periods. In each
period, machine 𝑀𝑀𝑛𝑛,𝑛𝑛 = 1, … ,𝑁𝑁, produces a part with probability 𝑝𝑝𝑛𝑛 unless it is starved or blocked; hence,
the processing time of a part on machine 𝑀𝑀𝑛𝑛 is geometrically distributed with mean 1 𝑝𝑝𝑛𝑛⁄ . Probability 𝑝𝑝𝑛𝑛 is
referred to as the production probability (or rate) of machine 𝑀𝑀𝑛𝑛 in isolation. Each machine can hold one
part. The capacity of buffer 𝐵𝐵𝑛𝑛 is denoted by 𝐶𝐶𝑛𝑛,𝑛𝑛 = 1, … ,𝑁𝑁 − 1.

In the traditional way of operating such a line, machine 𝑀𝑀𝑛𝑛,𝑛𝑛 = 1, … ,𝑁𝑁 − 1, is allowed to store the parts
that it produces only in its immediate downstream buffer 𝐵𝐵𝑛𝑛 if the next machine 𝑀𝑀𝑛𝑛+1 is occupied. We refer
to the ensemble of 𝐵𝐵𝑛𝑛 and 𝑀𝑀𝑛𝑛+1 as the installation buffer following 𝑀𝑀𝑛𝑛 and we denote it by 𝐼𝐼𝑛𝑛, i.e., 𝐼𝐼𝑛𝑛 =
𝐵𝐵𝑛𝑛 ∪𝑀𝑀𝑛𝑛+1. Clearly, the capacity of 𝐼𝐼𝑛𝑛 is 1 + 𝐶𝐶𝑛𝑛. Moreover, we denote the number of parts in 𝐼𝐼𝑛𝑛 by 𝑖𝑖𝑛𝑛, 𝑛𝑛 =
1, … ,𝑁𝑁 − 1. We refer to 𝑖𝑖𝑛𝑛 as the installation WIP following machine 𝑀𝑀𝑛𝑛 and to the resulting way of
operation as installation buffer (IB) policy. Under the IB policy, machine 𝑀𝑀𝑛𝑛 is blocked (before service) from
processing a part if the number of parts that have been produced by it but have not yet departed from the next
machine 𝑀𝑀𝑛𝑛+1 is equal to the capacity of 𝐼𝐼𝑛𝑛, i.e., if 𝑖𝑖𝑛𝑛 = 1 + 𝐶𝐶𝑛𝑛,𝑛𝑛 = 1, … ,𝑁𝑁 − 1. Figure 1 shows a
production line with 𝑁𝑁 = 4 machines and 𝑁𝑁 − 1 = 3 intermediate buffers operated under IB.

Figure 1. Serial production line operated under an IB policy.

Inserting buffers between machines comes at a cost of additional WIP inventory, capital investment, and
floor space. Depending on the industry, such a cost can be quite high. The optimal allocation of storage
capacity among the intermediate buffers is one of the most widely studied problems in manufacturing systems
research. Even if the total capacity has been optimized, storing parts locally in the intermediate buffers does
not take full advantage of this capacity. When the cost of buffer space is significant, it may be worthwhile to
consider increasing the utilization of the existing buffers before setting out to increase total buffer capacity.

Recently, Liberopoulos (2017) proposed an operating policy that aims to increase the utilization of buffer
space by allowing machine 𝑀𝑀𝑛𝑛,𝑛𝑛 = 1, … ,𝑁𝑁 − 1, to store the parts that it produces in any of its downstream
buffers, 𝐵𝐵𝑛𝑛 , … ,𝐵𝐵𝑁𝑁−1, if the next machine 𝑀𝑀𝑛𝑛+1 is occupied. We refer to the ensemble of 𝐵𝐵𝑛𝑛 , … ,𝐵𝐵𝑁𝑁−1, and

 Liberopoulos: Optimal Buffer Allocation in Production Lines under IB, EB, and CONWIP Policies

194

𝑀𝑀𝑛𝑛+1 as the echelon buffer following 𝑀𝑀𝑛𝑛 and we denote it by 𝐸𝐸𝑛𝑛, i.e., 𝐸𝐸𝑛𝑛 = 𝐵𝐵𝑛𝑛 ∪ ⋯∪ 𝐵𝐵𝑁𝑁−1 ∪ 𝑀𝑀𝑛𝑛+1. Clearly,
the capacity of 𝐸𝐸𝑛𝑛 is 1 + ∑ 𝐶𝐶𝑚𝑚𝑁𝑁−1

𝑚𝑚=𝑛𝑛 ,𝑛𝑛 = 1, … ,𝑁𝑁 − 1. Moreover, we denote the number of parts in 𝐸𝐸𝑛𝑛 by 𝑒𝑒𝑛𝑛,
𝑛𝑛 = 1, … ,𝑁𝑁 − 1. We refer to 𝑒𝑒𝑛𝑛 as the echelon WIP following machine 𝑀𝑀𝑛𝑛 and to the resulting way of
operation as echelon buffer (EB) policy. Under the EB policy, machine 𝑀𝑀𝑛𝑛 is blocked (before service) from
processing a part if the number of parts that have been produced by it but have not yet departed from the last
machine 𝑀𝑀𝑁𝑁−1 is equal to the capacity of 𝐸𝐸𝑛𝑛, i.e., if 𝑒𝑒𝑛𝑛 = 1 + ∑ 𝐶𝐶𝑚𝑚𝑁𝑁−1

𝑚𝑚=𝑛𝑛 ,𝑛𝑛 = 1, … ,𝑁𝑁 − 1. From the point of
view of buffers, under the EB policy, each buffer is shared by all its upstream machines. Figure 2 shows the
same production line as that in Figure 1 operated under an EB policy.

Figure 2. Serial production line operated under an EB policy.

If the capacities of all intermediate buffers, except possibly the last one, are zero (i.e., if 𝐶𝐶𝑛𝑛 = 0,𝑛𝑛 =
1, … ,𝑁𝑁 − 2, and 𝐶𝐶𝑁𝑁−1 ≥ 0), then under the EB policy, machine 𝑀𝑀𝑛𝑛,𝑛𝑛 = 1, … ,𝑁𝑁 − 1, can store the parts that
it produces in the last and only buffer 𝐵𝐵𝑁𝑁−1 if 𝑀𝑀𝑛𝑛+1 is occupied. To simplify notation, we denote this buffer
by 𝐵𝐵 and its capacity by 𝐶𝐶, i.e., 𝐵𝐵 ≡ 𝐵𝐵𝑁𝑁−1 and 𝐶𝐶 = 𝐶𝐶𝑁𝑁−1. In this case, it is easy to see that 𝑀𝑀1 is blocked
from processing a part if 𝑒𝑒1 = 1 + 𝐶𝐶 and that no other machine is ever be blocked. This way of operation is
identical to the operation of CONWIP where parts are not allowed to be released into the system if the total
WIP is at the WIP-cap (Spearman et al. 1990). For the purposes of this paper, we will henceforth refer to an
EB policy where all buffers except the last one have zero capacities and the last buffer has capacity 𝐶𝐶 ≥ 0,
as CONWIP with WIP-cap 1 + 𝐶𝐶. Figure 3 depicts the production line of Figures 1 and 2 operated under
CONWIP, where the last buffer is shown as a common storage area on the side of the machines.

Figure 3. Serial production line operated under a CONWIP policy.

To analyze the operation of a production line under the EB policy, Liberopoulos (2017) modelled it as a
token-based queueing network and developed a decomposition-based approximation method for evaluating
its performance. This queuing network model consists of the 𝑁𝑁 machines of the line, 𝑀𝑀1, … ,𝑀𝑀𝑁𝑁, separated
by 𝑁𝑁 − 1 infinite capacity buffers, denoted by 𝑌𝑌1, … ,𝑌𝑌𝑁𝑁−1, as shown in Figure 4, for 𝑁𝑁 = 4. The number of
parts in buffer 𝑌𝑌𝑛𝑛,𝑛𝑛 = 1, … ,𝑁𝑁 − 1, including the part in machine 𝑀𝑀𝑛𝑛+1 is denoted by 𝑦𝑦𝑛𝑛 and is referred to as
the stage WIP following 𝑀𝑀𝑛𝑛; 𝑦𝑦𝑛𝑛 represents the number of parts that have been produced by 𝑀𝑀𝑛𝑛 but have not
yet departed from 𝑀𝑀𝑛𝑛+1. In the physical system shown in Figure 2, these parts may reside anywhere in 𝐵𝐵𝑛𝑛 ∪
⋯∪ 𝐵𝐵𝑁𝑁−1 ∪ 𝑀𝑀𝑛𝑛+1. When a part flows from machine 𝑀𝑀𝑛𝑛 to buffer 𝑌𝑌𝑛𝑛, a token is generated and is placed in
an associated finite buffer denoted by 𝐸𝐸𝑛𝑛,𝑛𝑛 = 1, … ,𝑁𝑁 − 1. The number of tokens in 𝐸𝐸𝑛𝑛,𝑛𝑛 = 1, … ,𝑁𝑁 − 1, is
denoted by 𝑒𝑒𝑛𝑛 and represents the echelon WIP downstream of 𝑀𝑀𝑛𝑛, i.e., the number of parts that have been
produced by machine 𝑀𝑀𝑛𝑛 but have not yet departed from the line. Hence, 𝐸𝐸𝑛𝑛 is a surrogate of the echelon
buffer following 𝑀𝑀𝑛𝑛 (i.e., the ensemble 𝐵𝐵𝑛𝑛 ∪⋯∪ 𝐵𝐵𝑁𝑁−1 ∪𝑀𝑀𝑛𝑛+1) in the physical line shown in Figure 2.

The vertical line at the end of the system in Figure 4 represents an assembly operation that merges parts
exiting the line with tokens from the echelon buffers. Thus, when a part is produced by machine 𝑀𝑀𝑁𝑁, it draws
a token from each of the echelon buffers 𝐸𝐸1, … ,𝐸𝐸𝑁𝑁−1, signaling that all echelon WIP levels have dropped by
one unit. The finished part leaves the line, and the tokens are discarded. The echelon WIP levels and the stage

SMMSO 2017

195

WIP levels are related as follows: 𝑒𝑒𝑛𝑛 = ∑ 𝑦𝑦𝑚𝑚𝑁𝑁−1
𝑚𝑚=𝑛𝑛 ,𝑛𝑛 = 1, … ,𝑁𝑁 − 1; alternatively, 𝑦𝑦𝑛𝑛 = 𝑒𝑒𝑛𝑛 − 𝑒𝑒𝑛𝑛+1 ≥ 0,𝑛𝑛 =

1, … ,𝑁𝑁 − 2 and 𝑦𝑦𝑁𝑁−1 = 𝑒𝑒𝑁𝑁−1.

Figure 4. Queueing network model of a serial production line operated under an EB policy.

To highlight the difference between the EB and IB policies, Figure 5 shows the queuing network model
of a production line operated under IB that is analogous to the EB model in Figure 4. When a part flows from
machine 𝑀𝑀𝑛𝑛 to buffer 𝑌𝑌𝑛𝑛, a token is generated and is placed in an associated finite buffer denoted by 𝐼𝐼𝑛𝑛,𝑛𝑛 =
1, … ,𝑁𝑁 − 1. The number of tokens in 𝐼𝐼𝑛𝑛 ,𝑛𝑛 = 1, … ,𝑁𝑁 − 1, is denoted by 𝑖𝑖𝑛𝑛 and represents the installation
WIP downstream of 𝑀𝑀𝑛𝑛, i.e., the number of parts that have been produced by machine 𝑀𝑀𝑛𝑛 but have not yet
departed from 𝑀𝑀𝑛𝑛+1. Hence, 𝐼𝐼𝑛𝑛 is a surrogate of the installation buffer following 𝑀𝑀𝑛𝑛 (i.e., 𝐵𝐵𝑛𝑛 ∪ 𝑀𝑀𝑛𝑛+1) in the
physical line shown in Figure 1. Note that in the case of the IB policy, the stage WIP levels are identical to
the installation WIP levels, i.e., 𝑦𝑦𝑛𝑛 = 𝑖𝑖𝑛𝑛,𝑛𝑛 = 1, … ,𝑁𝑁 − 1.

Figure 5. Queueing network model of a serial production line operated under an IB policy.

An important advantage of the EB policy, besides increasing buffer space utilization, is that it uses global
information because it enables each machine to process parts based on the echelon WIP level of the entire
part of the line downstream of this machine. The decision to allow or block the production of new parts by a
machine based on the echelon WIP level should be economically advantageous especially if the WIP holding
cost increases significantly as we move down the line, as is the case in high added value production. In
contrast, the IB policy uses only local information because it enables each machine to process parts based on
the local installation WIP level immediately following this machine.

Under the EB policy, parts are produced earlier by the first and the last machine of the line than they are
under the IB policy; hence, the average throughput of the line should be higher under EB than it is under IB,
other things equal. On the downside, parts spend more time in the line under the EB policy than they do
under the IB policy as a result of the increased congestion induced by the former policy. From Little’s law,
this implies that the average WIP in the line should be higher under EB than it is under IB. The question that
we address in this paper is whether the benefit of the throughput increase under the EB policy outweighs the
disadvantage of the WIP increase, also taking into account that less total buffer space may be needed under
the EB policy than under the IB policy to achieve the same throughput level.

 Liberopoulos: Optimal Buffer Allocation in Production Lines under IB, EB, and CONWIP Policies

196

The remainder of this paper is organized as follows. In Section 2, we briefly review the related literature
on the buffer allocation problem. In Section 3, we set up a constrained optimization problem whose objective
is to determine the optimal buffer sizes to maximize the average profit of the line subject to a minimum
average throughput constraint, under any operating policy. In Section 4, we present numerical results on the
optimal performance of a production line under the IB and EB policies, also comparing them against the
CONWIP policy. Finally, in Section 5, we draw conclusions.

2 Literature Review
One of the most widely researched problems in flow line optimization is the buffer allocation problem (BAP).
BAP deals with allocating storage capacity to intermediate storage buffers to meet a given criterion under
given constraints. In a recent survey on this topic, Demir et al. (2014) identify three main BAP variants. In
one variant, which is often referred to as primal BAP in the literature, the goal is to minimize the total buffer
size to achieve a given desired average throughput. In another variant, which is often referred to as dual BAP,
the goal is to maximize the average system throughput for a given fixed total buffer size. In the third variant,
the goal is to minimize the average system WIP subject to total buffer size and average throughput
constraints. A more recent review of the BAP can be found in Schwarz et al. (2017).

According to Tempelmeier (2003), who raised important practical considerations in the optimization of
flow production systems, planners normally treat average throughput as a datum and therefore usually
consider the primal BAP variant. Recently, Shi (2012) and Shi and Gershwin (2009, 2014) considered an
extension of the primal BAP whose objective is to maximize the average profit of the line subject to a given
minimum average throughput constraint. The average profit is defined as the weighted average throughput
of the system minus the sum of the weighted average WIP plus total buffer capacity. In this paper we consider
this variant. This constrained problem includes as special cases: 1) the unconstrained problem, when the
minimum average throughput is zero, and 2) the primal BAP, when the weights of the average throughput
and the total buffer capacity in the objective function are zero. Note that the unconstrained problem has been
used for over 30 years (e.g., Kramer and Love 1970; Smith and Daskalaki 1988; Altiok 1997).

Demir et al. (2014) and Shi and Gershwin (2014) also categorize the BAP literature based on the search
and performance evaluation techniques used. The search techniques include analytical methods (e.g.,
Enginarlar et al. 2005), DP (e.g., Diamantidis and Papadopoulos 2004), heuristics (e.g., Tempelmeier 2003)
and meta-heuristics (e.g., Spinellis et al. 2000), among others. In this paper, we adopt the gradient search
NLP technique that was developed in Shi and Gershwin (2009). Previous works that also use gradient search
for optimization and decomposition for performance evaluation include Gershwin and Schor (2000),
Levantesi et al. (2001), and Helber (2001).

3 Formulation of Buffer Allocation Problem
We consider an optimization problem, similar to that used in Shi and Gershwin (2009) and Shi (2012). The
objective is to design the buffer capacities of a production line under any of the three considered policies (IB,
EB, and CONWIP) so as to maximize a net profit function subject to a minimum throughput constraint. The
profit function is defined as the weighted average throughput of the system minus the sum of the weighted
average WIP plus total buffer capacity. The mathematical formulation of the problem is as follows:

 max
𝐶𝐶1,…,𝐶𝐶𝑁𝑁−1

𝑃𝑃(𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1) = 𝑟𝑟 𝜈𝜈(𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1) − �� ℎ𝑛𝑛𝑦𝑦�𝑛𝑛(𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1)
𝑁𝑁−1

𝑛𝑛=1

+ 𝑏𝑏 � 𝐶𝐶𝑛𝑛

𝑁𝑁−1

𝑛𝑛=1

� (1)

 subject to 𝜈𝜈(𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1) ≥ 𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚, (2)

 𝐶𝐶𝑛𝑛 ≥ 0, 𝑛𝑛 = 1, … ,𝑁𝑁 − 1, (3)
where we have used the following notation:

𝑃𝑃(𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1): average net profit of the line as a function of 𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1 ($ per unit time).
𝜈𝜈(𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1): average throughput of the line as a function of 𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1 (parts per unit time).
𝑦𝑦�𝑛𝑛(𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1): average WIP in stage buffer 𝑌𝑌𝑛𝑛,𝑛𝑛 = 1, … ,𝑁𝑁 − 1, as a function of 𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1 (parts).
𝑟𝑟: gross profit coefficient associated with average throughput 𝜈𝜈(𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1) ($ per part).
ℎ𝑛𝑛: inventory holding cost in stage WIP buffer 𝑌𝑌𝑛𝑛, 𝑛𝑛 = 1, … ,𝑁𝑁 − 1, ($ per part per unit time).
𝑏𝑏: cost of storage space ($ per storage slot per unit time).
𝜈𝜈𝑚𝑚𝑖𝑖𝑖𝑖: minimum required average throughput (parts per unit time).

SMMSO 2017

197

Given intermediate buffer capacities 𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1, the performance measures 𝜈𝜈(𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1) and
𝑦𝑦�𝑛𝑛(𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1), 𝑛𝑛 = 1, … ,𝑁𝑁 − 1, can be estimated using the decomposition-based approximation method
developed in Liberopoulos (2017) for the EB policy (as well as the CONWIP policy which is special case of
EB). This method is based on decomposing the original system with 𝑁𝑁 machines and 𝑁𝑁 − 1 echelon buffers
into 𝑁𝑁 − 1 nested segments and approximating each segment with a 2-machine subsystem that can be
analyzed in isolation. For the case where the machines have geometrically distributed processing times
(Bernoulli reliability model), each subsystem is modelled as a 2D Markov chain that can be solved
numerically. The parameters of the 2-machine subsystems are determined by relationships among the flows
of parts through the echelon buffers in the original system. These relationships are solved using an iterative
algorithm. Liberopoulos (2017) demonstrated that this method is highly accurate and computationally
efficient. The performance the IB policy can be estimated using a simple decomposition algorithm similar to
that in Li and Meerkov (2009) for the Bernoulli machine case.

Problem (1)-(3) is a constrained optimization problem. To solve it, we use the two-step algorithm
proposed in Shi and Gershwin (2009). Briefly, this algorithm is as follows.

In the first step, we solve problem (1)-(3) without taking into account constraint (2). This problem is
called the unconstrained problem. To solve this problem we use an iterative gradient technique that works as
follows. In each iteration, given the current design 𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1 and its average net profit 𝑃𝑃(𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1), for
each 𝑛𝑛 = 1, … ,𝑁𝑁 − 1, we compute the increase in the average net profit that would result if we raised the
value of 𝐶𝐶𝑛𝑛 by one unit to 𝐶𝐶𝑛𝑛 + 1. If the increase in the average net profit is negative for all 𝑛𝑛 = 1, … ,𝑁𝑁 − 1,
then there are no more gains to make by increasing the buffer capacities; therefore, we stop and keep the
current design as the optimal one for the unconstrained problem. Otherwise, we update the current design to
a new design in which the capacity of the intermediate buffer that yielded the largest increase in the average
net profit is augmented by one and all other capacities remain the same, and we move on to the next iteration.
If the optimal solution of the unconstrained problem solved in the first step satisfies constraint (2), then it is
also the solution of the constrained problem (1)-(3); hence, we keep it as the final optimal design and stop.
Otherwise, we proceed to the second step.

In the second step, we slightly increment the value of the net profit coefficient 𝑟𝑟 and resolve the
unconstrained problem with the incremented value of 𝑟𝑟; essentially, the increment in 𝑟𝑟 is a Lagrange
multiplier that is introduced in (1). If the optimal solution of the unconstrained problem with the new value
of 𝑟𝑟 satisfies constraint (2), then it is also the solution of the original constrained problem (1)-(3); hence, we
keep it as the final optimal design and stop. Otherwise, we slightly increment the value of 𝑟𝑟 again and repeat
the process until the solution of the unconstrained problem with the updated value of 𝑟𝑟 satisfies constraint
(2). The resulting design is the optimal design for the constrained problem. To evaluate the average net profit
that it yields we must use the original value of 𝑟𝑟 in (1).

We used the above algorithm to solve problem (1)-(3) for several instances of two numerical examples
under the IB, EB, and CONWIP policies. To choose reasonable values for the input parameters of these
instances (𝑟𝑟, 𝑏𝑏, ℎ𝑛𝑛,𝑛𝑛 = 1, … . ,𝑁𝑁, and 𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚) we used the following additional auxiliary parameters:

𝑐𝑐0: raw-material cost ($ per raw part).
𝐼𝐼𝑐𝑐: value-added multiplier per production stage ($ per $ of value). A value of 𝐼𝐼𝑐𝑐 = 1.2 means that there

is 20% added value (due to labor and production costs) on each part at each stage (machine).
𝑐𝑐𝑛𝑛: total cumulative cost per part in stage buffer 𝑌𝑌𝑛𝑛, 𝑛𝑛 = 1, … ,𝑁𝑁 − 1, ($ per part).
𝑐𝑐𝑁𝑁: total cumulative cost per finished part exiting the line ($ per part).
𝐼𝐼ℎ: interest rate ($ per $ invested per unit time).
𝐼𝐼𝑟𝑟: gross profit margin ($ per $) defined as follows: 𝐼𝐼𝑟𝑟 = (𝑠𝑠 − 𝑐𝑐𝑁𝑁) 𝑐𝑐𝑁𝑁⁄ , where 𝑠𝑠 is the selling price per

finished part of the production line ($ per part). A value of 𝐼𝐼𝑟𝑟 = 0.1 means that the selling price of a
finished part is 10% higher than the total cumulative cost of the part, 𝑐𝑐𝑁𝑁.

𝐼𝐼𝑏𝑏: buffer capacity cost multiplier w.r.t. inventory holding cost ℎ1 (part per storage slot). A value of 𝐼𝐼𝑏𝑏 =
2 means that the cost of a slot for storing one part in an intermediate buffer is equal to the cost of
holding 2 parts in stage-1 WIP inventory for one period.

𝐼𝐼𝜈𝜈: minimum required production line efficiency. A value of 𝐼𝐼𝜈𝜈 = 0.8 means that 𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚 is 80% of the
production probability (rate) of the slowest (bottleneck) machine.

Based on the above definitions, the total cost per part in stage 𝑛𝑛, the profit/cost input parameters in
objective function (1), and the minimum required throughput in constraint (2) are computed as follows:

 Liberopoulos: Optimal Buffer Allocation in Production Lines under IB, EB, and CONWIP Policies

198

 𝑐𝑐𝑛𝑛 = 𝐼𝐼𝑐𝑐𝑐𝑐𝑛𝑛−1 = 𝐼𝐼𝑐𝑐𝑛𝑛𝑐𝑐0,𝑛𝑛 = 1, … ,𝑁𝑁, (4)

 ℎ𝑛𝑛 = 𝐼𝐼ℎ𝑐𝑐𝑛𝑛 = 𝐼𝐼ℎ𝐼𝐼𝑐𝑐𝑛𝑛𝑐𝑐0,𝑛𝑛 = 1, … ,𝑁𝑁 − 1, (5)

 𝑟𝑟 = 𝐼𝐼𝑟𝑟𝑐𝑐𝑁𝑁 = 𝐼𝐼𝑟𝑟𝐼𝐼𝑐𝑐𝑁𝑁𝑐𝑐0, (6)

 𝑏𝑏 = 𝐼𝐼𝑏𝑏ℎ1 = 𝐼𝐼𝑏𝑏𝐼𝐼ℎ𝑐𝑐1 = 𝐼𝐼𝑏𝑏𝐼𝐼ℎ𝐼𝐼𝑐𝑐𝑐𝑐0, (7)

 𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐼𝐼𝜈𝜈 min
𝑛𝑛=1,…,𝑁𝑁

{𝑝𝑝𝑛𝑛}. (8)

In the next section, we present the input data and the results for the two numerical examples that we
investigated.

4 Numerical Results on the Optimal IB, EB, and CONWIP Policies
In Example 1, we consider a production line consisting of 𝑁𝑁 = 4 machines and 3 intermediate buffers. Each
machine has the same production probability, 𝑝𝑝𝑛𝑛 = 0.6,𝑛𝑛 = 1, … ,4; hence the line is balanced. For this
example, we defined a nominal instance of the design problem with the following parameter values: 𝑐𝑐0 =
100, 𝐼𝐼𝑐𝑐 = 1, 𝐼𝐼ℎ = 0.01, 𝐼𝐼𝑟𝑟 = 𝐼𝐼𝑏𝑏 = 0, and 𝐼𝐼𝜈𝜈 = 0.78. Given these values, the parameters in (1) and (2) are
computed from (4)-(8) as follows: [ℎ1, ℎ2, ℎ3] = [1, 1, 1], 𝑟𝑟 = 𝑏𝑏 = 0, and 𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚 = 0.468. Since 𝑟𝑟 = 𝑏𝑏 = 0
and the inventory holding cost rates are the same for all stages, the nominal instance essentially corresponds
to the primal BAP mentioned in Section 2, i.e., to the problem of minimizing the average weighted WIP
subject to a minimum throughput constraint. Based on the nominal instance, we generated two other instances
with different values of 𝐼𝐼𝜈𝜈. For each instance, we optimized the intermediate buffer capacities 𝐶𝐶𝑛𝑛,𝑛𝑛 = 1,2,3,
for the IB and EB policies. In the case of CONWIP, we kept the capacities of all intermediate buffers except
the last one at zero and optimized the capacity of the last buffer 𝐶𝐶𝑁𝑁−1 = 𝐶𝐶3 which we denote by 𝐶𝐶.

Table 1 shows the input data and optimization results for all instances of Example 1. The nominal
instance (0) appears in the first line. The input parameters are shown in the first few columns. For each
instance, the value of the parameter that has been varied w.r.t. to the nominal case is shown in bold. The next
columns show the optimal values of the intermediate buffer capacities, 𝐶𝐶𝑛𝑛∗ ,𝑛𝑛 = 1,2,3 (for CONWIP, only the
optimal value of the last buffer 𝐶𝐶∗ is shown), the optimal average throughput 𝜈𝜈∗, and the maximum net profit
𝑃𝑃∗, for the three considered policies. The last two columns (“%𝛥𝛥𝑃𝑃∗”) show the percent increase in the optimal
profit of the EB policy w.r.t. the IB policy (“E-I”) and CONWIP (“E-C”). The average stage WIP levels
𝑦𝑦�𝑛𝑛∗,𝑛𝑛 = 1,2,3, corresponding to the optimized policies, are shown in Table 2.

Table 1. Input data and results for Example 1.
 Input parameters IB policy CONWIP policy EB policy %𝛥𝛥𝑃𝑃∗
𝐼𝐼𝑐𝑐 𝐼𝐼ℎ 𝐼𝐼𝑟𝑟 𝐼𝐼𝑏𝑏 𝐼𝐼𝜈𝜈 [𝐶𝐶1∗,𝐶𝐶2∗,𝐶𝐶3∗] 𝜈𝜈∗ 𝑃𝑃∗ 𝐶𝐶∗ 𝜈𝜈∗ 𝑃𝑃∗ [𝐶𝐶1∗,𝐶𝐶2∗,𝐶𝐶3∗] 𝜈𝜈∗ 𝑃𝑃∗ E-I E-C
0 1 0.01 0 0 0.78 [2,3,4] 0.488 -5.141 5 0.473 -4.500 [0,0,5] 0.473 -4.500 12.467 0
1 1 0.01 0 0 0.85 [3,5,6] 0.522 -7.176 8 0.516 -6.750 [0,0,8] 0.516 -6.750 5.942 0
2 1 0.01 0 0 0.92 [6,9,11] 0.556 -12.387 15 0.554 -12.000 [0,0,15] 0.554 -12.000 3.135 0

Table 2. Additional results for Example 1.
 IB policy CONWIP policy EB policy
𝑦𝑦�1∗ 𝑦𝑦�2∗ 𝑦𝑦�3∗ 𝑦𝑦�1∗ 𝑦𝑦�2∗ 𝑦𝑦�3∗ 𝑦𝑦�1∗ 𝑦𝑦�2∗ 𝑦𝑦�3∗
1 1.639 1.742 1.760 1.500 1.500 1.500 1.500 1.500 1.500
2 2.144 2.544 2.489 2.250 2.250 2.250 2.250 2.250 2.250
3 3.767 4.315 4.305 4.000 4.000 4.000 4.000 4.000 4.000

From the results in Table 1, we observe that in all instances, the average profit is negative under all three

policies because the only non-zero term in (1) is the average weighted WIP cost term. As a result, 𝜈𝜈∗ is the
smallest throughput that does not violate constraint (2). We also observe that in all instances, the EB policy
significantly outperforms the IB policy, confirming our initial intuition that the EB policy, being a global-
information policy, should outperform the local-information IB policy. Finally, in all instances, the optimal
EB policy is identical to the optimal CONWIP policy. This is expected because the inventory holding cost is
the same for all stages. This means that there is no incentive to block parts from moving down the line except
in the first machine.

A question that arises naturally is, are there situations where the EB policy significantly outperforms
CONWIP? To answer this question, we recall that the CONWIP policy is a special case of the EB policy. Its
advantage is that it can achieve the highest average throughput with the smallest total buffer capacity because

SMMSO 2017

199

none of the machines, except the first one, is ever blocked. One situation where it might make sense to
purposely block a machine from processing a part is if the number of parts downstream of this machine is
already large and the WIP inventory holding cost downstream of the machine is notably higher than the
respective cost upstream of the machine.

With this in mind, we constructed another example in which the WIP inventory holding cost increases
significantly with the stages. More specifically, in Example 2, we consider the same 4-machine line as in
Example 1 (i.e., one where each machine has the same production probability 𝑝𝑝𝑛𝑛 = 0.6,𝑛𝑛 = 1, … ,4) but with
different cost parameters. For this example, we defined a nominal instance of the design problem with the
following parameter values: 𝑐𝑐0 = 100, 𝐼𝐼𝑐𝑐 = 5, 𝐼𝐼ℎ = 0.001, 𝐼𝐼𝑟𝑟 = 0.01, 𝐼𝐼𝑏𝑏 = 0.5, and 𝐼𝐼𝜈𝜈 = 0.8. Given these
values, the parameters in (1) and (2) are computed from (4)-(8) as follows: [ℎ1, ℎ2, ℎ3] = [0.5, 2.5, 12.5],
𝑟𝑟 = 625, 𝑏𝑏 = 0.25, and 𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚 = 0.48. Clearly, in this case, the value added cost per stage, and hence the
inventory holding cost per stage, increases significantly with the stage. Based on the nominal instance, we
generated several other instances, each time varying one of the input parameters, 𝐼𝐼𝑐𝑐 , 𝐼𝐼ℎ, 𝐼𝐼𝑟𝑟 , 𝐼𝐼𝑏𝑏 , and 𝐼𝐼𝜈𝜈. For each
instance, we optimized the buffer capacities for the three policies as we did in Example 1. Table 1 shows the
input data and the optimization results for the three instances of Example 2.

Table 3. Input data and results for Example 2.
 Input parameters IB policy CONWIP policy EB policy %𝛥𝛥𝑃𝑃∗

𝐼𝐼𝑐𝑐 𝐼𝐼ℎ 𝐼𝐼𝑟𝑟 𝐼𝐼𝑏𝑏 𝐼𝐼𝜈𝜈 [𝐶𝐶1∗,𝐶𝐶2∗,𝐶𝐶3∗] 𝜈𝜈∗ 𝑃𝑃∗ 𝐶𝐶∗ 𝜈𝜈∗ 𝑃𝑃∗ [𝐶𝐶1∗,𝐶𝐶2∗,𝐶𝐶3∗] 𝜈𝜈∗ 𝑃𝑃∗ E-I E-C
0 5 0.001 0.01 0.5 0.8 [6,6,4] 0.535 289.914 11 0.538 286.703 [4,4,4] 0.532 290.400 0.168 1.290
1 7 0.001 0.01 0.5 0.8 [9,8,5] 0.549 1184.420 13 0.547 1168.409 [6,6,5] 0.548 1184.631 0.018 1.388
2 9 0.001 0.01 0.5 0.8 [11,10,6] 0.557 3345.770 15 0.554 3297.342 [9,7,6] 0.556 3345.155 -0.018 1.450
3 5 0.005 0.01 0.5 0.8 [3,3,2] 0.484 175.587 6 0.491 163.861 [3,2,2] 0.482 177.765 1.240 8.485
4 5 0.01 0.01 0.5 0.8 [3,3,2] 0.484 48.584 6 0.491 20.739 [3,2,2] 0.482 54.366 11.901 162.141
5 5 0.001 0.005 0.5 0.8 [4,4,3] 0.511 126.830 8 0.516 124.361 [2,3,3] 0.508 127.276 0.352 2.344
6 5 0.001 0.001 0.5 0.8 [3,3,2] 0.484 4.858 6 0.491 2.074 [3,2,2] 0.482 5.437 11.901 162.141
7 5 0.001 0.01 1 0.8 [5,5,4] 0.528 286.088 11 0.538 283.953 [3,4,4] 0.530 287.501 0.494 1.250
8 5 0.001 0.01 2 0.8 [5,5,4] 0.528 279.088 10 0.532 279.664 [2,4,4] 0.526 282.220 1.122 0.914
9 5 0.001 0.01 0.5 0.85 [6,6,4] 0.535 289.914 11 0.538 286.703 [4,4,4] 0.532 290.400 0.168 1.290

10 5 0.001 0.01 0.5 0.9 [7,6,5] 0.541 289.021 12 0.542 285.668 [4,5,5] 0.543 289.384 0.125 1.301
11 5 0.005 0.005 0.5 0.8 [3,3,2] 0.484 24.292 6 0.491 10.370 [3,2,2] 0.482 27.183 11.901 162.141

Table 4. Additional results for Example 2.
 IB policy CONWIP policy EB policy

𝑦𝑦�1∗ 𝑦𝑦�2∗ 𝑦𝑦�3∗ 𝑦𝑦�1∗ 𝑦𝑦�2∗ 𝑦𝑦�3∗ 𝑦𝑦�1∗ 𝑦𝑦�2∗ 𝑦𝑦�3∗
1 4.267 3.842 2.273 3.000 3.000 3.000 4.248 3.563 2.237
2 6.335 5.136 2.783 3.500 3.500 3.500 6.147 5.163 2.773
3 7.620 6.347 3.271 4.000 4.000 4.000 8.798 6.169 3.260
4 2.442 2.172 1.340 1.750 1.750 1.750 2.978 1.952 1.325
5 2.442 2.172 1.340 1.750 1.750 1.750 2.978 1.952 1.325
6 3.008 2.655 1.766 2.250 2.250 2.250 2.561 2.572 1.733
7 2.442 2.172 1.340 1.750 1.750 1.750 2.978 1.952 1.325
8 3.582 3.146 2.190 3.000 3.000 3.000 3.552 3.435 2.207
9 3.582 3.146 2.190 2.750 2.750 2.750 2.958 3.245 2.162

10 4.267 3.842 2.273 3.000 3.000 3.000 4.248 3.563 2.237
11 4.916 3.738 2.645 3.250 3.250 3.250 4.557 4.297 2.675

From the results in Table 3, we observe that in all instances except instance 2, the EB policy outperforms

both the IB and the CONWIP policies. In some instances the dominance of the EB policy is striking. In
instance 2, the underperformance of EB with respect to IB is practically negligible (below 0.02%). We also
observe that in several instances, under all polices, 𝜈𝜈∗is notably higher than 𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚, whereas in other instances,
it is slightly above 𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚. The reason for this difference is that in the former instances, the problem parameters
are such that the optimization of the unconstrained problem in the first step of the optimization algorithm
yields a high value of 𝜈𝜈∗ that satisfies (2) and thus solves the constrained problem too. In the latter instances,
the unconstrained problem yields a value of 𝜈𝜈∗ that does not satisfy (2). In this case, the second step of the
algorithm iteratively increments 𝑟𝑟 and resolves the unconstrained problem until 𝜈𝜈∗ becomes just feasible.

5 Conclusions
We compared the performance of the optimal EB policy against the performances of the optimal IB and
CONWIP policies, where CONWIP is a special case of the EB policy. Our numerical results showed that EB
policy generally outperformed the other two policies, the difference in performance being striking in some

 Liberopoulos: Optimal Buffer Allocation in Production Lines under IB, EB, and CONWIP Policies

200

cases. More specifically, when 𝐼𝐼𝑐𝑐 = 1, meaning that there is no value added at each stage, the optimal EB
policy was identical to the optimal CONWIP policy but significantly outperformed the optimal IB policy.
When 𝐼𝐼𝑐𝑐 > 1 and 𝐼𝐼𝑟𝑟 is not as high relatively to 𝐼𝐼ℎ, the optimal EB policy significantly outperformed the
optimal CONWIP policy and performed as well as or better than the IB policy. The EB policy performs well
primarily because it increases the utilization of the existing buffers, but can still block machines from
producing if the number of parts that they have already produced and is still in the system is large. Clearly,
more tests need to be performed to further validate these findings. Another worthwhile direction for future
research is to explore how the performances of the three policies are affected if the cost of transferring parts
to remote buffers is taken into account. In this case, the dominance of the EB policy over the IB policy is
expected to drop while the dominance of the EB policy over CONWIP is expected to increase.

Acknowledgements
This research is expected to be supported by the research project ‘Productive4.0 - Electronics and ICT as
enabler for digital industry and optimized supply chain management covering the entire product lifecycle’;
a conditionally approved project by the EU and BMBF (Call: H2020-ECSEL-2016-2-IA-two-stage).

References
Altiok, T. 1997. Performance Analysis of Manufacturing Systems, Springer Series in Operations Research,

Springer, New York, NY.
Demir, L., S. Tunali, D. T. Eliiyi. 2014. The state of the art on buffer allocation problem: a comprehensive

survey. Journal of Intelligent Manufacturing 25 (3) 271-392.
Diamantidis, A. C., C. T. Papadopoulos. 2004. A dynamic programming algorithm for the buffer allocation

problem in homogeneous asymptotically reliable serial production lines. Mathematical Problems in
Engineering 2004 (3) 209–223.

Enginarlar, E., J. Li, S. M. Meerkov. 2005. How lean can lean buffers be? IIE Transactions 37 (4) 333-342.
Gershwin S. B., G. E. Schor. 2000. Efficient algorithms for buffer space allocation. Annals of Operations

Research 93 (1) 117-144.
Helber, S. 2001. Cash-flow-oriented buffer allocation in stochastic flow lines. International Journal of

Production Research 39 (14) 3061-3083.
Kramer, S. A., R. F. Love. 1970. A model for optimizing the buffer inventory storage size in a sequential

production system. AIIE Transactions 2 (1) 64-69.
Levantesi, R., A. Matta, T. Tolio. 2001. A new algorithm for buffer allocation in production lines. In

Proceedings of the 3rd Aegean International Conference on Design and Analysis of Manufacturing
Systems, May 19-22, Tinos Island, Greece, pp. 279-288.

Li, J., S. M. Meerkov. 2009. Production Systems Engineering, Springer, New York, NY.
Liberopoulos, G. 2017. Performance evaluation of a serial production line operated under a shared echelon

buffer policy, Working Paper, Department of Mechanical Engineering, University of Thessaly, Greece.
Schwarz, J., S. Weiss, R. Stolletz. 2017. The buffer allocation problem: A joint classification and review of

decision problems, solution approaches, and test instances, Working Paper, Chair of Production
Management, Manheim Business School, Manheim University, Germany.

Shi, C. 2012. Efficient Buffer Design Algorithms for Production Line Profit Maximization. PhD Dissertation,
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.

Shi, C., S. B. Gershwin. 2009. An efficient buffer design algorithm for production line profit maximization.
International Journal of Production Economics 122 (2) 725-740.

Shi, C., S. B. Gershwin. 2014. A segmentation approach for solving buffer allocation problems in large
production systems. International Journal of Production Research 54 (20) 6121-6141.

Smith, J. M., S. Daskalaki. 1988. Buffer space allocation in automated assembly lines. Operations Research
36 (2) 342-358.

Spearman, M. L., D. L. Woodruff, W. J. Hopp. 1990. CONWIP: a pull alternative to Kanban, International
Journal of Production Research, 28 (5) 879-894.

Spinellis, D., C. Papadopoulos, J. M. Smith. 2000. Large production line optimization using simulated
annealing. International Journal of Production Research 38 (3) 509–541.

Tempelmeier, H. 2003. Practical considerations in the optimization of flow production systems. International
Journal of Production Research 41 (1) 149–170.

