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On Capacity of the Writing Onto
Fast Fading Dirt Channel
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Abstract— The Writing onto Fast Fading Dirt (WFFD) channel
is investigated to study the effect of partial channel knowledge
on the performance of interference pre-cancellation. The WFFD
channel is the Gel’fand–Pinsker channel in which the channel
output is the sum of the channel input, white Gaussian noise,
and a fading-times-state term. The fading-times-state term is
obtained as the product of the channel state sequence, known only
at the transmitter, and a fast fading process, known only at the
receiver. We consider the case of Gaussian-distributed channel
states and derive an approximate characterization of capacity
for different classes of fading distributions, both continuous and
discrete. In particular, we prove that if the fading distribution
concentrates in a sufficiently small interval, then capacity is
approximately equal to the AWGN capacity times the probability
of such interval. We also show that there exists a class of
fading distributions for which having the transmitter treat the
fading-times-state term as additional noise closely approaches
capacity.

Index Terms— Gel’fand-Pinsker channel, writing on fading
dirt channel, fast fading, partial channel side information, Costa
pre-coding, interference pre-cancellation.

I. INTRODUCTION

THE classic “Writing on Dirty Paper” (WDP) chan-
nel capacity result [1] establishes that full state pre-

cancellation can be attained in the Gel’fand-Pinsker (GP)
channel with additive state and additive white Gaussian noise,
regardless of the distribution of the state sequence. Albeit very
promising, this result assumes that perfect channel knowledge
is available at the users: this assumption is not valid in
many communication scenarios in which channel conditions
vary over time and with limited feedback between receiver
and transmitter. For this reason, we investigate the effects of
partial channel knowledge on the performance of state pre-
cancellation. More specifically, we study the capacity of the

Manuscript received April 25, 2017; revised April 19, 2018; accepted
August 12, 2018. Date of publication September 24, 2018; date of current
version November 9, 2018. The work of S. Rini was supported by the Ministry
of Science and Technology (MOST) under Grant 103-2218-E-009-014-MY2.
The work of S. Shamai was supported by the European Union’s Horizon
2020 Research and Innovation Programme under Grant 694630. The associate
editor coordinating the review of this paper and approving it for publication
was R. K. Ganti. (Corresponding author: Stefano Rini.)

S. Rini is with the Department of Electrical and Computer Engi-
neering, National Chiao-Tung University, Hsinchu 300, Taiwan (e-mail:
rini.stefano@gmail.com; stefano@nctu.edu.tw).

S. Shamai is with the Department of Electrical Engineering,
Technion–Israel Institute of Technology, Haifa 3200003, Israel (e-mail:
sshlomo@ee.technion.ac.il).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2018.2866841

“Writing onto Fast Fading Dirt” (WFFD) channel, a variation
of Costa’s WDP channel in which the state sequence, known
only at the transmitter, is multiplied by a fast fading process,
known only at the receiver. The WFFD channel models the
downlink scenario in which a transmitter communicates to
a receiver in the presence of a known interferer. The trans-
mitter acquires the message sent by the interferer through
the network architecture while the receiver learns the channel
toward the interferer from the pilot tones broadcasted by the
interferer. Due to rate limitations in the control and feed-
back channels, the transmitter and the receiver are unable to
exchange each other’s knowledge. This results in the situation
in which the transmitter knows the interfering message but
not the interfering channel, while the receiver knows the
interfering channel but not the interfering message. For this
scenario, one wishes to determine the limiting interference
pre-cancellation performance that is attainable despite the
partial and asymmetric knowledge at the transmitter and the
receiver.

Related Results: The GP channel [2] is the point-to-point
channel in which the output is obtained as a random function
of the input and a state sequence which is non-causally known
at the transmitter. The capacity of the GP channel is expressed
in [2] as the maximization of a non-convex function for
which the optimal solution is not easily determined, either
explicitly or through numerical evaluations. For this reason,
very few closed-form expressions of the GP channel capacity
are available in the literature. One of the few models for which
capacity is known in closed-form is the WDP channel: in [1]
Costa shows that the capacity of the WDP channel is equal to
the capacity of the Gaussian point-to-point channel. This result
implies that it is possible for the encoder to fully pre-code its
transmissions against the known channel state.

In the literature, few authors have investigated extensions
of the result in [1] to include fading and partial channel
knowledge. The “Carbon Copying onto Dirty Paper” (CCDP)
channel [3] is the M -user compound GP channel in which the
output at each compound receiver is obtained as the sum of the
input, Gaussian noise and one of M possible state sequences,
all non-causally known only at the transmitter. When the
state sequences at each receiver are scaled versions of the
same sequence, the CCDP channel models the WDP channel
in which the channel state is multiplied by a slow fading
process [4]. The WDP channel in which both the input and the
state sequence are multiplied by the same fading realization
is studied in [5]. The authors consider both the case of fast
and slow fading and evaluate the achievable rates using the
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pre-coding of [1], showing that the rate loss from full state
pre-cancellation is vanishing in both scenarios as the transmit
power grows to infinity. Lattice strategies for this model are
investigated in [6]. The WDP channel in which slow fading
affects only the state sequence is first studied in [7] for the
case of phase fading. In [8], we show the approximate capacity
of this model for some classes of the fading distributions.
Achievable rates under Gaussian signaling are derived in [9]
for the case of Gaussian-distributed fast fading and compared
to lattice coding strategies. The performance of lattice coding
strategies for this channel model is further studied in [10]–[12].

Contributions: We investigate the capacity of the WFFD
channel in which the state sequence is a white Gaussian
sequence.1 We consider separately the case of discrete and
continuous fading distribution:
• Sec. IV – Discrete fading distribution. We begin by

determining capacity to within a constant gap for the case of
uniform antipodal fading. For this simple fading distribution
capacity can be approached by transmitting the superposition
of two codewords: the bottom codeword treats the fading-
times-state as additional noise while the top codeword is
pre-coded against one of the fading realizations times the
channel state. This result is extended to two classes of fading
distributions: distributions with mode larger than a half and
uniform distributions with exponentially spaced points in the
support. In both cases, capacity is approached to within a small
gap by a combination of superposition coding and state pre-
coding as in the case of uniform antipodal fading.
• Sec. V – Continuous fading distribution. We first show

simple conditions under which capacity is at most half of the
AWGN capacity, we then derive the approximate capacity for
the case of a continuous fading distribution which concentrates
around a sufficiently narrow interval. The converse proof is
shown by relating the capacity of the model with continuous
fading to the capacity of the model in which the fading distrib-
ution is a quantized version of the original distribution. Finally,
we show that there exists a heavy-tailed fading distribution for
which the capacity of the WFFD channel is approximatively
equal to the capacity of the channel without transmitter statke
knowledge.

The main theoretical contributions of the paper consist in the
development of new outer bounding techniques to characterize
the capacity of a model comprising both channel states and
partially known fast fading.

Although the results in the paper are derived for white
Gaussian-distributed channel states, they can be generalized
to the case of any i.i.d. distribution of the state sequence.
We consider the case of Gaussian channel states as we focus on
deriving computable performance bounds that provide insights
on the performance loss due to the lack of perfect channel
knowledge. As such, fixing state distribution to Gaussian
allows us to express the results in the paper solely as a function
of the transmit power, the interference power and the fading
distribution.

1In the literature this channel has also been referred to as “dirty paper
channel with fading dirt”, “writing on fast faded dirt” and “dirty paper coding
channel with fast fading”. We prefer the term “writing on fast fading dirt” for
both brevity and clarity.

Fig. 1. The “Writing onto Fast Fading Dirt” (WFFD) channel.

Paper Organization: In Sec. II we introduce the channel
model under consideration while Sec. III presents relevant
results available in the literature. Sec. IV considers the case of
discrete fading distributions while Sec. V studies the case of
continuous distributions. Finally, Sec. VI concludes the paper.

II. CHANNEL MODEL

The WFFD channel, also depicted in Fig. 1, is the GP
channel in which the channel output is obtained as

Y N = XN + cAN ◦ SN + ZN , (1)

where XN denotes the channel input, SN the channel state,
AN the fading sequence and ZN the additive noise while
◦ indicates the Hadamard, or element-wise, product.2 The
channel input XN is subject to the second moment constraint
E
[
|Xi|2

]
≤ P, ∀ i ∈ [1 . . .N ]. Both the channel state

and the additive noise are white Gaussian sequences, i.e. ZN ,
SN ∼ i.i.d. N (0, 1) while the fading sequence AN is an i.i.d.
sequence from the distribution PA(a), with support A, either
continuous or discrete. Without loss of generality we further
assume Var[A] = 1 and c ∈ R

+. Having knowledge of the
channel state SN , the encoder wishes to reliably communicate
the message W ∈ W = [1 . . . 2NR] to the receiver through the
channel input XN . Upon receiving the channel output Y N and
the fading realization AN , the receiver produces the estimate
Ŵ ∈ W of the transmitted message.3

In the study of the WFFD channel, standard definitions of
code, achievable rate and capacity are employed.

Definition 1 (Code, Probability of Decoding Error and
Achievable Rate): A (2NR; N) code for the WFFD channel
consists of an encoding and a decoding function, XN =
f(W, SN) and Ŵ = g(Y N , AN ) respectively. The probability
of error for a (2NR; N) code, Pe(2NR; N), is defined as

Pe(2NR; N) = P

[
Ŵ (Y N , AN ) �= W

]
, (2)

where the probability in the RHS of (2) is averaged over
all possible fading and state sequences and transmitted mes-
sage. A rate R ∈ R

+ is said to be achievable if there
exists a sequence of codes such that the probability of error
Pe(2NR; N) goes to zero as N goes to infinity.

2More explicitly, AN ◦ SN = [A1 S1, A2 S2 . . . AN SN ]T .
3The fading sequence AN can be seen as an additional channel, together

with Y N in (1), as shown in Fig. 1.
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Definition 2 (Capacity and Approximate Capacity): The
capacity C is the supremum of all the achievable rates.
An inner bound RIN and an outer bound ROUT to C for
which

ROUT − RIN ≤ Δ, (3)

for some constant Δ ∈ R
+, are said to characterize the

capacity to within an additive gap of Δ bits–per–channel–use
(bpcu) or, for brevity, to determine the approximate capacity
to within Δ bpcu.

The WFFD channel is a special case of the GP channel and
the capacity of the GP channel is obtained as

C = max
PU,X|S

I(Y ; U |A) − I(U ; S). (4)

The expression in (4) is convex in PX|S,U for a fixed PU|S
which implies that X can be chosen to be a deterministic
function of U and S. On the other hand, (4) is neither convex
nor concave in PU|S for a fixed PX|S,U : for this reason, deter-
mining a closed-form solution for the maximization in (4) is
generally challenging. Additionally, the lack of tight bounds on
the cardinality of the auxiliary random variable U in (4) further
complicates the task of obtaining numerical approximations
of the optimal solution. For these reasons, in the following,
we provide alternative inner and outer bounds to capacity
which are expressed only as a function of P , c and PA.
We also determine the approximate capacity for some class of
distributions, focusing on those instances in which a simple
combination of known achievable strategies is sufficient to
approach capacity.

In the remainder of the paper, we refer to the term cAN ◦SN

as the “fading-times-state” term and the parameter c is used
to normalize the variance of both the state and the fading
distributions to one.

Lemma 3: For the model in (1), the variance of the state
and the fading distributions are taken unitary without loss of
generality. Also, the channel state is taken to have zero mean
and c ∈ R

+ without loss of generality.
The proof of Lem. 3 is omitted for brevity. The following

lemma is useful in the tightening of certain outer bounds.
Lemma 4: The capacity of the WFFD channel is decreas-

ing in c.
Proof: The proof is presented in App. A.

Remark 5: Generally speaking, the results derived in the
remainder of the paper can be generalized to the case of
any i.i.d. state distribution. We focus on the case of a uni-
tary variance, Gaussian-distributed i.i.d. channel state as the
corresponding capacity bounds are expressed as only as a
function of the transmit power P , the gain of the fading-times-
state term c, and the fading distribution PA. Such expressions,
in most instances, provide clearer insights on the effect of
partial channel knowledge on the capacity of the WFFD
channel. Generalizations of our results to other channel state
distributions are, for the most part, rather straightforward.

III. RELATED RESULTS

This section briefly introduces the results available in the
literature which are relevant in the study of the WFFD channel.

• The “Writing on Dirty Paper” (WDP) channel. One
of the few GP channel models for which the maximization in
(4) is known in closed-form is the WDP channel [1]. For this
model, the optimal assignment in (4) is

X ∼ N (0, P ), X ⊥ S, U = X +
P

P + 1
S, (5)

and yields C = 1/2 log(1 + P ) in (4), regardless of the
distribution of SN . The assignment in (5) is usually referred
to as Dirty Paper Coding (DPC).
• The “Carbon Copying onto Dirty Paper” (CCDP)

channel. The CCDP channel [3] is the M -user compound
GP channel in which a channel output is obtained as the sum
of the input, Gaussian noise and one of M Gaussian state
sequences, all non-causally known at the transmitter, i.e.

Y N
m = XN + cSN

m + ZN
m , m ∈ [1 . . .M ], (6)

where SN
m ∼ i.i.d N (0, Qm) and {SN

m , m ∈ [1 . . . M ]} have
any jointly Gaussian distribution. In [3], the authors derive the
first inner and outer bound for this model. The approximate
capacity for the case of M = 2 and independent, unitary
variance state sequences is derived as [14].

Theorem 6 (Outer Bound and Approximate Capacity for
the 2-User CCDP Channel With Independent States [14]):
The capacity of the 2-user CCDP channel with SN

1 ,
SN

2 ∼ i.i.d. N (0, 1), SN
1 ⊥ SN

2 is upper bounded as

C ≤ ROUT

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

log (1 + P ) + 1/2 c2 ≤ 2
1
2

log
(

P + c2/2 + 1
c2

)

+
1
4

log
(

c2

2

)
+ 1/2 2 ≤ c2 < 2(P + 1)

1
4

log(P + 1) c2 ≥ 2(P + 1),

(7)

and the capacity is to within 1 bpcu from the outer
bound in (7).

Capacity in Th. 6 is approached by sending the superposi-
tion of two codewords: the base codeword treats the states as
additional noise while the top codeword is pre-coded against
each of the state realizations for half of the time. Th. 6 shows
that it substantially not possible to simultaneously pre-code
the channel input against two independent channel states.
• Writing onto Fast Fading Dirt (WFFD) channel. For

the WFFD channel with Gaussian fading, the authors of [15]
optimize the achievable strategy in (4) over all jointly Gaussian
distributions of S, U and X .

Theorem 7 (Achievability With Jointly Gaussian Signaling
[9, Th. 1], [15, Sec. IV]): Consider the WFFD channel for
AN ∼ i.i.d. N (0, 1) and let ρ = (ρXS , ρUS , ρUX) and
define K ⊂ [−1, 1]3 as

K =
{
|ρt| < 1, t ∈ {XS, US, UX}
1 + 2ρXSρUS − ρ2

XS − ρ2
US − ρ2

UX = 0

}
, (8)

then an inner bound to capacity is

C ≥ RIN = max
ρ∈K

Eθ[RΓ(ρ, θ)| A = θ], (9)
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for

RΓ(ρ, θ) =
1
2

log
(
(P + c2 + 2θρXSc

√
P + 1)(1 − ρ2

US)
)

− 1
2

log
(
P (1 − ρ2

UX) + c2(1 − ρ2
US)

+ 2θc(ρXS − (ρUXρUS))
√

P + 1
)
. (10)

Th. 7 attempts to generalize the result of [1] to the Gaussian
fast fading case although, in all likelihood, one needs to
consider a wider class of distributions than jointly Gaussian
distributions to attain maximum in (4).

IV. WFFD CHANNEL WITH A DISCRETE

FADING DISTRIBUTION

A. Uniform Antipodal Fading

We begin by providing the approximate capacity for the
WFFD channel in which the fading is uniformly distributed
over the set {−1, +1}. This is perhaps the simplest choice of
fading distribution for the WFFD channel, yet this example
well illustrates the main bounding techniques employed in the
reminder of the paper.

Theorem 8 (Outer Bound and Approximate Capacity of the
WFFD Channel With Antipodal Uniform Fading): Consider
the WFFD channel in which A is uniformly distributed over
the set {−1, +1}, then the capacity C is upper bounded as

C ≤ ROUT =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

log(P + 1) +
1
2

c2 ≤ 1

1
2

log(P + c2 + 1)

−1
4

log(c2) − 1
2

1 < c2 < P + 1

1
4

log(P + 1) − 1
2

c2 ≥ P + 1,

(11)

and the capacity is to within 1 bpcu from the outer
bound in (11).

Proof: Achievability and converse proofs are as follows.
• Achievability. Consider the achievable strategy in which

the channel input is obtained as the superposition of two
codewords: (i) the codeword XN

SAN (for State As Noise), at rate
RSAN, which treats cAN ◦SN as additional noise and (ii) the
codeword UN

PAS (for Pre-coded Against the State), at rate
RPAS, which is pre-coded against SN as in the WDP channel.
This strategy attains the rate RIN = RSAN + RPAS for

RSAN ≤ I(Y ; XSAN|A)
RPAS ≤ I(Y ; UPAS|XSAN, A) − I(UPAS; S). (12)

Through the assignment

XSAN ∼ N (0, αP ), XPAS ∼ N (0, αP ), XSAN ⊥ XPAS

X = XSAN + XPAS, UPAS = XPAS + c
αP

αP + 1
S,

(13)

we obtain the achievable rate

RIN(α) ≥ 1
2

log
(

1 +
αP

1 + αP + c2

)
+

1
4

log(αP + 1) − 1
2
.

(14)

Optimizing the expression in (14) over α yields in the inner
bound

RIN =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

log (1 + P ) − 1
2

c2 ≤ 1

1
2

log
(
1 + P + c2

)

−1
4

log(c2) − 1 1 < c2 < P + 1
1
4

log (1 + P ) − 1 c2 ≥ P + 1.

(15)

• Converse. From Fano’s inequality we have

N(R − �N ) ≤ I(Y N ; W |AN )

≤
N∑

j=1

H(Yj |Aj) − H(Y N |AN , W )

≤ N max
j

H(Yj |Aj) − H(Y N |AN , W )

≤ N max
PY |A

H(Y |A) − H(Y N |AN , W ). (16)

The entropy term maxPY |A H(Y |A) in (16) is bounded as

max
PY |A

H(Y |A)

≤ max
PY |A

1
2

(H(X + cS + Z) + H(X − cS + Zj))

≤ max
|ρXS |≤1

1
2

(H(XGj + cS + Z) + H(XGj − cS + Zj)) ,

(17)

where (17) follows from the “Gaussian Maximizes
Entropy (GME)” property by letting XGj be jointly Gaussian
random variables with variance P and with correlation ρXS

with S. Optimizing (17) over ρXS yields the upper bound

max
PY |A

H(Y |A) ≤ 1
2

log(2πe)2
(
P + c2 + 1

)
. (18)

Define now aN (aN ) = −aN and notice that

H(Y N |W, AN )

=
1
2

∑

aN∈{−1,+1}N

1
2N

(
H(Y N |W, AN = −aN )

+ H(Y N |W, AN = +aN )
)
,

so that

−H(Y N |W, AN )

≤ − 1
2N+1

∑

aN∈{−1,+1}N

H(XN − caN ◦ SN + ZN , XN + caN ◦ SN + ZN |W )
(19a)

= − 1
2N+1

∑

aN∈{−1,+1}N

H(2caN ◦ SN , XN + caN ◦ SN + ZN |W ) (19b)

= − 1
2N+1

∑

aN∈{−1,+1}N

(
H(2caN ◦ SN |W )

+ H(XN + caN ◦ SN + ZN |SN , W )
)

(19c)
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= − 1
2N+1

∑

aN∈{−1,+1}N

(
H(2caN ◦ SN)

+ H(XN + caN ◦ SN + ZN |SN , W, XN)
)

(19d)

= − 1
2N+1

∑

aN∈{−1,+1}N

H(2caN ◦ SN) + H(ZN ), (19e)

where (19b) follows from the fact that transformation has
unitary Jacobian. The equality in (19c) follows from the fact
that W ⊥ SN , (19d) from the fact that XN is a function of
W and SN and from the Markov chain W − [XN , SN ]−Y N .
Next, we observe that the terms in the summation in the RHS
of (19e) are all identical and equal to 1/2 log(2πe4 c2) +
1/2 log(2πe), so that

−H(Y N |W, AN ) ≤ −N

4
log(2πec2) − N

4
log(2πe) − N

2
.

(20)

Using (18) and (20) we rewrite the outer bound in (16) as

ROUT =
1
2

log(2πe)2
(
P + c2 + 1

)

− 1
4

log(2πec2) − 1
4

log(2πe) − 1
2

=
1
2

log(P + c2 + 1) − 1
4

log(c2) − 1
2
. (21)

Note that, as a function of c2, the expression in (21) has a
minimum in c2 = P + 1. From Lem. 4 we have the capacity
is decreasing in c: for this reason, the channel in which c2 is
equal to min{c2, P + 1} corresponds to a model with larger
capacity. For this latter model, the outer bound in (21) still
holds so that letting c2 equal to min{c2, P+1} in (21) provides
an outer bound to the capacity of the original model. With this
substitution and some further bounding for the case c2 < 1,
we obtain the outer bound in (11). By comparing the outer
bound in (11) and the inner bound in (15), we verify that the
they differ of at most 1 bpcu.

The result in Th. 8 can be interpreted as follows: the
parameter c controls the variance of the fading-time-state term
and (i) for small values of c, treating the term cAN ◦ SN

as additional noise results in a limited rate loss. (ii) when
the variance of cAN ◦ SN is larger than the transmit power,
then it is approximately optimal to pre-code against one fading
realization, as this strategy grants correct decoding for half of
the channel uses on average. Finally, (iii) in the intermediate
regime capacity is approached by a linear combination of the
previous two strategies.

Remark 9: The approximate capacity result for the two-user
CCDP channel with independent, equal-variance states in Th. 6
has interesting similarities to the proof of Th. 8 and the
approximate capacity expressions in (7) and (11) are also
similar. From a high-level perspective, in the WFFD channel
each fading realization can be thought of as a compound user
in the CCDP channel so that the number of users grows with
the transmission length, instead of being constant.

Remark 10: With respect to Rem. 5, we note that the result
in Th. 6 can be generalized to the case of any i.i.d. state
distributions by appropriately adapting the bounding step in

(19) to yield

−H(Y N |W, AN ) ≤ −N

4
log(c2) − N

2
H(S) − N

2
, (22)

instead of (20). This generalization of Th. 6 and the remaining
results in the paper is not pursued for brevity.

B. WFFD Channel With a Discrete Fading Distribution
With Mode Larger Than a Half

Theorem 11 (Outer Bound and Approximate Capacity for
the WFFD Channel With a Fading Distribution of Mode
Larger Than a Half): Consider the WFFD channel in which
A is a discrete random variable such that

∃ m ∈ A, s.t. PA(m) ≥ 1
2
, (23)

and let Qm = PA(m) and Qm = 1 − Qm, then the capacity
C is upper bounded as

C ≤ ROUT =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

log(1 + P ) + 1

Qm ≥ Qmc2(1 + μ2
A)

1
2

log(1 + P )

−Qm

2
log
(
c2(1 + μ2

A)
)

+ Gm

Qm < Qmc2(1 + μ2
A) ≤ Qm(P + 1)

Qm

2
log(1 + P ) + Gm

Qmc2(1 + μ2
A) > Qm(P + 1),

(24)

for

Gm =
1
2

EA

[
log
(

1 + μ2
A

(A − m)2

)
|A �= m

]
+ 3, (25)

and the capacity is to within a gap of

G′
m (26)

=
1
2

EA

[
log
(

(1+μ2
A)
(

1
A2

+
1

(A − m)2

))
|A �= m

]
+ 3,

from the outer bound in (24).
Proof: For the class of fading distributions in (23),

state pre-cancellation can be attained for a portion Qm of
the channel uses on average: for this reason, the achievable
strategy employed in the proof of Th. 8 is still effective.
In the converse proof, we extend the idea of conjugate fading
sequences in the proof of Th. 8 to the elements in the set
of typical fading realizations. The full proof can be found
in App. B.

The next lemma provides a simplification of the result in
Th. 11 under some conditions on the support of the fading
distribution.

Lemma 12: If |A| > Δ and |A−m| ≥ Δ for some Δ > 0,
then (25) and (27) satisfy

Gm ≤ Qm

2
log
(

1 + μ2
A

Δ2

)
+ 3

G′
m ≤ Gm +

1
2
.
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The proof of Lem. 12 is omitted for brevity; this lemma
shows that a tight characterization of capacity is possible when
the mean of A is small and the points in the support are
sufficiently far from the mode of the distribution.

1) WFFD Channel in the “Strong Fading” Regime:

Theorem 13 (Outer Bound and Approximate Capacity for
the WFFD Channel in the “Strong Fading” Regime): Consider
the WFFD channel with c > 2 and in which A is uniformly
distributed over a discrete set A = {αi}M

i=1 , α1 < α2 <
. . . < αM such that

α1 ≥ 1
c − 1

, (27a)

αi+1 ≥ cαi, i ∈ [2 . . .M − 1], (27b)

then, the capacity C is upper bounded as

C ≤ ROUT =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

log (1 + P ) + Gs

1
M

≥ (1 + μ2
A)c2

M
1
2

log(1 + P + (1 + μ2
A)c2)

− M − 1
2M

log
(
(1 + μ2

A)c2
)

+ Gs

1
M

<
(1 + μ2

A)c2

M
≤ M − 1

M
(P + 1)

1
2M

log(1 + P ) + Gs

(1 + μ2
A)c2

M
>

M − 1
M

(P + 1),

(28)

for

Gs =
1
2

log(1 + μ2
A) +

1
2
, (29)

and the capacity is to within a gap of Gs + 1 from the outer
bound in (28).

Proof: As for Th. 8, the achievability proof relies on the
simple combination of superposition coding and DPC. The
converse bound involves defining M − 1 conjugate sequences
which are used to recursively bound the channel capacity by
also providing a carefully-chosen genie-aided side informa-
tion. The proof is provided in App. C.

Th. 13 effectively shows that, when the fading realizations
are exponentially spaced apart while their mean is small, then
it is not possible to simultaneously pre-code against multiple
fading realizations. We refer to the conditions in (27) as
the “strong fading” condition as the elements in support of
the fading distribution grow exponentially large while their
probability remains constant.

Remark 14: The result in Th. 13 can be generalized to the
case in which |ai+1| ≥ κc|ai| for some κ ∈ R

+: in this case,
(29) is expressed

Gs =
1
2

log κ(1 + μ2
A) +

1
2
. (30)

As an example of the result in Th. 13, consider the case in
which A is uniformly distributed over the set

A(M) =
{
Δ, cΔ, c2Δ, . . . , cM−1Δ

}
,

for M ≥ 3 where Δ is chosen so as to obtain unitary variance,4

then Gs = 3
2 , G′

s = 5
2 . Note that the capacity goes to zero

when both c and M grow to infinity.

C. Numerical Examples
• Geometric distribution. Consider the case in which A is

distributed according to the following geometric distribution

PA(ka + nΔ) = pnp, n ∈ N, (31)

for some p ∈ [0, 1] with p = 1 − p and Δ > 0 and pΔ2 = p2

(to obtain a unitary variance) and ka = −ΔA(1 − p)/p (to
obtain zero mean). For the fading distribution in (31), Th. 11
can be applied when p ≥ 1/2: the outer bound in (24) and
the gap from capacity depend on the value Gm and G′

m

obtained as

Gm = 2
∞∑

n=1

log (nΔ + 2) p(1 − p)n + 3

≥ −p log Δ2 + 3 ≈ 3.15

G′
m =

∞∑

n=1

log
(

n2Δ2

(ka + Δn)2
+ 1
)

pn
Ap + 3

≤ 1
2 k2

a

(1 − p) + 3 ≈ 3.65.

• Binomial Distribution. Consider next the case in which
A has the following Bernoulli distribution

PA(ka + nΔ, N) =
(

2N
n

)
(1 − p)np2N−n, (32)

for n ∈ [−N . . .+N ] and 2Np(1−p) = Δ2 to obtain variance
unitary and ka = −NΔp to have a zero mean. Note that the
case N = 2 and p = 1/2 recovers the result in Th. 8. Using an
approximation of the central Bernoulli coefficient we obtain
that the Th. 11 is applicable to the fading distribution in (32)
when p ≥ 1

2 + 1
2

√
1 − 2−2N+1

√
N in which case we have

Gm = 1
2 log(2πe) + 3 + O

(
1N
)

and G′
m = 3 + Qm.

The capacity characterization in Th. 11 and Th. 13 holds for
a generic PA: for a given fading distribution, the evaluation
of inner and outer bound can be refined to provide a tighter
characterization of capacity. In Fig. 2a and Fig. 2b we provide
such tighter characterization for the geometric and binomial
distributions in (31) and (32), respectively.

Fig. 2a and Fig. 2b both contain three sets of curves for three
different values of the parameter p in (31) and (32). For each
value of the parameter p, we plot three curves: ROUT/RIN,
a refined evaluation of the outer/inner bound in Th. 11 and
RIN+, the inner bound in Th. 7.

V. WFFD CHANNEL WITH A CONTINUOUS

FADING DISTRIBUTION

The results derived in Sec. IV are limited to the case of
discrete fading distributions: although relevant from a theo-
retical standpoint, this scenario is not particularly meaningful
in practical applications. In this section, we show results in
Sec. IV can be extended to the case of a continuous fading
distribution.

4More specifically, let Δ = 1√
V

with V = 1
M

1−c2 M

1−c2
−
�

1
M

(1−cM )
(1−c)

�2
.
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Fig. 2. Inner and outer bounds to the capacity of the WFFD channel for P = 100 and c ∈ [1 . . . 5].

We begin highlighting the sufficient conditions under which
the presence of fading produces only a negligible rate loss
from the AWGN capacity.

Lemma 15: Consider the WFFD channel and define κ as

κ =
1
2

EA

[
log
(
c2(A − μA)2 + 1

)]
, (33)

then the AWGN capacity can be attained to within κ bpcu.
The proof of Lem. 15 is omitted for brevity.
An upper bound on the capacity of the WFFD channel with

continuous fading can be obtained by adapting the derivation
in Th. 8.

Lemma 16 (Outer Bound for Positive-Defined Fading
Distribution): Consider the WFFD channel in which
P[A ≥ 0] = 1, then the capacity C is upper bounded as

C ≤ ROUT (34)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

log(P + 1) + Gc c2(1 + μ2
A) ≤ 1

1
2

log(P + 1)

−1
4

log(c2(1 + μ2
A)) + Gc 1 < c2(1 + μ2

A) < P + 1
1
4

log(P + 1) + Gc c2(1 + μ2
A) ≥ P + 1,

for

Gc =
1
2
, E

[
log
(

1 + μ2
A

A2

)]
+ 1. (35)

Proof: Only a sketch of the proof is provided. Define
BN = sign(SN ) and consider the channel in which BN ◦AN

is provided as an additional channel output, instead of AN .
The capacity of this channel is necessarily larger than the
capacity of the original channel, as AN = |BN ◦ AN |, being

AN positive-defined. As A′
i = AiBi ∼ 1/2(PA(a)+PA(−a))

is a symmetric distribution, we can adapt the converse proof in
Th. 8 by similarly defining a conjugate sequence a′N (a′N ) =
−a′N in (19).

Generally speaking, Lem. 16 only provides a loose upper
bound to capacity, nonetheless it shows relatively simple
conditions under which the capacity of the WFFD channel is at
most half of the AWGN capacity. The next theorem extends the
result in Th. 11 to the case of continuous fading distributions.

Theorem 17 (Outer Bound and Approximate Capacity for
Narrow Fading): Consider the WFFD channel with c ≥ 1 in
which A is a continuous random variable with

P

[
|A − μA| ≤

1
c

]
= Qm ≥ 1

2
, (36)

then the expression in (24) for

Gm ≤ Qm

2 log
(
1 + μ2

A

)
+ 4, (37)

is an outer bound to capacity and the capacity is to within a
gap of Gm + 1/2 bpcu from the outer bound in (24).

Proof: Only a sketch of the proof is provided. The achiev-
ability proof follows a similar derivation as the achievability
proof of Th. 11. The converse proof is obtained in two steps:
(i) first we show that the capacity of the channel with con-
tinuous fading distribution A is to within a constant gap from
the capacity of the channel with discrete fading distribution
AΔ where AΔ is obtained by uniformly quantizing A, then
(ii) the result in Lem. 12 is applied to the model with fading
distribution AΔ to show the approximate capacity. In the
following, we prove step (i) while only an outline of the proof
of step (ii) is provided for brevity.
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• Gap from capacity. Let the random variable AΔ be
defined as

P[AΔ(A) = γk] = P [A ∈ Ik]

Ik =
[
μA + kΔ − Δ

2
, μA + (k + 1)Δ +

Δ
2

]

γk = E[A|A ∈ Ik], (38)

for k ∈ Z and some Δ ∈ R
+, that is, AΔ is obtained by

uniformly quantizing A with step size Δ and so that E[A] =
E[AΔ]. Next, define

EN = c(AN − AN
Δ) ◦ SN + ZN − ZN

Δ , (39)

for ZN
Δ ∼ i.i.d. N (0, 1). An outer bound to capacity can be

obtained by providing EN in (39) to the receiver as a genie-
aided side-information, that is

N(R − �N) ≤ I(Y N , EN ; W |AN )
= I(Y N − EN , EN ; W |AN ) (40a)

= I(Y N
Δ ; W |AN )+I(EN ; W |AN , Y N

Δ ), (40b)

where (40a) follows from the fact that the transformation has
unitary Jacobian while in (40b) follows by defining Y N

Δ =
XN +cAN

Δ◦SN +ZN
Δ . The term I(EN ; W |AN , Y N

Δ ) is further
bounded as

I(EN ; W |AN , Y N
Δ )

= H(EN |AN , Y N
Δ ) − H(EN |AN , Y N

Δ , W )

= H(EN |AN , Y N
Δ ) − H(ZN |AN , Z

N
, W, SN , XN)

= H(EN |AN ) − N

2
log 2πe

≤ N max
PE|A

H(E|A) − N

2
log 2πe.

Note that AΔ is a deterministic function of A, so that the
entropy term H(E|A) can be bounded as

H(E|A) ≤
∫

A

1
2

log 2πe
(
c2(a − AΔ(a))2 + 2

)
dPA

≤ 1
2

log
(
c2Δ2 + 2

)
.

From the above, we conclude that, by choosing Δ = 1/c
in (38), the capacity of the WFFD channel with fading
distribution PAΔ is to within a gap of 1 bpcu from the
capacity of the channel with fading distribution PA. When
the condition in (36) holds, the mode of AΔ is AΔ = γ0 ∈
[μA −1/c, μA +1/c] with PAΔ(γ0) ≥ 1/2 and thus the result
in Th. 11 can be applied. Note also that the distribution of AΔ

does not necessarily have unitary variance, so that Lem. 3 is
invoked to normalize the fading variance.

The result in Th. 17 is analogous to the result in Th. 11
as it identifies the condition under which it is approximately
optimal for the transmitter to pre-code against one realization
of the fading distribution while treating the remaining random-
ness in the fading sequence as additional noise.

Remark 18: Note that the condition in (36) can be
generalized to

P

[
|A − m| ≤ κ

c

]
= Qm >

1
2
, (41)

for some value m ∈ A to obtain a more general result than
Th. 17. This yield an expression for Gm as in (27) and a gap
from capacity as in (27).

The next theorem shows that there exists a class of fading
distributions for which the capacity substantially reduces to the
capacity of the channel without transmitter state knowledge.
Let 1{x∈X} denote the indicator function for the set x ∈ I .

Theorem 19 (An Example With a Fat-Tailed Distribution):
Consider a WFFD channel with c > 2, then there exists a
distribution of the form

PA(a) =
α

a
· 1{a∈I}, (42)

such that capacity is upper bounded as

ROUT =
1
2

log
(

1 +
P

1 + c2

)
+ 2, (43)

and for which capacity is to within 3 bpcu from the outer
bound in (43).

Proof: Quantizing the distribution in (42) as in Th. 17 in
intervals of size [c−k, c−(k−1)] yields a random variable AΔ

which satisfies the conditions of Th. 13. The support I can be
chosen as [κc−M−1, κc−1] for some sufficiently large M so
that (1 + μ2

A)c2/M ≤ (P + 1)(M − 1)/M , thus yielding the
outer bound in (43) while μA ≤ 1. The achievability proof
follows by treating the fading-times-state term as noise. The
full proof is omitted for brevity.

Remark 20: We are currently unable to determine the
asymptotic behavior of capacity as c grows large: in this
regime, one would expect state pre-coding to become inef-
fective as in Th. 19. For the case of zero mean fading this
implies, in particular, that state knowledge at the transmitter
does not provide any substantial rate advantage. In practical
systems, state knowledge at the transmitter often come at the
cost of an increase in complexity in the network architecture
and transmitter design: as such, determining the fading regimes
in which transmitter knowledge is rendered useless by the
presence of fading is of great practical interest.

A. Numerical Examples

Although we are currently unable to characterize the capac-
ity for many continuous fading distributions of practical
relevance, such as Gaussian, Rayleigh or Rice distribution,
Lem. 16 and Th. 17 do provide the first computable bounds
for such fading scenarios. We present in this section numerical
evaluations for the case of Rayleigh fading, in Fig. 3a, and
Rice fading, in Fig. 3b. For the case of Rayleigh fading,
the scale parameter is chosen so as to yield unitary variance
while, for the case of Rice fading, the shape parameter is fixed
and the scale parameter is chosen to yield unitary variance.5

In Figs. 3a-3b, we plot the rate performance for a fixed c
and varying P . The rate curves in these figures are labeled as
following: (i) RAWGN is the AWGN capacity, corresponding
to the outer bound in Rem. 15, (ii) ROUT is the outer bound

5Note that both the Rayleigh and the Rice distribution possess the scal-
ing properties, so that the normalization in Lem. 3 preserves the fading
distribution.
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Fig. 3. Inner and outer bounds to the capacity of the WFFD for c = 25 and P ∈ [1 . . . 30].

in Lem. 16, (iii) RIAN is the inner bound in which the fading-
times-state sequence is treated as additional interference and
corresponds to the achievable proof in Rem. 15. (iv) RDPC

corresponds to the achievable strategy in (5) which ignores
the randomness in the fading realization and (v) RDPC+ is
the inner bound in Th. 7.

For Fig. 3a, we notice that the achievable scheme in Th. 7
performs surprisingly close to the outer bound in Lem. 16,
especially in the low SNR regime. For Fig. 3b, observe that
the achievable scheme in Th. 7 becomes less effective as the
shape parameter increases. This coincides with the fact that,
as the mean increases, the fading values are spread over a
larger interval and thus DPC becomes less effective.

VI. CONCLUSIONS

This paper investigates the capacity of the Writing of
Fast Fading Dirt (WFFD) channel, a variation of the classic
“writing on dirty paper” channel in which the state sequence
affected by fast fading process known only at the receiver.
Accordingly, the output of the WFFD channel is obtained as
the sum of the channel input, additive Gaussian noise and a
fading-times-state term which is the element-wise product of
the channel state, known only at the transmitter, and the fading
process, known only at the receiver. We focus on the case in
which the channel state is a white Gaussian process and the
fading sequence is an i.i.d. sequence with either a discrete or a
continuous distribution. The WFFD channel is a special case
of the Gelf’and-Pinsker channel for which capacity is known:
unfortunately, capacity is expressed as a solution of a maxi-
mization problem that cannot be easily determined, either in
closed-form or through numerical evaluations. For this reason,
we derive alternative inner and outer bounds and provide an

approximate characterization of capacity for certain fading
distributions.

For the WFFD channel with a discrete fading distribution,
we determined capacity to within a small gap for two classes
of distributions: distributions with mode larger than a half
and uniform distributions in which the points in the support
are incrementally spaced apart. For the WFFD channel with
a continuous fading distribution, we derive the approximate
capacity for the case in which more than half of the probability
is concentrated in a small interval. In all these cases, capacity
is approached by letting the channel input be the superposition
of two codewords: a codeword treating the fading-times-
state as additional noise and a codeword pre-coded against
one realization of the fading times the state sequence. This
relatively simple attainable strategy shows, from a high-level
perspective, that robust state pre-cancellation is substantially
unsuccessful for these fading distributions. This result is in
sharp contrast with the performance attainable when the same
fading process affects both the input and the state: in this
case, fading does not essentially impede the effectiveness of
interference pre-cancellation.

APPENDIX A
PROOF OF LEM. 4

Consider two sequences SN
1 and SN

2 such that SN
m ∼

i.i.d. N (0, Qm), m ∈ {1, 2}, SN
1 ⊥ SN

2 with Q1 + Q2 = 1
and let the channel state of the WFFD channel be obtained
as SN = SN

1 + SN
2 . Providing the sequence SN

2 to both
the transmitter and receiver can only increase capacity, since
they can disregard this extra information and operate as in the
original channel. The channel in which SN

2 is provided to both
encoder and decoder falls in the class of channels studied in
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[16, Th. 1] for which capacity can be bounded as

C = max
X,U|S1,S2

I(X + cS1A + Z, U |A, S2) − I(U ; S1|S2)

≤ max
X,U|S2,S1

I(X + cS1A + Z; U, S2|A) − I(U, S2; S1)

(44a)
= max

X,�U|S1

I(X + cS1A + Z; Ũ |A) − I(Ũ ; S1), (44b)

where, (44a) follows from the independence of S1 and S2 by
defining Ũ = [U S2] in (44b). Since S2 no longer appears
in (44b), it can be dropped from the maximization. From the
result in Lem. 3, we have that (44b) equals the capacity of
the channel in (1) for which c̃ = c/

√
Q1 instead of c. From

this equivalence, we conclude that the capacity of the WFFD
channel is decreasing in the parameter c.

APPENDIX B
PROOF OF TH. 11

• Achievability. Consider the achievable strategy in Th. 8
and let the top codeword UPAS in (13) be pre-coded against
the sequence cmSN as in the WDP channel. This assignment
attains

RPAS =
[
I(Y ; U |XSAN, A) − I(U ; S)

]+

≥ Qm

2
log(1 + αP )

+
∑

a∈A\{m}

PA(a)
2

× log
(

(1 + c2 a2 + αP )(1 + αP )
αPc2(a − m)2 + αP + c2a2 + 1

)

≥ Qm

2
log(1 + αP )

−
∑

a∈A\{m}

PA(a)
2

log
(

(a − m)2

a2
+ 1
)

,

while the overall attainable rate RIN(α) in (14) becomes

RIN(α) =
1
2

EA

[
log
(

1 +
αP

1 + c2A2 + αP

)]

+
Qm

2
log(1 + αP )

−
∑

a∈A\{m}

PA(a)
2

log
(

(a − m)2

a2
+ 1
)

. (45)

The choice of αP in (45) as

α∗P = max
{

min
{

Qm

Qm

c2(1 + μ2
A) − 1, P

}
, 0
}

, (46)

yields the inner bound

RIN =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

log
(

1 +
P

1 + c2(1 + μ2
A)

)

Qm ≥ Qmc2(1 + μ2
A)

1
2

log(P + c2(1 + μ2
A) + 1)

−Qm

2
log
(
c2(1 + μ2

A)
)
− Gm

Qm ≤ Qmc2(1 + μ2
A) ≤ Qm(P + 1)

Qm

2
log(1 + P ) − Gm

Qmc2(1 + μ2
A) > Qm(P + 1),

(47)

for

Gm =
1
2

EA

[
log
(

(A − m)2

A2
+ 1
)
|A �= m

]
+ 1. (48)

• Converse. Using Fano’s, inequality we write

N(R − �N ) ≤ I(Y N ; W |AN )
≤ N max

j
H(Yj |Aj)

−H(Y N |W, AN )

≤ N

2
EA

[
log 2πe(P + A2c2 + 2|c||A|

√
P + 1)

]

−H(Y N |W, AN ) (49a)

≤ N

2
log 2πe(P + c2(1 + μ2

A) + 1)

−H(Y N |W, AN ) +
N

2
, (49b)

where (49a) follows from the GME and (49b) follows from
Jensen’s inequality. Next, we derive a bound on the entropy
term H(Y N |W, AN ) based on the properties of the set of
typical fading realizations, T N

ε (PA), defined as

T N
ε (PA) (50)

=
{

aN ,

∣
∣
∣
∣
1
N

N(k|aN ) − PA(k)
∣
∣
∣
∣ ≤ �PA(k), ∀ k ∈ A

}
,

(51)

where N(k|aN ) is the number of symbols k ∈ A in the
sequence aN , that is

N(k|aN ) =
N∑

i=1

1{ai=k}. (52)

For the typical set in (51), we have

P (aN ) ≤ 1
2n(1+ε)H(A)

, aN ∈ T N
ε (53a)

∣
∣T N

ε (PA)
∣
∣ ≤ (1 − δε)2N(1−ε)H(A) (53b)

N(k|aN ) ≤ NPA(k)(a)(1 − �), (53c)

for δε = 2|A|e−N2mink PA(k). When the block-length N is
sufficiently large, we have that � ≤ (Qm − 1

2 )/Qm in (51)
which implies N(m|aN ) > 1/2. For N(m|aN ) > 1/2, there
exists a one-to-one mapping aN (aN ) : T N

ε (PA) → T N
ε (PA)

such that

if ai �= m then ai = m, if ai �= m then ai = m, (54)

that is, the sequence aN(aN ) is obtained by permuting the N−
N(m|aN ) indexes for which ai �= m with some N−N(m|aN)
indexes for which ai = m, while 2 N(m|aN )−N indexes are
such that ai = ai = m. Since the mapping aN (aN ) in (54) is
a one-to-one mapping of the typical set onto itself, we must
have
∑

aN∈T N
ε (PA)

P (aN )H(Y N |W, AN = aN )

=
∑

aN∈T N
ε (PA)

P
(
aN (aN )

)
H
(
Y

N |W, AN = aN (aN )
)
,

(55)
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where Y
N

in (55) is defined as

Y
N

= XN + caNSN + Z
N

, (56)

for Z
N ∼ i.i.d. N (0, 1), Z

N ⊥ ZN . Using the definitions
above, we have that the entropy term H(Y N |W, AN ) can be
bounded as

−H(Y N |W, AN ) (57a)

= −
∑

aN∈AN

P (aN )H(Y N |W, AN = aN )

≤ −
∑

aN∈T N
ε (PA)

P (aN )H(Y N |W, AN = aN )

= −1
2

∑

aN∈T N
ε (PA)

P (aN )
(
H(Y N |W, AN = aN ) (57b)

+ H(Y N |W, AN = aN )
)

≤ −1
2

∑

aN∈T N
ε (PA)

P (aN )

×
(
H(XN +caN ◦ SN +ZN , XN + caN ◦ SN +Z

N |W )
)

= −1
2

∑

aN∈T N
ε (PA)

P (aN )

×H
(
c(aN − aN ) ◦ SN + ZN − Z

N
,

XN + caN ◦ SN + Z
N |W

)

=−1
2

∑

aN∈T N
ε (PA)

P (aN )
(
H
(
c(aN −aN ) ◦ SN +ZN−Z

N
)

× + H(Y
N |Y N − Y

N
, W, SN , XN)

)
(57c)

≤ −1
2

∑

aN∈T N
ε (PA)

P (aN )

·
(
H
(
c(aN − aN) ◦ SN + ZN − Z

N
)

+ H(Z
N |ZN − ZN)

)

= −1
2

∑

aN∈T N
ε (PA)

P (aN )

·H
(
c(aN − aN ) ◦ SN + ZN − Z

N
)

+
N

2
log(πe),

(57d)

where (57c) follows from the fact that SN and ZN are
independent from W . We continue the series of inequalities
in (57) by noting that

1
2

∑

aN∈T N
ε (PA)

P (aN )H
(
c(aN − aN ) ◦ SN + ZN − Z

N
)

≤ −1
2

1
2n(1+ε)H(A)

(58a)

·
∑

aN∈T N
ε (PA)

H
(
c(aN − aN ) ◦ SN + ZN − Z

N
)

≤ −1
2

1
2n(1+ε)H(A)

·
∑

aN∈T N
ε (PA)

N∑

i=1

(
H
(
c(ai − ai)Si + Zi − Zi

))
, (58b)

where (58a) follows from the bound in (53a) while (58b)
follows from the fact that SN and ZN are i.i.d. sequences.
From the definition of the mapping aN (aN ), the sequence
ai−ai can take three types of values: m−k, k−m and 0 where
k is any element of A\{m}. More specifically, ai−ai = m−k
occurs N(k|aN ) times, ai−ai = k−m occurs N(k|aN) times
for all k ∈ A while ai − ai = 0 occurs 2(N − N(m|aN))
times. Using these observations, we write

(58b) = −1
2

1
2n(1+ε)H(A)

∑

aN∈T N
ε (PA)

·

⎛

⎝
∑

k∈A\{m}
2N(k|aN )H

(
c(m − k)Si + Zi − Zi

)

+
1
2
(2N(m|aN ) − N)H

(
Zi − Zi

)
⎞

⎠ (59a)

= −1
2

1
2n(1+ε)H(A)

∑

aN∈T N
ε (PA)

×

⎛

⎝
∑

k∈A\{m}
2N(k|aN)H

(
c(m − k)Si + Zi − Zi

)

− 1
2
(2N(m|aN ) − N) log(4πe)

⎞

⎠ (59b)

≤ −1
2

1
2n(1+ε)H(A)

∑

aN∈T N
ε (PA)

×
∑

k∈A\{m}
2N(k|aN)

1
2

log 2πe(c2(m − k)2 + 2)

= − 1
2n(1+ε)H(A)

(1 − δε)2n(1−ε)H(A) (59c)

·
∑

k∈A\{m}
N(k|aN)

1
2

log 2πe(c2(m − k)2 + 2)

= − 1
2n(1+ε)H(A)

(1 − δε)2n(1−ε)H(A)(1 − �)N

·
∑

k∈A\{m}
PA(k)(1 − �)

N

2
log 2πe(c2(m − k)2 + 2),

(59d)

where (59c) follows from the bound on the cardinality of the
typical set in (53b) and (59d) from the definition in (51). For
N is sufficiently large, we have

−H(Y N |W, AN )

≤ −
∑

k∈A\{m}
PA(k)

N

2
log 2πe

(
c2(m − k)2 + 2

)

− NQm

2
log(2πe) − �all (60a)

≤ −NQm

2
log 2πec2 − N

2
EA[log(A − m)2|A �= m]

− NQm

2
log(2πe) − �all, (60b)

for some �all that goes to zero as N → ∞. Using the bound
for (60) in (49b) and for some �all sufficiently small, we obtain
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the outer bound

ROUT =
1
2

log
(
2πe(P + c2(1 + μ2

A) + 1)
)

− Qm

2
log(c2(1 + μ2

A)) − 1
4

log(πe)

− 1
2

EA[log
(

(A − m)2

1 + μ2
A

)
|A �= m] +

1
2
. (61)

Using Lem. 4, we can consider the assignment

min
{

Qm

Qm
(1 + P ), c2(1 + μA)

}
, (62)

for the term c2(1 + μ2
A) in (61) which yields the expression

in (24).
The gap between inner and outer bound of G′

m can be
obtained by comparing the expressions in (24) and (47).

APPENDIX C
PROOF OF TH. 13

In the following, we provide the proof for the result in
Th. 13 for the case of M = 3. Only outline of the proof for
the case of any M > 3 is provided at the end of the section;
the full derivation is omitted for brevity.

The achievability proof is a variation of the achievability
proof of Th. 11 when letting the codeword UPAS be pre-coded
against the sequence cμASN as in the WDP channel.
• Converse for M = 3. For A = {α1, α2, α3} and α1 ≤

α2 ≤ α3, we define two conjugate sequences of aN , aN
(1)(a

N )
and aN

(2)(a
N ), as follows:

◦ the portion of aN equal to α1, is equal to α2 in aN
(1) and

equal to α3 in aN
(2),

◦ the portion of aN equal to α2, is equal to α3 in aN
(1) and

equal to α1 in aN
(2), and

◦ the portion of aN equal to α3, is equal to α1 in aN
(1) and

equal to α2 in aN
(2).

From the definition of the mapping, aN
(1)(a

N ) and aN
(2)(a

N ),
we have that

aN ∈ T N
ε (PA) ⇐⇒ aN

(k)(a
N ) ∈ T N

ε (PA), k ∈ [1, 2],
(63a)

moreover
∑

aN∈T N
ε (PA)

PAN (aN )H(Y N |W, AN = aN )

=
∑

aN∈T N
ε (PA)

PAN (aN
(k)(a

N ))H(Y N
(k)|W, AN = aN

(k)(a
N )),

(64)

where Y N
(k) is defined similarly to (56) as

Y N
(k) = XN + caN

(k)S
N + ZN

(k), (65)

for ZN
(k) ∼ i.i.d. N (0, 1), k ∈ [1, 2]. Similarly to (50), Fano’s

inequality yields the bound

N(R − �N ) ≤ N

2
log 2πe(P + c2(1 + μ2

A) + 1)

− H(Y N |W, AN ) +
N

2
. (66)

Using the equivalence in (64), the term H(Y N |W, AN ) can
be rewritten as

−H(Y N |W, AN )

= −
∑

aN∈T N
ε (PA)

1
3N

H(Y N |W, AN = aN )

= − 1
3N+1

∑

aN∈T N
ε (PA)

(
H(Y N |W, AN = aN )

+ H(Y N |W, AN = aN
(1)) + H(Y N |W, AN = aN

(2))
)

For aN ∈ T N
ε (PA), we have

−H(Y N |W, AN = aN )
−H(Y N |W, AN = aN

(1)) − H(Y N |W, AN = aN
(2))

≤ −H(Y N , Y N
(1), Y

N
(2)|W, AN = aN ) (67a)

= −H
(
{Yi, Y(1),i, Y(2),i, ∀i ai = α1},

{Yi, Y(1),i, Y(2),i, ∀i ai = α2},
{Yi, Y(1),i, Y(2),i, ∀i ai = α3}|W, AN = aN

)
(67b)

= −H
(
{Yi, Yi − Y(2),i, Y(2),i, ∀i ai = α1},

{Y(2),i − Yi, Y(1),i, Y(2),i, ∀i ai = α2},
{Yi, Y(1),i − Y(2),i, Y(2),i, ∀i ai = α3}|W, AN = aN

)
,

(67c)

where (67b) follows by re-arranging the channel outputs
according to the fading realization and (67c) follows from
the fact this the transformation has unitary Jacobian. Consider
the set

{Yi − Y(1),i, ∀i ai = α1}
∪ {Y(2),i − Yi, ∀i ai = α2}
∪ {Y(1),i − Y(2),i, ∀i ai = α3}, (68)

from the definition of the conjugate sequences, we have that
the set in (68) contains the elements of the vector

c(α2 − α1)SN + Z̃N
21, (69)

where Z̃N
21 is obtained as

Z̃21,i =

⎧
⎪⎨

⎪⎩

Zi − Z(1),i ai = α1

Z(2),i − Zi ai = α2

Z(1),i − Z(2),i ai = α3.

(70)

Next, continuing the series of inequalities in (67), we have

−3H(Y N |W, AN = aN )
≤ −H

(
{Yi, Y(2),i, ai = α1}, (71a)

{Y(1),i, Y(2),i, ai = α2},
{Yi, Y(1),i ai = α3}
|W, c(α2 − α1)SN + Z̃N

21, A
N = aN

)

−H(c(α2 − α1)SN + Z̃N
21|W )

≤ −H
(
{Yi − Y(2),i, Yi, ai = α1}, (71b)

{Y(2),i − Y(1),i, Y(2),i ai = α2}, (71c)
{Y(1),i − Yi, Y(1),i ai = α3}
|W, c(α2 − α1)SN + Z̃N

21, A
N = aN

)

−H(c(α2 − α1)SN + Z̃N
21|W ), (71d)
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where (71a) follows from the observation in (69) and (71d)
follows again from the fact that this transformation has unitary
Jacobian. Similarly to (68), we have that the set

{
{Yi − Y(2),i, ai = α1},
{Y(2),i − Y(1),i, ai = α2},
{Y(1),i − Yi, ai = α3}

}
,

contains the elements of the vector

c(α3 − α1)SN + Z̃N
31, (72)

for Z̃N
31 defined similarly as in (70). With this observation,

we write

−3H(Y N |W, AN = aN )
≤ H

(
{Yi, ai = α1}, {Y(2),i ai = α2}, {Y(1),i ai = α3}

|W, c(α3 − α1)SN + Z̃N
31, c(α3 − α1)SN

+ Z̃N
21, A

N = aN
)

−H
(
c(α3 − α1)SN + Z̃N

31|W, c(α2 − α1)SN + Z̃N
21

)

−H
(
c(α2 − α1)SN + Z̃N

21|W
)

(73a)

≤ H
(
{Zi, ai = α1}, {Z(2),i ai = α2}, {Z(1),i ai = α3}

(73b)

|W, SN , Z̃N
21, Z̃

N
31, A

N = aN
)

(73c)

−H
(
c(α3 − α1)SN + Z̃N

31|W, c(α2 − α1)SN + Z̃N
21

)

(73d)

−H
(
c(α2 − α1)SN + Z̃N

21|W
)

, (73e)

We are now left with the task of evaluating the terms in (73c),
(73d) and (73e) in closed-form. For the term in (73e), we have
write

H(c(α2 − α1)SN + Z̃N
21)

= −N

2
log 2πe

(
c2(α2 − α1)2 + 2

)

≤ −N

2
log 2πe

(
c2(c2 − 1)α2

1 + 2
)

(74a)

≤ −N

2
log 2πe

(
c2 + 1

)
− 1

2
, (74b)

where (74a) follows from the fact α2 > cα1 and (74b) follows
from α1 > 1/(c − 1) as prescribed by (27). For the term in
(73d), we have

−H(c(α3 − α1)SN + Z̃N
31|W, c(α2 − α1)SN + Z̃N

21)

= −NH

(
c2(α3−α1)(α2−α1)

(
1− c(α2−α1)

c2(α2−α1)2+2

)
S

+ Z̃13 −
c2(α3 − α1)(α2 − α1)

c2(α2 − α1)2 + 2
Z̃12

)
(75a)

≤ −N

2
log 2πe

(
1 + c2 (α3 − α1)2

2 + c2(α2 − α1)2

)

≤ −N

2
log 2πe

(
1 + c2 a2(c − 1)2

2 + c2(α2 − (c − 1)−1)2

)

≤ −N

2
log 2πe

(
1 +

1
2
c2

)
, (75b)

where, in (75b), we have used the fact that α3 > cα2,
α1 > 1/(1− c) and c > 2 by assumption. Finally, the term in
(73c) only contains independent noise terms, so that

H ({Zi, ai = α1},
{Z(2),i ai = α2}, {Z(1),i ai = α3}|Z̃N

21, Z̃N
31, A = aN

)

=
N

2
log
(

1
3

)
. (76)

Combining the bounds in (74), (75) and (76) we finally obtain
the outer bound

ROUT ≤ 1
2

log(P + c2(1 + μA) + 1)

− 3
4

log(c2(1 + μA)) +
3
4

log(1 + μA). (77)

The final outer bound expression in (28) is obtained by using
Lem. 4 to tighten the expression (77) with the appropriate
choice of c. The gap between inner and outer bound is obtained
similarly to Th. 11.
• Sketch of the converse for M > 3. The derivation

for the case M > 3 is obtained by extending the derivation
for M = 3 as follows. First, we define M − 1 conjugate
sequences as

aN
(k)(a

N ) =
{
ai = αj =⇒ a(k),i = αmod(k+j,M)

}
, (78)

for k ∈ [1 . . .M − 1]. Next, the bounding in (73) can be
repeated recursively M − 1 times: this yields M − 1 terms
of the form H(ΔiS + Z̃i|Δ1 S + Z̃1 . . . Δi−1S + Z̃i−1) for
Δi = αi+1 − α1, Z̃i1 = Zi − Z1 as in (70), and

H(ΔiS + Z̃(i+1)1|Δ1S + Z̃21 . . . Δi−1S + Z̃i1)

=
1
2

log

⎛

⎝2
c2(
∑i

j=1 Δ2
j) + 2

c2
(∑i−1

j=1 Δ2
j

)
+ 2

⎞

⎠. (79)

The conditions in (28) guarantee that

H(ΔiS + Z̃(i+1)1|Δ1S + Z̃21 . . . Δi−1S + Z̃i1)

≤ −1
2

log(2πec2) +
1
2
, (80)

for each i ∈ [1 . . .M−1], yielding an outer bound in the spirit
(77)

ROUT ≤ 1
2

log(P +c2(1+μA)+1)−M−1
M

log(c2) (81)

which can be tightened over the parameter c using Lem. 4.
This tightening step finally yields the outer bound in (28).
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