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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the 
information is fit for any particular purpose. The content of this document reflects only the author`s view – the 
European Commission is not responsible for any use that may be made of the information it contains. The 
users use the information at their sole risk and liability.  
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Executive summary 

This deliverable evaluates the state of the art in security testing techniques in relation to relevant 
industrial security standards. The research starts with a survey of non-industrial security 
frameworks and general identification of security vulnerabilities. We then have a look into the 
different testing contexts covered by Common Criteria requirements and IEC 62443 standards and 
certification schemes. This is also brought into context with the certMILS application pilots and the 
applicability to testing of compositions as the fundamental architecture of a MILS system. 

Future work will focus on refining features of the testing framework for security testing of operating 
system components. The strategy for these activities is outlined in the third chapter, together with a 
short study of the technical feasibility. 
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Chapter 1 Introduction 

Security describes the resistance to threats, intentional and unintentional. Threats always exist and 
target all systems.  

 

Figure 1: The interplay of the concepts composing the security realm. 

 

Assurance is a measure of confidence in the correct behaviour of a system. A vulnerability is a 
weakness of a system, which can be used to cause a threat. A threat is a method leading to a 
dangerous event, i.e. risk. The defence is the collection of countermeasures preventing a threat 
escalating to a risk. An exploit bypasses the defence, using a vulnerability to realize a threat 
leading to a dangerous event. It results in loss of integrity of the system and its assurance. 

Security frameworks have gained large attention in web applications. Often, software tests for 
“assurance-less” products are not as rigorous and possibly not required for functional acceptance. 
The applications too often expose a large attack surface to the whole internet. Nonetheless, the 
operational environment changes very rapidly, making maintenance over the full software lifecycle 
very costly, if not impossible, for individual solutions. 

Larger companies and interest groups have thus developed security frameworks for their target 
market to improve overall reliability of products generated from their bases. Examples are: OWASP 
Testing Framework[1], Microsoft Security Development Lifecycle (MS-SDL), SAGE ("Scalable 
Automated Guided Execution“)[2] and SLAM1. In addition as a different concept, Google has 
established the OSS-Fuzz environment[3] to donate their server resources to security test open 
source software. 

                                                
1
 SLAM is a project for checking that software satisfies critical behavioral properties of the interfaces it uses. 

Static Driver Verifier is a tool in the Windows Driver Development Kit that uses the SLAM verification engine. 
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According to Pohl[4] in Figure 2, security frameworks should consist of multiple tools 
accompanying the whole development lifecycle: starting with Threat-Modelling in the early 
requirements and design-phase, static analysis tools (see certMILS deliverable D1.2, in 
preparation) in the implementation phase and dynamic analysis tools (e.g. Fuzzer) in the 
verification phase. 

The ISA standard for “Security in industrial automation and control systems” IEC 62443[5] defines 
similar concepts in the subset 1-1 for general “concepts and models” compared to Figure 1. The 
security context is set as the two connected processes of assurance and assessment, as shown in 
IEC 62443, Figure 3. 

 

1.1 Security testing techniques in publications 

Security testing uses many techniques, which are detailed in the next chapter. One of the currently 
most researched techniques is fuzz-testing. Oehlert [6] names fuzz-testing a technique, “to better 
ensure the absence of exploitable vulnerabilities” by “checking large numbers of boundary cases”, 
that functional testing cannot cover. It adds negative test cases to verify, that a software or 
“product does not do something it shouldn’t do”. This aspect is also detailed in [7] and displayed in 
Figure 3. 

In other words, this still requires classic functional testing to provide verification with full coverage. 
However, to leverage comparable negative test cases, it is imperative for effective fuzz-testing to 
get feedback from code coverage analysis to become a quantifiable technique. 

Fuzz-testing is a computational and thus time-consuming technique. Even with code coverage 
information it is hard to generate test cases, that dive deep to achieve good coverage. The 
combination with other techniques is proposed in [8]: “Static Exploration of Taint-Style 
Vulnerabilities Found by Fuzzing”. This work locates initial weaknesses through fuzzing with known 
fuzz-testing tool AFL[9] and tools provided by the LLVM compiler toolchain[10]. Found weaknesses 
are converted to vulnerability patterns and matched against the complete source base with static 
analysis. The research found asserted a high rate of false positives as a drawback, which the 
authors mitigated by a ranking algorithm and also identified this for future improvement, e.g. by 
using symbolic execution and path reachability diagnostics. 

In [11] different tools are enumerated for concurrency and multithreaded testing. For random and 
fuzzing is a tool “contest”, “forcing threads to interleave at random intervals. As fuzzing strategies 
encounter a faulty set of thread interleaving by chance these might increase the chances of finding 
a bug. However they provide no guarantee regarding the detection of race conditions.” 

Figure 2: Mapping of security test method to development phase (MS-SDL and [1]). 
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Microsoft holds a patent [12] claiming “Amplification of dynamic checks through concurrency 
fuzzing”. An application is prepared with additional dynamic checks to monitor runtime behaviour 
under the influence of randomization of thread scheduling. A related tool is Microsoft’s “Cuzz” 
which is part of the AppVerifier Suite. “Cuzz is a very effective tool for finding concurrency bugs. 
Cuzz works on unmodified executables and is designed for maximizing concurrency coverage for 
your existing (unmodified) tests. It randomizes the thread schedules in a systematic and disciplined 
way, using an algorithm that provides probabilistic coverage guarantees.” Licensing and availability 
of Microsoft-tools make them inappropriate for use in certMILS. Though similar techniques are 
already in development as part of the functional testing of the certified hypervisor operating system 
PikeOS, as used in the context of the certMILS project.  

Takanen et al. [7] also go into detail about fuzzing of industrial automation systems. The best 
known and preferred tool at the time of writing in 2008 was “Achilles”, which is also described in 
deliverables D1.1[13] and D1.2 (in preparation). Correlated, the author divides SCADA2 fuzzing 
into control functionality blocks of Ethernet communication processing, logic processing, and I/O 
processing. They consider how different stress types in hostile (networking) conditions and 
environments affects devices. A SCADA device must maintain its safety policy, e.g. hostile stress 
should: have no affect at all, trigger fail-safe mode, etc. Challenges in fuzzing SCADA systems as 
noticed by the authors: 

 protocol diversity 

 implementation ambiguity 

 [special] equipment access 

 configuration complexity 

 test simulations either with and without load 

 grey-box access to SUT 

 multi-way redundancy 

 fail-over behaviour of SUT 

 performance constraints of SUT 

 accounting for watch-dogs, fail-safe modes, communication failover 

                                                
2
 Supervisory Control and Data Acquisition (SCADA) is a subset of IACS, but often used to refer to IACS as 

well. 

Undesired 
functionality 

 

Desired 

functionality 

Acquired 
functionality 

Conformance faults 

Planned features 

Fatal features 

“Creative” functionality 
Target 

Negative 
requirements 

Undefined 

Positive 

requirements 

Specification 

Implementation 

Figure 3: The justification for and target of negative testing (redrawn from [33]). 
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These challenges will influence solutions for the testing framework, especially concerning the 
scope that can be tested reproducibly. Many of the above points from the cited publication result 
from looking at products and systems and have a lesser impact on individual components, such as 
those of a MILS system.  

 

1.2 Purpose of this document 

“Describe the approach, strategy, and architecture for the implementation of the security-testing 
framework.” 

The Security framework must raise the assurance of a component, throughout and especially at 
the beginning of the lifecycle of the system. By providing an additional security-testing 
infrastructure, the integrator of a MILS system can demonstrate the required properties of the 
component in their product/solution to 

 Fulfil other component’s requirements regarding the environment or non-interference 

properties other components cannot fulfil themselves. 

 Gain assurance of interface robustness. 

 Maintain assurance level in case of a component update. 
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Chapter 2 Testing contexts 

This section discusses existing contexts, and their objectives and methods for achieving 
assurance.  

 

2.1 Common Criteria testing requirements 

The Common Criteria for Information Technology Security Evaluation (CC) [14], or ISO/IEC 15408, 
represent a flexible framework for the evaluation of the security of IT-products, or a part of it that is 
called the target of evaluation (ToE). The standard is flexible in that it applies to a broad range of 
ToEs. Furthermore, developers (or sponsors of an evaluation) may customize the detailed CC 
evaluation activities to suit their own assurance needs. To this end, they choose from two distinct 
sets of requirements. One of these consists of security functional requirements (SFRs) to model 
the properties of the ToE under investigation. The second one represents a collection of assurance 
requirements that the developer may choose to impose on the ToE (SARs). Two important classes 
of the latter set of CC requirements address security testing: 

 Testing of the security functionality (security functional testing), is described as part of the 

assurance class ATE; 

 Penetration testing is part of the vulnerability assessment described by the assurance class 

AVA. 

Security functional testing provides assurance that the ToE behaves as modelled using the SFRs. 
This set of security functions must also be reflected by the developer provided information (in the 
functional specification, ToE design and implementation representation). On the other hand, 
penetration testing is the testing for potential vulnerabilities to determine if they are exploitable by a 
hypothetical attacker. 

Like all SARs, testing is described in CC Part 3 [15]. Both, the ATE class and the AVA class 
consist of “families” which cover different aspects of each. It is important to note that, due to the 
generic nature of the CC, requirements of these classes do usually not appeal to specific testing 
methods, or even testing tools. However, independent of how the testing is performed in detail, it 
states – in abstract language – what needs to be tested and how the quality of the testing is to be 
assessed. In addition, it requires the developer of the ToE to provide dedicated documentation of 
his tests, and the evaluator to perform independent testing as well as the vulnerability analysis to a 
certain degree of rigour. 

The CC allow to consistently choose the detailed SARs by selecting an evaluation assurance level 
(EAL1 – EAL7) for the evaluation. In this case, the EAL also determines the level of testing. With 
increasing EAL, more rigorous components of the different ATE families must be met in successful 
evaluations. They require increasing test coverage in terms of security functionality, as well as test 
depth. This should provide more confidence that the security functionality works as specified. 

Testing must be repeatable and reproducible. This means that the tests must show the same result 
when repeated by the same tester, but also when performed by someone else. Therefore, tests 
have to be not only deterministic, but also sufficiently documented to guarantee reproducibility by 
other testers. 

Testing must also be performed under conditions that are consistent with the evaluated ones, since 
the functionality may depend on the environment and change with the configuration of the ToE. If 
there are different versions or configurations of the ToE, all of them have to be tested unless it can 
be demonstrated that the security functionality of the ToE will remain unchanged. 
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2.1.1 Testing in the Common Criteria context 

The Common Criteria divide test requirements into four areas. These are represented by the 
families of the ATE class:  

ATE_FUN addresses requirements on the test documentation; 

ATE_COV is the test coverage analysis of the security functions and their externally visible 
interfaces (TSFIs);3 

ATE_DPT is the test depth analysis of the testing of ToE subsystems implementing the 
security functions; 

ATE_IND is the independent testing performed by the evaluator (in addition to the developer 
testing). For this family, the developer only has to make the ToE and the test environment 
available for independent (evaluator) testing. 

 

As an example, the specific requirements for EAL3 are outlined in Table 1.  

 

Table 1: Common Criteria testing requirements for EAL3 (see also CC Part3 Table 1 [15]) 

Assurance 
family and 

components 
Details 

ATE_COV.2 The objective is to confirm that all of the TSFIs, described in the functional 
specification, have been tested. 

ATE_DPT.1 The objective is to confirm that all TSF subsystems, described in the ToE 
design, have been tested. The subsystem descriptions of the TSF provide a 
high-level description of the internal workings of the TSF. Testing at the level 
of the ToE subsystems provides assurance that the TSF subsystems behave 
and interact as described in the ToE design and the security architecture 
description. 

ATE_FUN.1 The objective is to confirm that the functional testing performed by the 
developer are performed and documented correctly. The test documentation 
shall consist of test plans, expected test results and actual test results. This 
includes instructions for using test tools and suites, description of the test 
environment, test conditions, test data parameters and values. 

ATE_IND.2 The objective for independent evaluator testing is to confirm that the 
developer performed some tests of some interfaces described in the 
functional specification. The evaluator first performs a sub-set of the 
developer test and then devises, documents and executes own tests. 

 

The functional testing, as described in ATE, only deals with testing of the correctness of the 
security functionality. This means that with increasing EAL we obtain an increasing level of testing 
of these functions and, henceforth, increasing confidence in that these functions work as intended. 
As an example, at EAL2 the ATE_COV.1 is selected instead of ATE_COV.2. ATE_COV.1 requires 

                                                
3
 In the CC context, the portion of the ToE implementing security functions is referenced as TSF and the 

interfaces by which the user, or non-TSF portions of the ToE, interact with the TSF are called ToE security 
functional interfaces (TSFIs). 
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only some of the TSFIs to be tested. Even more, at EAL1 the ATE_COV family would not be 
included at all. 

The CC also has the concept of being able to resist a certain attack potential, but there is no formal 
or direct relationship between the level of testing and the ability to resist an attacker with a given 
skillset. 

2.1.2 Vulnerability analysis in the Common Criteria 

The resistance to certain attack potentials is formally a part of the vulnerability analysis. This 
assessment determines whether an attacker could violate any of the SFRs used to formulate the 
security functions of the ToE. This could include bypassing, tampering monitoring or any other form 
of abuse. The corresponding security assurance class AVA has a single family, AVA_VAN, which 
describes this evaluation aspect. As part of it, the evaluator needs to conduct penetration testing. If 
the modelled security functionality includes e.g. the protection of a user’s data from the access by 
others, covert channel analysis should be considered in the assessment. Again, the CC are 
unspecific when it comes to the methods employed to conduct the pen-tests. 

Note that penetration testing in the CC is not to be confused with black box testing. In the context 
of AVA_VAN, all sources of input from the evaluation are used.  With increasing EAL, more 
information is available for the analysis and more rigour is applied in its assessment. The analysis 
varies from a survey of public domain information, to independent analysis, to independent and 
focused, and finally to independent, methodical.  

Any identified potential vulnerability is then measured, as to whether it can be exploited and, if yes, 
what attack potential is necessary to do so. The main issue with vulnerability assessments is not 
the measurement of exploitable vulnerabilities, but to identify them in the first place. Especially, at 
lower assurance level with limited design documentation and no access to source code, it is hard 
to find vulnerabilities. On the other hand, when such information is available at higher assurance 
levels, it is more likely that potential and exploitable vulnerabilities can be identified. 

The CC define the following attack potential levels associated with the different EALs: 

 EAL1 – EAL3 basic attack potential. 

 EAL4 – enhanced-basic attack potential. 

 EAL5 – moderate attack potential. 

 EAL6 – EAL7 high attack potential. 

The respective attack potential is associated with a certain combination of expertise, motivation 
and resources of the attacker. An empirical method to compute it is offered by an appendix of the 
Common Methodology for Information Technology Security Evaluation [16], which accompanies 
the CC. The evaluator assumes the computed potential when conducting the penetration testing. 
Furthermore, it is taken into account when the assurance components for the evaluation are 
chosen, e.g. by means of an EAL. Thereby, the EAL for the entire evaluation may be related to the 
assumed attack potential.  

 

2.2 IEC 62443 testing requirements 

The set of standards IEC 62443 [5] addresses issues of security for IACS and is derived from the 
SDLA, which is in turn based on established standards such as CC, OWASP, CLASP, IEC 61508 
(functional safety) and DO-178B. The scope of the standards defines specific roles of the asset 
owner, the system integrator and the product supplier. The latter develops and designs the product 
for the intended environment. The integrator then integrates a configured component into its 
automation solution that the asset owner operates and maintains. The standard defines duties 
concerning the product security life cycle for each role. These are covered by the different sub-
standards of IEC 62443. 
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Much of the testing for security is covered in the component development by the product supplier 
and the system integrator. Though testing is also later part of the patch management (see part 2-3) 
involving all parties. Patching of an operational, potentially suspended for maintenance, solution 
may be assisted by a testing framework to help and complete the complex procedures. Tasks of 
the update management are already rooted at the component level in part 4-1 (see Table 2). Here 
in PM-1, testing is an important measure to assure continued defence in depth and absence of 
compromising side-effects. 

 

Table 2: Requirements concerning update management throughout the product life cycle (IEC 62443-4-1:12) 

Name Description 

PM-1: Update qualification demonstrate correctness, absence of regressions, involving 
the developer and all suppliers 

PM-2: Update documentation detailed update documentation 

PM-3: Dependent component 
update documentation 

document compatibility to other component’s updates 

PM-4: Update delivery guarantee authenticity of updates 

PM-5: Timely delivery of 
patches 

update deployment infrastructure must not contain 
impediments 

 

Asset owners may also be confronted with tests for security functionality verification (CR-3.3, -4-2). 
These tests verify the operation of security controls and may run application during normal 
operations. Asset owners, i.e. operators, have to be aware of these tests to understand their 
implications, e.g. triggering an intrusion detection system or checking the function of audit logs. 
CR-3.3 notes, that the design should not affect safety functions, which must be considered in the 
overall security architecture. 

The following sections cover the security testing requirements on component testing and testing of 
composed systems that arise from applying IEC 62443-3-* (system level) and IEC 62443-4-* 
(component level), e.g. to achieve EDSA ISASecure scheme certification.  

 

2.2.1 Railway pilot testing requirements 

The railway demonstrator for the certMILS project is the TAS Platform 2.x included in the Thales 
product “CyberGate”. Future work of the project certMILS will apply the security framework to this 
platform. 

The tests run by the testing framework shall demonstrate that the defined secure reference 
configuration for the system is applied. This reference configuration is defined during the design 
phase of the development process. The tests shall be done against the requirements based on 
IEC 62443-4-2 (e.g. user authentication). Furthermore, newly listed CVEs (Common Vulnerabilities 
and Exposures) related to the ToE shall be identified and checked. Also already fixed CVEs shall 
be checked against recurrence and absence in the system. CVE is a standardized naming 
convention for security vulnerabilities in IT systems including all major vendors. The list of 
CVEs [17] is freely accessible. 

Different methods are defined in the IEC 62443 standard and shall be applied to the railway pilot: 

 Security requirements testing, vulnerability testing and penetration testing.  
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 For example, white box security tests for testing secure configuration. Black box tests for 

testing interfaces such as ports outside of the ToE or the complete system under 

consideration. 

 Review methods for showing the application of processes based on IEC 62443-4-1. 

See the definition of the testing methods in IEC 62443-4-1, also included here in Table 3. 

 

Table 3: Testing methods defined in IEC 62443-4-1, table 10.1. 

Name Description 

SV-1: 
Security 
requirements 
testing 

This testing focuses on verifying all the security requirements in the security 
requirements specification (SecRS) have been met. Functional, negative, 
boundary, performance and other types of standard testing will be performed on 
the security capabilities in the SecRS. 

SV-2: Threat 
mitigation 
testing 

This testing is derived from creating threat trees from the threats identified in the 
threat model and ensures that the mitigations designed and implemented in the 
product are effective in stopping the proposed threat. Testers will design their 
tests to attempt to thwart the mitigation using the type of threat identified. 

SV-3: 
General 
vulnerability 
testing 

This testing focuses on using standard tools or published instructions for 
discovering potential security vulnerabilities. No attempt is made to exploit the 
vulnerability or assess the ability to exploit the potential vulnerability and the 
product is tested without consideration to the implementation or its defence in 
depth design. 

SV-4: 
Penetration 
testing 

This testing focuses specifically on compromising the confidentiality, integrity or 
availability of the product. It can involve defeating multiple aspects of the defence 
in depth design. This is an unstructured test that depends on the skills and 
knowledge of the attacker. In this case, the tester tries to play the role of an 
attacker. This testing is not based on an analysis of the design or threat model, 
rather it encompasses the tester trying to defeat the security of the system using 
any technique that he chooses. This testing often will identify types of 
vulnerabilities that need to be fixed rather than single vulnerabilities. This testing 
will often detect problems that are not detected in threat model driven testing 
because there may be errors or omissions in the threat model itself.  

 

The testing has the following goals: 

 Demonstrate that the defined secure configuration is correctly implemented. 

 Demonstrate that the inner components are not influenced by an attacker. 

 Demonstrate that the availability of the system is not compromised by an attacker. 

 Demonstrate that the safety function of the system is not influenced by an attacker. 

 

2.2.2 Subway pilot testing requirements 

The high-level assumptions for the subway pilot follow from Czech national act No. 181/2014 on 
cyber security [13]: 

 restriction of physical access to networks and equipment of IACS,  

 restriction of interconnections and remote access to networks of IACS,  
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 protection of individual technological assets of IACS against attacks exploiting known 

vulnerabilities, 

 restoration of the operation of IACS after cyber security incidents. 

Assurance level, depth and scope of testing depend on demands and specific requirements of 
customers. UniControls has identified that the following common assumptions need to be verified: 

1) Disabling all unnecessary ports. 

2) Data encryption in open transmission system (category 3 according to[18]). 

3) Data encryption for selected important information also in closed transmission systems [18] 

(e.g. video or important operation records). 

4) Network segmentation (e.g. firewalls, VLAN, physical separation, etc.). 

5) Access control options (rights) of user interfaces according to established security policies. 

The security verification is mostly based on scanning for open ports, penetration tests and review 
of the actual implementation against documentation (e.g. block diagrams) that describes the 
security assumptions (e.g. list of ports, communication paths, interaction between users – including 
applications, etc.). 

More and more, customers define the security assumptions using the set of requirements provided 
by IEC 62443[5], i.e. demands on security level and appropriate requirements from 62443-parts 3-
3, 4-2 and occasionally part 2-4. Therefore, testing methods and requirements described in chapter 
2.1, 2.4.1.3, IEC 62443 part 4-1 chapter 12 (code verification) and chapter 13 (requirements on 
security integration testing: test plan, fuzz testing and abuse case test) are practically increasing 
their importance. They will be necessary for security evaluation and certification of both 
compositional types to be described in chapter 2.4. 

 

2.3 Embedded Device Security Assurance testing requirements 

The IEC 62443 introduced in the previous section is a series of standards covering topics in the 
area of cybersecurity robustness and resilience in IACS of all industries. The series is organized 
into four groups addressing: general topics, policies and procedures, the system level and the 
component level. The latter two aspects can be certified by accredited labs using the ISASecure 
certification schemes. 

2.3.1 What is tested? 

ISASecure 62443 conformance certification has developed schemes for  

Systems of full Industrial Automation and Control Systems (IACS), called System Security 
Assurance (SSA), and 

Components of IACS, called Embedded Device Security Assurance (EDSA). 

This distinction mirrors IEC 62443, where IEC 62443-4-* treat components of IACS and 
IEC 62443-3-* treat whole IACS systems. 

Here we focus on EDSA, but also, for context and comparison, also partially treat SSA. 

2.3.2 What is the testing for? 

For IACS components, the testing is for confidentiality, integrity, and availability. For whole IACS, 
the testing is also for confidentiality, integrity and availability, but more specifically taking into 
account network stress testing. 

During availability testing, IACS components need to maintain their essential functions. An 
essential function for an IACS component is (EDSA-310):  

Downward: the control function, the process control loop, the safety instrumented function. 
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Upward: process view, command (meaning change parameters of process control such as set 
points), process alarms, peer-to-peer control communication. Providing process history is 
an essential function unless explicitly excluded by the certification applicant. 

 

2.3.3 What are the methods? 

In the following table (Table 4), testing guidance can be found detailed in three kinds of 
documents. 

 

Table 4: ISASecure documents for robustness testing, functional requirements assessment, and life-cycle 
assessment. 

 EDSA SSA 

Robustness 
(SRT) 

Software robustness 
testing (SRT) [19] 

Ethernet testing: [20] 

ARP testing: [21] 

IPv4 testing: [22] 

ICMP testing: [23] 

UDP testing: [24] 

TCP testing: [25] 

“System robustness testing” 

(SRT) [26]: has three major elements: 

1. Vulnerability Identification Testing (VIT), 

2. Communication Robustness Testing (CRT), 

and Network Stress Testing (NST) (SSA-300), 

3. Asset Detection Testing (ADT). 

Nessus configuration to carry out VIT: [27]. 

Functional 
requirements 
(FSA) 

Functional Security 
Assessment (FSA) [28] 

“Functional security assessment for systems” 

(FSA-S), [29]  

For “Functional security assessment for embedded 
devices”, called “FSA-E”, it is pointed to EDSA-311. 
“In particular, if a component of a system is a certified 
ISASecure EDSA embedded device, then FSA-E and 
the CRT aspect of SRT need not be performed on that 
device as part of the SSA certification process. This is 
due to the fact that these assessments will have been 
performed previously under the ISASecure EDSA 
certification process.” [30] 

Life-cycle 
assessment 
(SDLA) 

Software Development 
Security Assessment 
(SDSA) [31]: points to 
SDLA, that is [32] 

“Security development artefacts for systems” 

(SDA-S), [33]: points to SDLA, that is [32] 

 

As, document-wise, ISASecure puts much emphasis on robustness testing, we start out with this 
aspect. 
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2.3.3.1 Robustness testing 

Table 5: Robustness testing requirements and tools. 

Characterization 
Required for Tools 

(see also 
D1.2) EDSA SSA 

CRT CRT examines the capability of the device to 
adequately maintain essential functions while being 
subjected to normal and erroneous network protocol 
traffic at normal to extremely high traffic rates (flood 
conditions). [34] 

CRT provides a measure of the extent to which IP-
based protocol implementations defend themselves 
against 

 correctly formed messages and sequences of 

such messages; 

 single erroneous messages; and 

 inappropriate sequences of messages; 

[19] Section 1.2 

For SSA, ADT (Asset Discovery Testing, i.e. port 
scanning, e.g. by nmap) is sometimes treated 
separately from CRT, for EDSA, ADT is referred to as 
“interface surface test” and always treated together with 
CRT. 

yes yes e.g. Achilles, 
see ISASecure 
CRT Test 
Tools 

NST Network stress testing: apply CRT testing at high loads 
and observe that essential functions are maintained.  

[35] Section 6.3.5 gives an example on how CRT, NST, 
and VIT are applied in a concrete example system. 

no yes Same as for 
CRT. 

VIT Vulnerability identification testing: VIT scans the device 
for the presence of known vulnerabilities. 

yes yes e.g. Nessus, 
see ISASecure 
CRT Test 
Tools 

 

2.3.3.1.1 Embedded device Robustness testing (ERT) in EDSA 

Core protocols are ICMP, IPv4, ARP, IEEE 802.3, UDP or TCP (EDSA-310, Section 3.1). ERT has 
passed if: 

 (CRT) essential functions are maintained under UDP and TCP port scanning and 

robustness testing of the core protocols (EDSA-312, ERT.R6 and ERT.R32), and  

 VIT testing has not discovered any “Critical” or “High” risk factors (EDSA-312, ERT.R54). 

Nessus shall be used (EDSA-312, ERT.R50). 

The protocol-specific CRT tests are specified at detail, we give two examples for the device under 
test (DUT): 

 “Ethernet”.T02: IEEE 802.2 Type 1 with IEEE 802 SNAP misplaced Q-tag tolerance: The 

DUT SHALL protect itself against receipt of an IEEE 802 SNAP header that contains a Q-

tag. [20] 
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 Load stress testing of the DUT’s IPv4 implementation SHOULD include NPDU sequences 

that activate or cause error sequencing in any one of multiple concurrently-operating NPDU 

reassembly FSMs, including attempts to overload the state management capabilities of the 

DUT’s IPv4 implementation. Requirement IPv4.R16 – Concurrent activation of multiple IPv4 

FSMs for reassembling fragmented NPDUs: [22] 

For VIT testing, the document [27] described how to configure Nessus. 

 

2.3.3.2 Functional requirements 

The way, functional requirements implemented by the system under test (SUT) are verified, 
depends on the claim. It can be analysis or testing. 

Example where the validation activity is analysis (SSA-311 FSA-S-RDF-4 Application Partitioning):  

Requirement: The SUT shall provide the capability to support partitioning of data, applications 
and services based on criticality to facilitate implementing a zoning model. 

Validation: Verify SUT user documents include evidence that Application Partitioning capability 
is included to support zoning models and record results as: 

a) Supported, or  

b) Not Supported. 

Example where the validation activity is testing (SSA-311 FSA-S-UC-4.3 Restricting mobile code 
transfer to/from the SUT):  

Requirement: Restricting mobile code transfer to/from the SUT: The SUT shall provide the 
capability to enforce usage restrictions for mobile code technologies based on the potential 
to cause damage to the SUT that include restricting mobile code transfer to/from the SUT. 

Validation: Connect a device to the SUT that contains mobile code not authorized to transfer 
to the SUT. Verify that the transfer is prevented and the user is notified of this occurrence. 
Record the results as: 

a) Supported, 

b) Not Supported, 

c) Not applicable, if the device does not allow any mobile code to execute. 

Note that EDSA-311, which is older than SSA-311, has similar requirements as SSA-311, but does 
not currently describe verification activities. 

Example from analysis (EDSA-311): 

FSA-RDF-3 Security Function Isolation. The IACS embedded device shall isolate security 
functions from non-security functions by means of partitions, domains, etc., including 
control of access to and integrity of, the hardware, software, and firmware that perform 
those security functions. 

 

2.3.3.3 Lifecycle assessment based testing requirements 

The security development lifecycle assessment is defined in SDLA-312 [32]. The document 
indicates the sources of the lifecycle based testing requirements, a collection of best practices from 
IEC 62443, ISO 61508, DO 178, Common Criteria for Information Technology Security, 
Comprehensive, Lightweight Application Security Process (CLASP), and Microsoft Secure 
Development Lifecycle (MS-SDL). Again, like in the SSA documents, validation activities are 
described. The description of validation activities is split into two types: 
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a) Validation of the development process itself. 

b) Validation of the output of the applied development process to a certain component 
or system under test. 

 

Example SDLA-SIT-1.2, Automatically Generated Test Cases, motivated from MS-SDL: 

Requirement: The files or packets that will be used for fuzz testing ("fuzzed") shall be 
automatically generated so that a large number of test case (in the thousands) can be 
executed.  

Component or system validation activity: Review fuzz test results and confirm that a large 
number of test cases were executed. 

Development and SDL validation activity: Verify that the development process states that 
the files or packets that will be fuzzed shall be automatically generated so that a large 
number of test case (in the thousands) can be executed. Or, pick a product that is 
developed using the process under evaluation and review fuzz test results and confirm that 
a large number of test cases were executed. Note: Automated tools (e.g. Codenomicon 
Defensics, Hitachi Raven ES) are commercially available for certain types of fuzz testing. 

 

2.3.4 What is the assurance gained? 

EDSA / SSA CRT testing gives detailed robustness testing protocols for Ethernet and IP-based 
network protocols. 

However, for robustness, it is also recognized that the goals of the CRT approach are limited “to 
identify the presence of common programming errors and known denial of service vulnerabilities 
specifically for networking protocols, which impact the robustness of embedded devices that use 
these protocols. Tests are specified to a level such that these goals are covered, although specific 
test data is not defined. These tests will not necessarily identify intentionally malicious code, nor is 
that a feasible goal for any practical testing regimen.” [19]. 

Hence, it is up to FSA and SDLA testing and analyses to establish trust for the system under test. 

 

2.4 Security testing and component composition 

This chapter will look at security testing in a composed system. First the general use case in a 
layered MILS system, especially the I-composition, is explained. Then the approach is taken to the 
architecture used in the certMILS project pilots, with hardware, separation kernel and an 
application. The separation kernel is the hypervisor used in certMILS for safety certified systems. 
In this context, the hardware component is the sum of the physical platform and the specific 
platform support package (PSP), which is the hardware abstraction layer for the hypervisor used in 
certMILS. 

 

2.4.1 Typical general use-case 

In a composed system, a threat analysis generally models an attacker and assets. Figure 4 shows 
the typical setup in a layered composed system, which has an outer and an inner component. Both 
the inner and the outer component potentially contain assets. In the example, the outer component 
covers the inner component. The outer component interacts with the attacker, and communicates, 
if the request is well-formed, and asks for a resource provided by the inner component, with the 
inner component.  
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 The API of the outer component has to be robust against malicious inputs. 

 The API of the inner component does not have to be robust against malicious inputs, if the 

outer component successfully filters out malicious inputs. That is the inner component relies 

on that the outer component filters certain input (upper two arrows). Conversely, the outer 

component can rely on that the flow from the inner component to satisfy the specification of 

the inner component. 

 

2.4.1.1 What is tested? 

In this scenario, the interface to the outer component is tested.  

 

 

2.4.1.2 What is the testing for? 

The testing has the following goals: 

 Test that the outer component and its assets, if any, cannot be compromised by the 

attacker. 

 Test that the inner component and its assets, if any, cannot be compromised by the 

attacker. 

 Test that the outer component shields all non-robust, if any, parts of the inner API against 

an attacker. Specifically, the outer component guarantees that the inner component cannot 

be attacked by passed-on input data. 

 Test that the attacker cannot use the inner component to bypass the outer component. 

Specifically, the inner component guarantees that its output does not attack the outer 

component. 

 

2.4.1.3 What are the methods? 

Deliverable D1.2, Section 1 (in preparation) gave a table of testing methods according 62443-4-1, 
Section 10.1. For reference, that information can also be found in Table 3. 

We now apply the classification of Table 3 to the scenario of testing inner and outer components, 
when one is directly acting as attacker. The results are shown in Table 6. 

  

Inner 
component 

(incl. assets) 

Outer 
component 
(incl. assets) 

Attacker  

Figure 4: Location of attacker in a layered composed system. 
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Table 6: Application of testing methods to a composed system. 

Name Outer component Inner component 

SV-1: Security 
requirements 
testing 

Feasible. Can only be done for security 
requirements exported to the outer 
component. 

SV-2: Threat 
mitigation 
testing 

Threats cover assets provided by 
outer and inner component. 

Threats cover assets provided by inner 
component. 

SV-3: General 
vulnerability 
testing 

COTS tools can be used be for 
network protocols etc. Fuzzing is 
needed for more product-specific 
interfaces. 

Tools likely not available. 

SV-3-x: 
Specifically, 
fuzzing 

Fuzzing needed for more product-
specific interfaces. API fuzzers use 
the regular interfaces into a 
subsystem. 

In-memory fuzzers can inject data 
into a system by directly 
manipulating stack frames, registers 
or other memory locations. NB: 
Probably not very interesting for the 
separation kernel used in certMILS 
as we explicitly want to test the APIs, 
handle with low priority 

Needs specialized fuzzer architecture 
(“layered fuzzing”), adapted to often 
non-standardized inner component. 
Successful coverage-based layered 
fuzzing, which starts at the outer 
interface, might penetrate to the 
interface of inner components. 

SV-4: 
Penetration 
testing 

Based on analysis of the external 
interface to the attacker. 

Based on analysis of the internal 
interface and how / what parts of it are 
exposed to the attacker. 

 

2.4.1.4 What is the assurance gained? 

The gained assurance mirrors the testing’s target, as mentioned in Section 2.4.1.2. 

The testing has the following goals: 

 Demonstrate that the outer component and its assets, if any, cannot be compromised by 

the attacker. 

 Demonstrate that the inner component and its assets, if any, cannot be compromised by 

the attacker 

 Demonstrate that the outer component shields all non-robust (if any) parts of the inner API 

against an attacker. Specifically, the outer component guarantees that the inner component 

cannot be attacked by the input not filtered. 

 Demonstrate that the attacker cannot use the inner component to bypass the outer 

component. Specifically, the inner component guarantees that its output does not attack the 

outer component 

More generally, regardless of the testing method, give convincing evidence that compositional 
aspects have been taken into account. 
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2.4.2 Separation kernel I-composition: PSP 

The I-composition concept is described in detail in D1.1[13]. The PSP component decouples all 
other separation kernel components from platform or board specific details at source and object 
code level, which means that the PSP can be exchanged without recompiling any of the other 
components. 

The main tasks of the PSP are: 

 Platform initialization 

 Interrupt management 

 Hardware timer management 

 Console output support 

 Memory region management 

 

During project build, the PSP is linked to the kernel and becomes a part of it. The PSP implements 
a number of entry points, which to be called by the kernel. 

 

 

For a separation kernel according to ST (Deliverable D3.1, in preparation) and PP (D2.1, in 
preparation) attackers are executables in normal partitions. Thus, if we instantiate Figure 4 for the 
PSP, then we obtain the situation shown in Figure 5 for the PSP.  

Assets maintained by the PSP are the services provided by the PSP: memory and interrupts (see 
Deliverable D3.2). The PSP governs resources of interrupts and memory. They are provisioned by 
the PSP at initialization time, giving rise to a variation in the control flow, as shown in Figure 6. 
Here the run-time permissions by a normal partition might include load/store accesses to memory, 
reading out the interrupts and hardware timer. 

 

PSP 

Memory 
(incl. cache), 
and interrupt 
(incl. timer) 

Normal 
partition 

Figure 6: PSP resource management. 

PSP 
Separation 

kernel 
Normal 

partition 

Figure 5: PSP services as part of system composition. 
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An interesting special case is a composition with an I/O MMU, represented by Figure 7: 

 

Figure 7: Composition in context of an I/O MMU driver. 

That is, a PSP, part of the separation kernel, sets up an I/O MMU at initialization time, so that DMA 
accesses from an untrusted device driver are controlled. As a further indirection layer, that 
untrusted device driver is controlled from a normal partition. 

 

2.4.3 Separation kernel I-composition: kernel device driver API 

Kernel device drivers are executed in the separation kernel’s microkernel context within the Kernel 
Driver framework. They support the Port API and the File API, which are comparable to the POSIX 
file API. Kernel device drivers are directly linked to the kernel object code. 

2.4.3.1 Description of scope and implementation 

 

Figure 8: Correlation of the APIs for kernel device drivers. 

 

We describe three APIs, which can directly or indirectly, interact with kernel device drivers. 

1) The first API (called “Partition API” in Figure 8) to kernel device drivers is part of the 

Partition API, which is the system call. It allows to control the driver from within a resource 

partition. This API is robust (see API classification in section 3.3). 

2) The second (inner API) API is the “Callback API”. Each kernel device driver must register a 

certain set of callbacks, which will be executed by the kernel for example as a result of 

interaction from user space. The inner API relies on guaranteed filtering by the outer 

PSP/separation 
kernel setting 
up I/O MMU 

Memory 

Untrusted 
device 
driver 

Normal 
partition 
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“Partition API”. In return, the inner API guarantees that its output is according to 

specification. 

3) The “Service API” contains functionality that the kernel device driver framework provides to 

the drivers to implement their functionality. It consists of more than 100 functions for 

operations like data transfer from/to user space, locking, interrupt management and others. 

The “Service API” requires that kernel device drivers are implemented correctly.  

 

2.4.4 T-composition scenarios 

 

 

Finally, there is the T-composition (see D1.1[13] Section 5.4.1), whose compositional layout is 
shown in Figure 9. In such a scenario, a vendor, who exposes e.g. an Ethernet network interface, 
wants to understand to what extent that would allow attacks on the separation kernel, or partitions 
hosted by it. 

 If the Ethernet network interface is implemented in a non-privileged partition, this partition 

cannot attack applications in other partitions, thanks to assurance of the separation kernel. 

The only attack vector is to deny services or alter the content of allowed communication 

from the Ethernet network interface partition with other partitions. 

 If the Ethernet network interface is implemented in a privileged partition, then that privileged 

partition can try to attack applications in other partitions or even the separation kernel itself. 

Hence, in a T-composition scenario, if an application is in a privileged partition the system needs to 
be analysed/tested in its entirety. If the application is in an untrusted unprivileged (normal) partition, 
then it suffices to analyse/test the extent (if any at all) the application can affect other partitions by 
allowed interaction of the partition with other partitions. 

 

2.4.5 Compositional testing in the pilots 

The T-composition scenarios in the subway pilot are an implementation of the MILS platform – 
based on the I-composition as a generic system – at the application level intended to the specific 
use in subway operations. Because the T-composition is an implementation for the specific use, it 
needs to be tested against specific requirements, including security requirements. 

The testing framework also needs to consider specific applications for an I-composition to provide 
a wide range of benefits. Otherwise, it could result in increased development and testing efforts, 
increasing product costs and no advantage from security certification due to different security 
targets. The final system implementation in specific use shall, as much as possible, exploit features 

Separation 
kernel 

Normal 
partition 

Embedded 
system (e.g. 

network 
interfaces) 

Figure 9: T-Composition. 
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of the I-composition and profit from them (i.e. improve cyber security of designed system, decrease 
development effort and costs).  

Examples of benefits are as follows: 

 layer of Defence-in-Depth approach that supports and multiplies system level protection,  

 higher level of security assurance for selected security functions, 

 decreased system development costs through application of security functions by system 

integrators for improved system security. 

Current practice for security verification (including testing) of system with specific use follows from 
process of risk analysis[36], mainly: 

 risk identification (assets, threats, existing measures, vulnerabilities), 

 risk analysis and assessment (impacts, likelihoods, risk level, assessment),  

 risk treatment (modification, applying, avoiding, transferring) 

Monitoring and review are part of farther phases of the system lifecycle. Therefore, they are not the 
base for the definition of test cases. The risk analysis is mostly performed using a risk table that 
covers all of the mentioned security aspects (assets, threats, vulnerabilities, impacts, likelihoods, 
risks and measures, etc.). 

The system environment, existing measures or designed countermeasures within the process of 
risk treatment create a set of security assumptions. The security assumptions shall be verified and 
tested, if possible. Because changes in these can lead to new risks and invalidate the previous 
security risk table. These new risks shall be again analysed and assessed. 
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Chapter 3 Separation kernel security fuzzing 

This section discusses security fuzzing of separation kernels in a generic way. To develop a 
fuzzing strategy, it is important to have a clear understanding of interfaces. A separation kernel 
either can be monolithic or have a microkernel. To realize a separation kernel, often microkernel 
designs (e.g. [37][38][39][40]) have been applied. In a separation kernel based on a microkernel: 

 The microkernel implements only the most fundamental operating system services, 

including protection of memory and access to CPU privileged states, in a privileged 

domain [41]. 

 Less critical services are in one or several non-privileged domains, called “system 

software” (SSW).  

Other separation kernels do not use or at least do not claim a microkernel design, e.g. previous 
protection profiles for separation kernels [42][43] were architecture-agnostic. In terms of interfaces, 
a monolithic kernel can be seen as a specific microkernel without user-space system software. So 
to cover the more general case, we assume that the separation kernel has a microkernel 
architecture. 

 

3.1 Motivation 

As described in Figure 2, security testing consists of  

1) SFR / functional testing , 

2) penetration testing, 

3) static analysis, 

4) fuzzing. 

Items (1) and (2) from the above list are already covered by the CC evaluation in certMILS 
Task 5.5. Here we concentrate on fuzzing. In safety, “penetration testing” is also referred to as 
“robustness testing”. 

 

3.2 Preamble to separation kernel fuzzing 

This section is work towards an improved separation kernel fuzz testing strategy. Its purpose is to: 

 Give an overview of separation kernel interfaces and existing fuzzing techniques that could 

be applied to them by cross matching in a matrix. 

 Roughly, estimate the applicability, technical challenges and benefits that will arise in 

certain combinations of interfaces and techniques. 

  



D4.1 - Security testing framework: strategy and approach   

certMILS D4.1 Page 22 of 34 

3.3 Separation kernel interfaces 

Currently, four separate interfaces (APIs) to a separation kernel’s microkernel and its system 
software (see overview in Figure 10) are considered candidates for fuzzing. These are briefly 
discussed here, based on information sourced from the separation kernel’s user documentation. 

 

Figure 10: Separation kernel system architecture with highlight on User/Kernel mode scope. 

 

Separation kernel APIs can be separated into two groups, which are categorized as robust and 
non-robust here: 

Robust APIs occur where callee and caller have different trust/integrity levels, i.e. code with 
higher trust is called by code with lower trust. This includes potentially malicious code. No 
conceivable call or sequence of calls should be able to compromise the integrity or 
availability of a robust API. In terms of fuzzing, every anomaly uncovered here needs 
investigation. 

Non-robust APIs occur between application parts within in the same security domain, i.e. they 
trust each other with regards to input and output – e.g. they share the same address space 
and can interfere with each other freely. Since they “trust” each other, the API does not 
need to guarantee that all arguments are completely sanitized. Fuzzing non-robust APIs 
has to be done with greater care, since it is possible to “abuse” the API and get false 
positive findings as a result. 

Note: the protections that have to be implemented for APIs that trust the callers (non-robust APIs) 
are not that high as the protections that have to be implemented for APIs that does not trust the 
callers An issue here comes when the caller which is assumed to be trusted is not trusted anymore 
(e.g. when it has been attacked/hijacked). During the penetration testing phase this scenario must 
covered. 

 

3.3.1 Microkernel API 

The microkernel API is the main interface from user space into the separation kernel’s microkernel. 
This does also mean a transition of the CPU from user mode into kernel mode (system call). 

Both the applications within resource partitions as well as the SSW use the microkernel API to 
communicate with the separation kernel’s microkernel. However, the SSW has a higher privilege 
level and can therefore use API calls that normal partitions cannot use. This is controlled through 
permissions (“abilities”). The mapping of system calls (“syscalls”) to abilities is listed in the 
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documentation. The SSW task automatically has all existing abilities. Some abilities are also SSW-
exclusive and cannot be granted to tasks in regular partitions. 

The microkernel API is exposed to normal partitions. 

Provided services in the microkernel API are: 

 Hardware abstraction, 

 Resource and time partitioning, 

 Execution entities (threads), 

 Separate address spaces (tasks), 

 Communication primitives, 

 Timers, 

 Exception and interrupt handling, 

 Health Monitoring. 

Description of scope and implementation 

The API currently consists of “true” syscalls, i.e. calls that enter the kernel. 

 

3.3.2 System Software API 

The System Software (SSW) component is the first user space application launched by the 
microkernel. The SSW component reads the configuration and initializes partitioning and inter-
partition communication according to the configuration. During run-time the system software 
component acts as a server providing the following services to the applications executing inside 
the different resource partitions: 

 Communication via queuing and sampling ports, 

 File system services, 

 Partition and process management services. 

Communication with the SSW takes place via Inter-Process Communication (IPC). Parameters for 
the SSW API calls are serialized into the IPC payload by a user space library and de-serialized by 
the SSW (return values vice versa). 

Like the microkernel API, the SSW API is considered robust. 

Description of scope and implementation 

The SSW code is executed by so-called partition daemons, which are automatically created for 
each partition. Communication with these daemons works via IPC messages. This has the 
following implications: 

 All calls to the SSW actually pass through the kernel. 

 The SSW service calls are wrappers that serialize the arguments to the SSW into IPC 

messages, which un-wraps them on the other side by decoding the command code and the 

arguments. 

 From the security view, attackers can bypass the SSW service call wrappers and all 

argument sanitation they might perform. A “security fuzzer” should therefore interface 

directly via the IPC interface with the SSW. 

 From the safety point of view, the application would always use the SSW functions. A 

“safety fuzzer” should therefore use the wrappers. 

 

3.3.3 Kernel device driver API 

See the previous chapter 2.4.3 Separation kernel I-composition: kernel device driver API. 
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3.3.4 Platform Support Package (PSP) API 

See the previous chapter 2.4.2 Separation kernel I-composition: PSP. 

 

3.4 Fuzzing aspects 

This section briefly describes different approaches to fuzzing that could be applied to the 
separation kernel interfaces that have been described in the previous section. The taxonomy 
partially follows the source in[4]. The aspects are mostly orthogonal, so that every fuzzer will have 
one or more aspects from each group. 

3.4.1 Input generation 

Brute-Force based fuzzers generate input completely at random. 

Mutation-based fuzzers start with valid input and mutate it by introducing more or less subtle 
changes. NB: A previous project tested mutation-based fuzzing with no satisfying results. 
This technique should not be researched with high priority. 

Template-based fuzzers follow a pre-defined ruleset in order to generate more “interesting” 
data that can get past input sanitation. 

Coverage-guided fuzzers are able to extract code coverage information from the code under 
test and can use this information to adapt the input in order to maximize coverage. 

3.4.2 Parallelism 

Single-threaded fuzzers are suited to uncover logic bugs such as off-by-one errors which 
occur deterministically. 

Multi-threaded fuzzers can additionally trigger concurrency bugs such as deadlocks and race 
conditions. This type of bug is typically non-deterministic and depends on random events 
such as small timing deviations. 

3.4.3 State 

Stateless fuzzers perform every iteration independently from the previous ones. 

Stateful fuzzers preserve state information (e.g. open file handles) between iterations. 

3.4.4 Adherence to subsystem boundaries 

API fuzzers use the regular interfaces of a subsystem. 

In-memory fuzzers can inject data into a system by directly manipulating stack frames, 
registers or other memory locations. NB: Probably not very interesting for the separation 
kernel as we explicitly want to test the APIs. 

3.4.5 Layered fuzzing 

The PSP / kernel device driver can be indirectly fuzzed from user-space.  

A related approach, to apply in-system fuzzing is published through the “kAFL – OS kernel fuzzing” 
framework[44]. The implementation constructs a fuzz-agent, that is injected into the system under 
test and tests the test case’s API directly where it has the required access. In terms of the 
separation kernel and in-kernel API, this could be a test-specific kernel-driver. 
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3.5 Cross-matching matrix 

Below, in Table 7, an estimate of the applicability, technical challenges and benefits to matched to 
separation kernels interfaces and fuzzing aspects is given. 

 

Table 7: Fuzzer property and applicability cross-matching matrix. 

Aspect/API Robust APIs (e.g. Microkernel or SSW interfaces) 

Brute-force Sometimes brute-force fuzzing brings early (sometimes not very clear though) 
results that can be later used in most advanced fuzzing techniques. 
Implementing a brute-force fuzzer is not complex, and the most timing 
consuming phase for brute-force fuzzers is the execution, which does not need 
to be human attended. As a first step, brute-force fuzzing should always be 
taken into account for "Robust APIs". Even if the results might be useless, it 
brings a clear scenario for further fuzzing instead. 

Template-
based  

This can be done by selecting the arguments for kernel APIs are selected from 
the valid class of arguments with a special focus on the boundary values. 

Coverage-
based 

If the separation kernel already has tool support for extracting coverage 
information as required by standards such as DO-178 [45] (e.g. Rapita tool 
suite), then this is possibly easy to complement. If the format of coverage data 
is compatible to the GCC gcov format, then the syzkaller Linux fuzzer could be 
re-used for separation kernel fuzzing. 

Multi-Threaded Currently implemented: “During the test, the system state is concurrently 
modified by high priority threads to induce race conditions.” 

Stateful State awareness requires template knowledge 

Layered 
fuzzing 

Not applicable 

   

Aspect/API Non-robust APIs (e.g. kernel device drivers, PSP) 

Brute-force Might be problematic for non-robust APIs that do not need to perform thorough 
input sanitization. 

Template-
based 

Lower priority in comparison to coverage-based 

Coverage-
based 

Intended, feasibility to be proven 

Multi-Threaded Optional, complex to realize in comparison to single-threaded 

Stateful State awareness requires template knowledge, or in combination with layered 
fuzzing and fuzz-agents 

Layered 
fuzzing 

Applicable 
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3.6 Hardware support and integration 

Stateless and brute-force fuzzing do not depend on any feedback from the test target. This 
simplifies implementation but is very inefficient, as many inputs will be discarded by simple input 
check mechanisms of the test target and large dimensions of valid inputs may not reach critical 
parts. 

Template-based fuzzer can leave out inputs that are irrelevant due to input checks, or which do not 
reach separate code paths. On the one hand, this can be very efficient to narrow down the input 
space. On the other hand, API designers or testers need to create these templates first, which is 
time consuming and might introduce template tainting. Template-based Linux-system-call fuzzer, 
such as Syzkaller, also use code coverage through the kcov-kernel interface to improve their 
progress. 

Code coverage information improves progress to ‘interesting’ input corpuses drastically. For 
example, the coverage-feedback based general-purpose fuzzer AFL is known to craft valid (but 
meaningless) JPEG images through improving a random start input towards good coverage in a 
JPEG-library. 

There are different approaches to collect coverage information from the target. The current solution 
used by AFL is to instrument branches and calls with extra assembler instructions that copy the 
code address taken to a shared memory segment. When the AFL fuzzer runs, it forks multiple 
instances of the target program, feeding generated and mutated inputs. The processes execute 
and may crash upon the particular input. The disadvantages for kernel fuzzing are the architecture 
dependent assembler instructions, the user space fork-to-crash approach and the focus on input-
delivery via the standard input file. Related extensions to AFL have moved the code 
instrumentation into compiler-plugins to reduce the instrumentation overhead through C-compiler 
optimizations. Even smoother integration with the compilation process is achieved with libFuzz as 
part of the LLVM/Clang compiler toolchain. 

 

However, the concurrent process-fork approach does not apply to kernel fuzzing. A system can 
only run a single kernel and a kernel-crash would always interrupt the fuzzing process and may 
corrupt feedback evaluation. Consequently, for efficiency the fuzzing process cannot run as a user 
process of the kernel under test. Thus, kernel fuzzing requires use of virtualization techniques. 

In a virtualized scenario, the fuzzing framework starts the test-target in a virtualized environment, 
equipped with a fuzz-agent to inject input data and feedback coverage data. Schumilo et al. [44] 
published this approach as kAFL for COTS-kernels (Linux, Windows, IOS). To excel performance, 
kAFL uses a modified version of the virtualization environment QEMU-KVM. QEMU is an open-
source full-system virtualization software. KVM is the “kernel-based virtual machine” for Linux 
operation systems for hardware-assisted virtualization of native guests (same target architecture). 
The modification provided by kAFL introduces support of the PT hardware tracing features (Intel 
Processor Trace) of current Intel x86 processors. An additional translation tool converts the 
captured trace data to AFL coverage maps and feeds it back to kAFL for the next invocation of the 
virtualized system. 

The kAFL approach currently outperforms any other generic kernel fuzzing framework (e.g. 
TriforceAFL), while sustaining good flexibility. The authors have published their approach only for 
consumer OS (Mac, Windows, Linux). Nevertheless, there is strong confidence that this approach 
also applies to the separation kernel, as it also runs well in a QEMU virtualization environment. 

The biggest challenge in porting the kAFL approach to certMILS is in adapting the trace collection 
features to other architectures used in certMILS, predominantly ARM64 and PowerPC. Both 
architectures have built-in debug and tracing support: 

 NXP Nexus Trace in the e6500 PowerPC core (e.g. NXP T4080) 

 ARM CoreSight for ETMv4 in cores A53 and A72 (e.g. NXP LS1043) 
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Linaro, as the leading maintainer of the open source ARM toolchain, recently added support for the 
Coresight infrastructure to the Linux kernel trace subsystem. In conjunction with QEMU and KVM 
this could enable efficient virtualized fuzz testing of the separation kernel and the PSP on the 
target system. Furthermore, support for Nexus Trace on PPC and alternatively user-land AFL-
QEMU-mode performance need to be evaluated for feasibility and usability in MILS Security 
Testing. 

The relevance of code coverage information also has a good correlation to potentially found bugs, 
as was demonstrated in [7] (chapter 8.8.6) in 2008. However, the authors make a distinction that 
coverage through a particular interface is often limited to subsections of the code. Adjusting for 
relative coverage shall not lead to false positive metrics. The security framework addresses this 
bug tainting through layered fuzzing techniques. 
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Chapter 4 Summary and conclusion 

This deliverable has researched the state of the art in security testing techniques. The research 
was especially focused on techniques applicable for Industrial Automation and Control Systems 
with elevated assurance levels. The assurance requirements also include Information Security 
Assurance to raise confidence in the dependability of the system. Dependability is composed of 
measures of safety and security. Safety is the adequate reduction of risk that the system can harm 
its environment. However, safety is also tightly coupled to availability and integrity of the system to 
fulfil its safety policy, i.e. to correctly perform the safety function(s). Security techniques ensure 
availability and integrity by employing countermeasures to mitigate threats that impose risks on the 
assets. 

Safety measures reduce risks coming from random and systematic failures, which are well 
modelled and understood, because they are under the control of the supplier. In contrast, security 
threats are imposed by the environment, which is uncertain and may change without control of the 
supplier, thus potentially invalidating static countermeasures against known vulnerabilities. 

These challenges are addressed by standards for testing contexts. This deliverable has analysed 
the relevant standards CC and IEC 62443, as well as the related certification scheme 
ISASecure/EDSA coupled to IEC 62443 and derived testing methods for component compositions. 
Some of the resulting requirements are addressed in other deliverables (e.g. existing test tools in 
D1.2). 

One of the currently most prominent testing techniques discovering hard to find vulnerabilities is 
fuzz testing. Due to the complex mechanisms to apply fuzz testing to a ToE, fuzz frameworks need 
to be developed or derived from generic approaches refined for the ToE. In a MILS system this are 
components or compositions thereof, involving user-space applications, OS and kernel 
components and HW coupled components (e.g. PSP). These aspects require different technical 
approaches, which were analysed in a separate chapter. It concludes with the evaluation of a 
recently published approach to effectively apply fuzz testing to general purpose operating systems 
on x86-architecture platforms. Since the hardware architectures in the certMILS project differ, i.e. 
PowerPC and ARM, a different approach to extract processor-based code coverage information is 
required. Initial research has found that recent processors of these architectures also provide 
extended tracing technologies for in-system analysis. As a result, the certMILS project will 
subsequently evaluate the technical feasibility for the security. 

Hardware assisted fuzz testing is an important feature of the security testing framework, to provide 
robustness tests for most of the components of the MILS systems. This testing can continuously 
demonstrate high level of robustness, resulting in confidence that composed systems, e.g. with 
patched vulnerabilities, still uphold their effective security measures. This in turn results in integrity 
and availability of the system to enforce the required safety policy. Effective security measures of 
the basic component providing separation are the basis for a certifiable system, e.g. in a layered 
composition, where an inner component executing a safety function has reduced security 
requirements due to a greatly reduced attack surface. 

As hinted before, one of the utmost expectations on the security framework is its availability not 
just to the component developer, but also to the system supplier for integration testing, as well as 
the system operator to verify operational patches for the complete lifecycle. Accompanying 
guidance to dissect the results of testing framework, especially the fuzzers, must be accessible 
and helpful for all technical roles. These requirements and the long term availability have 
consequences on the choice of COTS and customized tools. The refinement of the interpretation 
parameters of the guidance tools will depend on the output of the test tools, thus will require further 
analysis. 



D4.1 - Security testing framework: strategy and approach   

certMILS D4.1 Page 29 of 34 

Chapter 5 List of abbreviations  

Abbreviation Translation 

ADT Asset Discovery Testing 

ARP Address Resolution Protocol 

ATE CC Assurance class: Tests 

AVA CC Assurance class: Vulnerability Assessment 

CC Common Criteria 

CLASP Comprehensive, Lightweight Application Security Process 

CRT Communication Robustness Testing 

CVE Common Vulnerabilities and Exposures 

DUT Device under Test 

EAL Evaluation Assurance Level 

EDSA Embedded Device Security Assurance 

ERT Embedded Device Robustness Testing 

FSA Functional Security Assessment 

FSM Finite State Machine 

IACS Industrial Automation and Control Systems 

ICMP Internet Control Message Protocol 

IPC Inter-Process Communication 

NPDU Network Protocol Data Unit 

NST Network Stress Testing 

OWASP Open Web Application Security Project 

PP Protection Profile 

PSP Platform Support Package 

SDL Secure Development Lifecycle 

SDLA Security Development Lifecycle Assessment 
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Abbreviation Translation 

SDSA Software Development Security Assessment 

SecRS Security Requirements Specification 

SRT System Robustness Testing 

SSA System Security Assurance 

SSW System Software 

ST Security Target 

SUT System under test 

TCP Transmission Control Protocol 

ToE Target of Evaluation 

TSF ToE Security Functionality 

TSFI ToE Security Functionality Interface 

UDP User Datagram Protocol 

VIT Vulnerability Identification Testing 
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