

D4.1

Security testing framework:
strategy and approach

Project number: 731456

Project acronym: certMILS

Project title:

Compositional security certification for medium to

high-assurance COTS-based systems in

environments with emerging threats

Start date of the project: 1st January, 2017

Duration: 48 months

Programme: H2020-DS-LEIT-2016

Deliverable type: Report

Deliverable reference number: DS-01-731456 / D4.1/ 1.0

Work package contributing to the

deliverable:
WP 4

Due date: Sep 2017 – M09

Actual submission date: 29th September, 2017

Responsible organisation: UROS

Editor: Thorsten Schulz

Dissemination level: PU

Revision: 1.0

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731456.

Abstract:

Approach, strategy, and architecture for the

implementation of security testing framework are

proposed.

Keywords:
Security framework, security testing, analysis, fuzz-

test methodology

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page II

Editor

Thorsten Schulz (UROS)

Contributors (ordered according to beneficiary numbers)

Andreas Hohenegger, Staffan Persson (atsec)

Alvaro Ortega (E&E)

Reinhard Hametner, Michael Paulitsch (THA)

Caspar Gries, Sergey Tverdyshev, Holger Blasum (SYSGO)

Tomáš Kertis (UCO)

Thorsten Schulz (UROS)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author`s view – the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page III

Executive summary

This deliverable evaluates the state of the art in security testing techniques in relation to relevant
industrial security standards. The research starts with a survey of non-industrial security
frameworks and general identification of security vulnerabilities. We then have a look into the
different testing contexts covered by Common Criteria requirements and IEC 62443 standards and
certification schemes. This is also brought into context with the certMILS application pilots and the
applicability to testing of compositions as the fundamental architecture of a MILS system.

Future work will focus on refining features of the testing framework for security testing of operating
system components. The strategy for these activities is outlined in the third chapter, together with a
short study of the technical feasibility.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page IV

Contents

Executive summary .. III

Contents ... IV

List of Figures .. VI

List of Tables ... VII

Chapter 1 Introduction .. 1

1.1 Security testing techniques in publications .. 2

1.2 Purpose of this document ... 4

Chapter 2 Testing contexts ... 5

2.1 Common Criteria testing requirements .. 5

2.1.1 Testing in the Common Criteria context ... 6

2.1.2 Vulnerability analysis in the Common Criteria .. 7

2.2 IEC 62443 testing requirements .. 7

2.2.1 Railway pilot testing requirements ... 8

2.2.2 Subway pilot testing requirements ... 9

2.3 Embedded Device Security Assurance testing requirements 10

2.3.1 What is tested? .. 10

2.3.2 What is the testing for? .. 10

2.3.3 What are the methods? ... 11

2.3.4 What is the assurance gained? .. 14

2.4 Security testing and component composition .. 14

2.4.1 Typical general use-case ... 14

2.4.2 Separation kernel I-composition: PSP ... 17

2.4.3 Separation kernel I-composition: kernel device driver API ... 18

2.4.4 T-composition scenarios .. 19

2.4.5 Compositional testing in the pilots ... 19

Chapter 3 Separation kernel security fuzzing ... 21

3.1 Motivation .. 21

3.2 Preamble to separation kernel fuzzing .. 21

3.3 Separation kernel interfaces ... 22

3.3.1 Microkernel API ... 22

3.3.2 System Software API ... 23

3.3.3 Kernel device driver API .. 23

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page V

3.3.4 Platform Support Package (PSP) API .. 24

3.4 Fuzzing aspects .. 24

3.4.1 Input generation... 24

3.4.2 Parallelism ... 24

3.4.3 State .. 24

3.4.4 Adherence to subsystem boundaries ... 24

3.4.5 Layered fuzzing ... 24

3.5 Cross-matching matrix .. 25

3.6 Hardware support and integration ... 26

Chapter 4 Summary and conclusion .. 28

Chapter 5 List of abbreviations .. 29

Chapter 6 Literature ... 31

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page VI

List of Figures

Figure 1: The interplay of the concepts composing the security realm. ... 1

Figure 2: Mapping of security test method to development phase (MS-SDL and [1]). 2

Figure 3: The justification for and target of negative testing (redrawn from [33]). 3

Figure 4: Location of attacker in a layered composed system. .. 15

Figure 5: PSP services as part of system composition. ... 17

Figure 6: PSP resource management. .. 17

Figure 7: Composition in context of an I/O MMU driver. .. 18

Figure 8: Correlation of the APIs for kernel device drivers. .. 18

Figure 9: T-Composition. ... 19

Figure 10: Separation kernel system architecture with highlight on User/Kernel mode scope. 22

file:///C:/00-SVN/CERT-MILS/03-WPs/WP4/D4.1/certMILS-D4.1-SecurityTesting-Framework-PU-M09.docx%23_Toc494364818
file:///C:/00-SVN/CERT-MILS/03-WPs/WP4/D4.1/certMILS-D4.1-SecurityTesting-Framework-PU-M09.docx%23_Toc494364819
file:///C:/00-SVN/CERT-MILS/03-WPs/WP4/D4.1/certMILS-D4.1-SecurityTesting-Framework-PU-M09.docx%23_Toc494364820
file:///C:/00-SVN/CERT-MILS/03-WPs/WP4/D4.1/certMILS-D4.1-SecurityTesting-Framework-PU-M09.docx%23_Toc494364821
file:///C:/00-SVN/CERT-MILS/03-WPs/WP4/D4.1/certMILS-D4.1-SecurityTesting-Framework-PU-M09.docx%23_Toc494364822
file:///C:/00-SVN/CERT-MILS/03-WPs/WP4/D4.1/certMILS-D4.1-SecurityTesting-Framework-PU-M09.docx%23_Toc494364825

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page VII

List of Tables

Table 1: Common Criteria testing requirements for EAL3 (see also CC Part3 Table 1 [15]) 6

Table 2: Requirements concerning update management throughout the product life cycle
(IEC 62443-4-1:12) ... 8

Table 3: Testing methods defined in IEC 62443-4-1, table 10.1. ... 9

Table 4: ISASecure documents for robustness testing, functional requirements assessment, and
life-cycle assessment. ... 11

Table 5: Robustness testing requirements and tools. .. 12

Table 6: Application of testing methods to a composed system. ... 16

Table 7: Fuzzer property and applicability cross-matching matrix. .. 25

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 1 of 34

Chapter 1 Introduction

Security describes the resistance to threats, intentional and unintentional. Threats always exist and
target all systems.

Figure 1: The interplay of the concepts composing the security realm.

Assurance is a measure of confidence in the correct behaviour of a system. A vulnerability is a
weakness of a system, which can be used to cause a threat. A threat is a method leading to a
dangerous event, i.e. risk. The defence is the collection of countermeasures preventing a threat
escalating to a risk. An exploit bypasses the defence, using a vulnerability to realize a threat
leading to a dangerous event. It results in loss of integrity of the system and its assurance.

Security frameworks have gained large attention in web applications. Often, software tests for
“assurance-less” products are not as rigorous and possibly not required for functional acceptance.
The applications too often expose a large attack surface to the whole internet. Nonetheless, the
operational environment changes very rapidly, making maintenance over the full software lifecycle
very costly, if not impossible, for individual solutions.

Larger companies and interest groups have thus developed security frameworks for their target
market to improve overall reliability of products generated from their bases. Examples are: OWASP
Testing Framework[1], Microsoft Security Development Lifecycle (MS-SDL), SAGE ("Scalable
Automated Guided Execution“)[2] and SLAM1. In addition as a different concept, Google has
established the OSS-Fuzz environment[3] to donate their server resources to security test open
source software.

1
 SLAM is a project for checking that software satisfies critical behavioral properties of the interfaces it uses.

Static Driver Verifier is a tool in the Windows Driver Development Kit that uses the SLAM verification engine.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 2 of 34

According to Pohl[4] in Figure 2, security frameworks should consist of multiple tools
accompanying the whole development lifecycle: starting with Threat-Modelling in the early
requirements and design-phase, static analysis tools (see certMILS deliverable D1.2, in
preparation) in the implementation phase and dynamic analysis tools (e.g. Fuzzer) in the
verification phase.

The ISA standard for “Security in industrial automation and control systems” IEC 62443[5] defines
similar concepts in the subset 1-1 for general “concepts and models” compared to Figure 1. The
security context is set as the two connected processes of assurance and assessment, as shown in
IEC 62443, Figure 3.

1.1 Security testing techniques in publications

Security testing uses many techniques, which are detailed in the next chapter. One of the currently
most researched techniques is fuzz-testing. Oehlert [6] names fuzz-testing a technique, “to better
ensure the absence of exploitable vulnerabilities” by “checking large numbers of boundary cases”,
that functional testing cannot cover. It adds negative test cases to verify, that a software or
“product does not do something it shouldn’t do”. This aspect is also detailed in [7] and displayed in
Figure 3.

In other words, this still requires classic functional testing to provide verification with full coverage.
However, to leverage comparable negative test cases, it is imperative for effective fuzz-testing to
get feedback from code coverage analysis to become a quantifiable technique.

Fuzz-testing is a computational and thus time-consuming technique. Even with code coverage
information it is hard to generate test cases, that dive deep to achieve good coverage. The
combination with other techniques is proposed in [8]: “Static Exploration of Taint-Style
Vulnerabilities Found by Fuzzing”. This work locates initial weaknesses through fuzzing with known
fuzz-testing tool AFL[9] and tools provided by the LLVM compiler toolchain[10]. Found weaknesses
are converted to vulnerability patterns and matched against the complete source base with static
analysis. The research found asserted a high rate of false positives as a drawback, which the
authors mitigated by a ranking algorithm and also identified this for future improvement, e.g. by
using symbolic execution and path reachability diagnostics.

In [11] different tools are enumerated for concurrency and multithreaded testing. For random and
fuzzing is a tool “contest”, “forcing threads to interleave at random intervals. As fuzzing strategies
encounter a faulty set of thread interleaving by chance these might increase the chances of finding
a bug. However they provide no guarantee regarding the detection of race conditions.”

Figure 2: Mapping of security test method to development phase (MS-SDL and [1]).

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 3 of 34

Microsoft holds a patent [12] claiming “Amplification of dynamic checks through concurrency
fuzzing”. An application is prepared with additional dynamic checks to monitor runtime behaviour
under the influence of randomization of thread scheduling. A related tool is Microsoft’s “Cuzz”
which is part of the AppVerifier Suite. “Cuzz is a very effective tool for finding concurrency bugs.
Cuzz works on unmodified executables and is designed for maximizing concurrency coverage for
your existing (unmodified) tests. It randomizes the thread schedules in a systematic and disciplined
way, using an algorithm that provides probabilistic coverage guarantees.” Licensing and availability
of Microsoft-tools make them inappropriate for use in certMILS. Though similar techniques are
already in development as part of the functional testing of the certified hypervisor operating system
PikeOS, as used in the context of the certMILS project.

Takanen et al. [7] also go into detail about fuzzing of industrial automation systems. The best
known and preferred tool at the time of writing in 2008 was “Achilles”, which is also described in
deliverables D1.1[13] and D1.2 (in preparation). Correlated, the author divides SCADA2 fuzzing
into control functionality blocks of Ethernet communication processing, logic processing, and I/O
processing. They consider how different stress types in hostile (networking) conditions and
environments affects devices. A SCADA device must maintain its safety policy, e.g. hostile stress
should: have no affect at all, trigger fail-safe mode, etc. Challenges in fuzzing SCADA systems as
noticed by the authors:

 protocol diversity

 implementation ambiguity

 [special] equipment access

 configuration complexity

 test simulations either with and without load

 grey-box access to SUT

 multi-way redundancy

 fail-over behaviour of SUT

 performance constraints of SUT

 accounting for watch-dogs, fail-safe modes, communication failover

2
 Supervisory Control and Data Acquisition (SCADA) is a subset of IACS, but often used to refer to IACS as

well.

Undesired
functionality

Desired

functionality

Acquired
functionality

Conformance faults

Planned features

Fatal features

“Creative” functionality
Target

Negative
requirements

Undefined

Positive

requirements

Specification

Implementation

Figure 3: The justification for and target of negative testing (redrawn from [33]).

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 4 of 34

These challenges will influence solutions for the testing framework, especially concerning the
scope that can be tested reproducibly. Many of the above points from the cited publication result
from looking at products and systems and have a lesser impact on individual components, such as
those of a MILS system.

1.2 Purpose of this document

“Describe the approach, strategy, and architecture for the implementation of the security-testing
framework.”

The Security framework must raise the assurance of a component, throughout and especially at
the beginning of the lifecycle of the system. By providing an additional security-testing
infrastructure, the integrator of a MILS system can demonstrate the required properties of the
component in their product/solution to

 Fulfil other component’s requirements regarding the environment or non-interference

properties other components cannot fulfil themselves.

 Gain assurance of interface robustness.

 Maintain assurance level in case of a component update.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 5 of 34

Chapter 2 Testing contexts

This section discusses existing contexts, and their objectives and methods for achieving
assurance.

2.1 Common Criteria testing requirements

The Common Criteria for Information Technology Security Evaluation (CC) [14], or ISO/IEC 15408,
represent a flexible framework for the evaluation of the security of IT-products, or a part of it that is
called the target of evaluation (ToE). The standard is flexible in that it applies to a broad range of
ToEs. Furthermore, developers (or sponsors of an evaluation) may customize the detailed CC
evaluation activities to suit their own assurance needs. To this end, they choose from two distinct
sets of requirements. One of these consists of security functional requirements (SFRs) to model
the properties of the ToE under investigation. The second one represents a collection of assurance
requirements that the developer may choose to impose on the ToE (SARs). Two important classes
of the latter set of CC requirements address security testing:

 Testing of the security functionality (security functional testing), is described as part of the

assurance class ATE;

 Penetration testing is part of the vulnerability assessment described by the assurance class

AVA.

Security functional testing provides assurance that the ToE behaves as modelled using the SFRs.
This set of security functions must also be reflected by the developer provided information (in the
functional specification, ToE design and implementation representation). On the other hand,
penetration testing is the testing for potential vulnerabilities to determine if they are exploitable by a
hypothetical attacker.

Like all SARs, testing is described in CC Part 3 [15]. Both, the ATE class and the AVA class
consist of “families” which cover different aspects of each. It is important to note that, due to the
generic nature of the CC, requirements of these classes do usually not appeal to specific testing
methods, or even testing tools. However, independent of how the testing is performed in detail, it
states – in abstract language – what needs to be tested and how the quality of the testing is to be
assessed. In addition, it requires the developer of the ToE to provide dedicated documentation of
his tests, and the evaluator to perform independent testing as well as the vulnerability analysis to a
certain degree of rigour.

The CC allow to consistently choose the detailed SARs by selecting an evaluation assurance level
(EAL1 – EAL7) for the evaluation. In this case, the EAL also determines the level of testing. With
increasing EAL, more rigorous components of the different ATE families must be met in successful
evaluations. They require increasing test coverage in terms of security functionality, as well as test
depth. This should provide more confidence that the security functionality works as specified.

Testing must be repeatable and reproducible. This means that the tests must show the same result
when repeated by the same tester, but also when performed by someone else. Therefore, tests
have to be not only deterministic, but also sufficiently documented to guarantee reproducibility by
other testers.

Testing must also be performed under conditions that are consistent with the evaluated ones, since
the functionality may depend on the environment and change with the configuration of the ToE. If
there are different versions or configurations of the ToE, all of them have to be tested unless it can
be demonstrated that the security functionality of the ToE will remain unchanged.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 6 of 34

2.1.1 Testing in the Common Criteria context

The Common Criteria divide test requirements into four areas. These are represented by the
families of the ATE class:

ATE_FUN addresses requirements on the test documentation;

ATE_COV is the test coverage analysis of the security functions and their externally visible
interfaces (TSFIs);3

ATE_DPT is the test depth analysis of the testing of ToE subsystems implementing the
security functions;

ATE_IND is the independent testing performed by the evaluator (in addition to the developer
testing). For this family, the developer only has to make the ToE and the test environment
available for independent (evaluator) testing.

As an example, the specific requirements for EAL3 are outlined in Table 1.

Table 1: Common Criteria testing requirements for EAL3 (see also CC Part3 Table 1 [15])

Assurance
family and

components
Details

ATE_COV.2 The objective is to confirm that all of the TSFIs, described in the functional
specification, have been tested.

ATE_DPT.1 The objective is to confirm that all TSF subsystems, described in the ToE
design, have been tested. The subsystem descriptions of the TSF provide a
high-level description of the internal workings of the TSF. Testing at the level
of the ToE subsystems provides assurance that the TSF subsystems behave
and interact as described in the ToE design and the security architecture
description.

ATE_FUN.1 The objective is to confirm that the functional testing performed by the
developer are performed and documented correctly. The test documentation
shall consist of test plans, expected test results and actual test results. This
includes instructions for using test tools and suites, description of the test
environment, test conditions, test data parameters and values.

ATE_IND.2 The objective for independent evaluator testing is to confirm that the
developer performed some tests of some interfaces described in the
functional specification. The evaluator first performs a sub-set of the
developer test and then devises, documents and executes own tests.

The functional testing, as described in ATE, only deals with testing of the correctness of the
security functionality. This means that with increasing EAL we obtain an increasing level of testing
of these functions and, henceforth, increasing confidence in that these functions work as intended.
As an example, at EAL2 the ATE_COV.1 is selected instead of ATE_COV.2. ATE_COV.1 requires

3
 In the CC context, the portion of the ToE implementing security functions is referenced as TSF and the

interfaces by which the user, or non-TSF portions of the ToE, interact with the TSF are called ToE security
functional interfaces (TSFIs).

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 7 of 34

only some of the TSFIs to be tested. Even more, at EAL1 the ATE_COV family would not be
included at all.

The CC also has the concept of being able to resist a certain attack potential, but there is no formal
or direct relationship between the level of testing and the ability to resist an attacker with a given
skillset.

2.1.2 Vulnerability analysis in the Common Criteria

The resistance to certain attack potentials is formally a part of the vulnerability analysis. This
assessment determines whether an attacker could violate any of the SFRs used to formulate the
security functions of the ToE. This could include bypassing, tampering monitoring or any other form
of abuse. The corresponding security assurance class AVA has a single family, AVA_VAN, which
describes this evaluation aspect. As part of it, the evaluator needs to conduct penetration testing. If
the modelled security functionality includes e.g. the protection of a user’s data from the access by
others, covert channel analysis should be considered in the assessment. Again, the CC are
unspecific when it comes to the methods employed to conduct the pen-tests.

Note that penetration testing in the CC is not to be confused with black box testing. In the context
of AVA_VAN, all sources of input from the evaluation are used. With increasing EAL, more
information is available for the analysis and more rigour is applied in its assessment. The analysis
varies from a survey of public domain information, to independent analysis, to independent and
focused, and finally to independent, methodical.

Any identified potential vulnerability is then measured, as to whether it can be exploited and, if yes,
what attack potential is necessary to do so. The main issue with vulnerability assessments is not
the measurement of exploitable vulnerabilities, but to identify them in the first place. Especially, at
lower assurance level with limited design documentation and no access to source code, it is hard
to find vulnerabilities. On the other hand, when such information is available at higher assurance
levels, it is more likely that potential and exploitable vulnerabilities can be identified.

The CC define the following attack potential levels associated with the different EALs:

 EAL1 – EAL3 basic attack potential.

 EAL4 – enhanced-basic attack potential.

 EAL5 – moderate attack potential.

 EAL6 – EAL7 high attack potential.

The respective attack potential is associated with a certain combination of expertise, motivation
and resources of the attacker. An empirical method to compute it is offered by an appendix of the
Common Methodology for Information Technology Security Evaluation [16], which accompanies
the CC. The evaluator assumes the computed potential when conducting the penetration testing.
Furthermore, it is taken into account when the assurance components for the evaluation are
chosen, e.g. by means of an EAL. Thereby, the EAL for the entire evaluation may be related to the
assumed attack potential.

2.2 IEC 62443 testing requirements

The set of standards IEC 62443 [5] addresses issues of security for IACS and is derived from the
SDLA, which is in turn based on established standards such as CC, OWASP, CLASP, IEC 61508
(functional safety) and DO-178B. The scope of the standards defines specific roles of the asset
owner, the system integrator and the product supplier. The latter develops and designs the product
for the intended environment. The integrator then integrates a configured component into its
automation solution that the asset owner operates and maintains. The standard defines duties
concerning the product security life cycle for each role. These are covered by the different sub-
standards of IEC 62443.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 8 of 34

Much of the testing for security is covered in the component development by the product supplier
and the system integrator. Though testing is also later part of the patch management (see part 2-3)
involving all parties. Patching of an operational, potentially suspended for maintenance, solution
may be assisted by a testing framework to help and complete the complex procedures. Tasks of
the update management are already rooted at the component level in part 4-1 (see Table 2). Here
in PM-1, testing is an important measure to assure continued defence in depth and absence of
compromising side-effects.

Table 2: Requirements concerning update management throughout the product life cycle (IEC 62443-4-1:12)

Name Description

PM-1: Update qualification demonstrate correctness, absence of regressions, involving
the developer and all suppliers

PM-2: Update documentation detailed update documentation

PM-3: Dependent component
update documentation

document compatibility to other component’s updates

PM-4: Update delivery guarantee authenticity of updates

PM-5: Timely delivery of
patches

update deployment infrastructure must not contain
impediments

Asset owners may also be confronted with tests for security functionality verification (CR-3.3, -4-2).
These tests verify the operation of security controls and may run application during normal
operations. Asset owners, i.e. operators, have to be aware of these tests to understand their
implications, e.g. triggering an intrusion detection system or checking the function of audit logs.
CR-3.3 notes, that the design should not affect safety functions, which must be considered in the
overall security architecture.

The following sections cover the security testing requirements on component testing and testing of
composed systems that arise from applying IEC 62443-3-* (system level) and IEC 62443-4-*
(component level), e.g. to achieve EDSA ISASecure scheme certification.

2.2.1 Railway pilot testing requirements

The railway demonstrator for the certMILS project is the TAS Platform 2.x included in the Thales
product “CyberGate”. Future work of the project certMILS will apply the security framework to this
platform.

The tests run by the testing framework shall demonstrate that the defined secure reference
configuration for the system is applied. This reference configuration is defined during the design
phase of the development process. The tests shall be done against the requirements based on
IEC 62443-4-2 (e.g. user authentication). Furthermore, newly listed CVEs (Common Vulnerabilities
and Exposures) related to the ToE shall be identified and checked. Also already fixed CVEs shall
be checked against recurrence and absence in the system. CVE is a standardized naming
convention for security vulnerabilities in IT systems including all major vendors. The list of
CVEs [17] is freely accessible.

Different methods are defined in the IEC 62443 standard and shall be applied to the railway pilot:

 Security requirements testing, vulnerability testing and penetration testing.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 9 of 34

 For example, white box security tests for testing secure configuration. Black box tests for

testing interfaces such as ports outside of the ToE or the complete system under

consideration.

 Review methods for showing the application of processes based on IEC 62443-4-1.

See the definition of the testing methods in IEC 62443-4-1, also included here in Table 3.

Table 3: Testing methods defined in IEC 62443-4-1, table 10.1.

Name Description

SV-1:
Security
requirements
testing

This testing focuses on verifying all the security requirements in the security
requirements specification (SecRS) have been met. Functional, negative,
boundary, performance and other types of standard testing will be performed on
the security capabilities in the SecRS.

SV-2: Threat
mitigation
testing

This testing is derived from creating threat trees from the threats identified in the
threat model and ensures that the mitigations designed and implemented in the
product are effective in stopping the proposed threat. Testers will design their
tests to attempt to thwart the mitigation using the type of threat identified.

SV-3:
General
vulnerability
testing

This testing focuses on using standard tools or published instructions for
discovering potential security vulnerabilities. No attempt is made to exploit the
vulnerability or assess the ability to exploit the potential vulnerability and the
product is tested without consideration to the implementation or its defence in
depth design.

SV-4:
Penetration
testing

This testing focuses specifically on compromising the confidentiality, integrity or
availability of the product. It can involve defeating multiple aspects of the defence
in depth design. This is an unstructured test that depends on the skills and
knowledge of the attacker. In this case, the tester tries to play the role of an
attacker. This testing is not based on an analysis of the design or threat model,
rather it encompasses the tester trying to defeat the security of the system using
any technique that he chooses. This testing often will identify types of
vulnerabilities that need to be fixed rather than single vulnerabilities. This testing
will often detect problems that are not detected in threat model driven testing
because there may be errors or omissions in the threat model itself.

The testing has the following goals:

 Demonstrate that the defined secure configuration is correctly implemented.

 Demonstrate that the inner components are not influenced by an attacker.

 Demonstrate that the availability of the system is not compromised by an attacker.

 Demonstrate that the safety function of the system is not influenced by an attacker.

2.2.2 Subway pilot testing requirements

The high-level assumptions for the subway pilot follow from Czech national act No. 181/2014 on
cyber security [13]:

 restriction of physical access to networks and equipment of IACS,

 restriction of interconnections and remote access to networks of IACS,

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 10 of 34

 protection of individual technological assets of IACS against attacks exploiting known

vulnerabilities,

 restoration of the operation of IACS after cyber security incidents.

Assurance level, depth and scope of testing depend on demands and specific requirements of
customers. UniControls has identified that the following common assumptions need to be verified:

1) Disabling all unnecessary ports.

2) Data encryption in open transmission system (category 3 according to[18]).

3) Data encryption for selected important information also in closed transmission systems [18]

(e.g. video or important operation records).

4) Network segmentation (e.g. firewalls, VLAN, physical separation, etc.).

5) Access control options (rights) of user interfaces according to established security policies.

The security verification is mostly based on scanning for open ports, penetration tests and review
of the actual implementation against documentation (e.g. block diagrams) that describes the
security assumptions (e.g. list of ports, communication paths, interaction between users – including
applications, etc.).

More and more, customers define the security assumptions using the set of requirements provided
by IEC 62443[5], i.e. demands on security level and appropriate requirements from 62443-parts 3-
3, 4-2 and occasionally part 2-4. Therefore, testing methods and requirements described in chapter
2.1, 2.4.1.3, IEC 62443 part 4-1 chapter 12 (code verification) and chapter 13 (requirements on
security integration testing: test plan, fuzz testing and abuse case test) are practically increasing
their importance. They will be necessary for security evaluation and certification of both
compositional types to be described in chapter 2.4.

2.3 Embedded Device Security Assurance testing requirements

The IEC 62443 introduced in the previous section is a series of standards covering topics in the
area of cybersecurity robustness and resilience in IACS of all industries. The series is organized
into four groups addressing: general topics, policies and procedures, the system level and the
component level. The latter two aspects can be certified by accredited labs using the ISASecure
certification schemes.

2.3.1 What is tested?

ISASecure 62443 conformance certification has developed schemes for

Systems of full Industrial Automation and Control Systems (IACS), called System Security
Assurance (SSA), and

Components of IACS, called Embedded Device Security Assurance (EDSA).

This distinction mirrors IEC 62443, where IEC 62443-4-* treat components of IACS and
IEC 62443-3-* treat whole IACS systems.

Here we focus on EDSA, but also, for context and comparison, also partially treat SSA.

2.3.2 What is the testing for?

For IACS components, the testing is for confidentiality, integrity, and availability. For whole IACS,
the testing is also for confidentiality, integrity and availability, but more specifically taking into
account network stress testing.

During availability testing, IACS components need to maintain their essential functions. An
essential function for an IACS component is (EDSA-310):

Downward: the control function, the process control loop, the safety instrumented function.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 11 of 34

Upward: process view, command (meaning change parameters of process control such as set
points), process alarms, peer-to-peer control communication. Providing process history is
an essential function unless explicitly excluded by the certification applicant.

2.3.3 What are the methods?

In the following table (Table 4), testing guidance can be found detailed in three kinds of
documents.

Table 4: ISASecure documents for robustness testing, functional requirements assessment, and life-cycle
assessment.

 EDSA SSA

Robustness
(SRT)

Software robustness
testing (SRT) [19]

Ethernet testing: [20]

ARP testing: [21]

IPv4 testing: [22]

ICMP testing: [23]

UDP testing: [24]

TCP testing: [25]

“System robustness testing”

(SRT) [26]: has three major elements:

1. Vulnerability Identification Testing (VIT),

2. Communication Robustness Testing (CRT),

and Network Stress Testing (NST) (SSA-300),

3. Asset Detection Testing (ADT).

Nessus configuration to carry out VIT: [27].

Functional
requirements
(FSA)

Functional Security
Assessment (FSA) [28]

“Functional security assessment for systems”

(FSA-S), [29]

For “Functional security assessment for embedded
devices”, called “FSA-E”, it is pointed to EDSA-311.
“In particular, if a component of a system is a certified
ISASecure EDSA embedded device, then FSA-E and
the CRT aspect of SRT need not be performed on that
device as part of the SSA certification process. This is
due to the fact that these assessments will have been
performed previously under the ISASecure EDSA
certification process.” [30]

Life-cycle
assessment
(SDLA)

Software Development
Security Assessment
(SDSA) [31]: points to
SDLA, that is [32]

“Security development artefacts for systems”

(SDA-S), [33]: points to SDLA, that is [32]

As, document-wise, ISASecure puts much emphasis on robustness testing, we start out with this
aspect.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 12 of 34

2.3.3.1 Robustness testing

Table 5: Robustness testing requirements and tools.

Characterization
Required for Tools

(see also
D1.2) EDSA SSA

CRT CRT examines the capability of the device to
adequately maintain essential functions while being
subjected to normal and erroneous network protocol
traffic at normal to extremely high traffic rates (flood
conditions). [34]

CRT provides a measure of the extent to which IP-
based protocol implementations defend themselves
against

 correctly formed messages and sequences of

such messages;

 single erroneous messages; and

 inappropriate sequences of messages;

[19] Section 1.2

For SSA, ADT (Asset Discovery Testing, i.e. port
scanning, e.g. by nmap) is sometimes treated
separately from CRT, for EDSA, ADT is referred to as
“interface surface test” and always treated together with
CRT.

yes yes e.g. Achilles,
see ISASecure
CRT Test
Tools

NST Network stress testing: apply CRT testing at high loads
and observe that essential functions are maintained.

[35] Section 6.3.5 gives an example on how CRT, NST,
and VIT are applied in a concrete example system.

no yes Same as for
CRT.

VIT Vulnerability identification testing: VIT scans the device
for the presence of known vulnerabilities.

yes yes e.g. Nessus,
see ISASecure
CRT Test
Tools

2.3.3.1.1 Embedded device Robustness testing (ERT) in EDSA

Core protocols are ICMP, IPv4, ARP, IEEE 802.3, UDP or TCP (EDSA-310, Section 3.1). ERT has
passed if:

 (CRT) essential functions are maintained under UDP and TCP port scanning and

robustness testing of the core protocols (EDSA-312, ERT.R6 and ERT.R32), and

 VIT testing has not discovered any “Critical” or “High” risk factors (EDSA-312, ERT.R54).

Nessus shall be used (EDSA-312, ERT.R50).

The protocol-specific CRT tests are specified at detail, we give two examples for the device under
test (DUT):

 “Ethernet”.T02: IEEE 802.2 Type 1 with IEEE 802 SNAP misplaced Q-tag tolerance: The

DUT SHALL protect itself against receipt of an IEEE 802 SNAP header that contains a Q-

tag. [20]

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 13 of 34

 Load stress testing of the DUT’s IPv4 implementation SHOULD include NPDU sequences

that activate or cause error sequencing in any one of multiple concurrently-operating NPDU

reassembly FSMs, including attempts to overload the state management capabilities of the

DUT’s IPv4 implementation. Requirement IPv4.R16 – Concurrent activation of multiple IPv4

FSMs for reassembling fragmented NPDUs: [22]

For VIT testing, the document [27] described how to configure Nessus.

2.3.3.2 Functional requirements

The way, functional requirements implemented by the system under test (SUT) are verified,
depends on the claim. It can be analysis or testing.

Example where the validation activity is analysis (SSA-311 FSA-S-RDF-4 Application Partitioning):

Requirement: The SUT shall provide the capability to support partitioning of data, applications
and services based on criticality to facilitate implementing a zoning model.

Validation: Verify SUT user documents include evidence that Application Partitioning capability
is included to support zoning models and record results as:

a) Supported, or

b) Not Supported.

Example where the validation activity is testing (SSA-311 FSA-S-UC-4.3 Restricting mobile code
transfer to/from the SUT):

Requirement: Restricting mobile code transfer to/from the SUT: The SUT shall provide the
capability to enforce usage restrictions for mobile code technologies based on the potential
to cause damage to the SUT that include restricting mobile code transfer to/from the SUT.

Validation: Connect a device to the SUT that contains mobile code not authorized to transfer
to the SUT. Verify that the transfer is prevented and the user is notified of this occurrence.
Record the results as:

a) Supported,

b) Not Supported,

c) Not applicable, if the device does not allow any mobile code to execute.

Note that EDSA-311, which is older than SSA-311, has similar requirements as SSA-311, but does
not currently describe verification activities.

Example from analysis (EDSA-311):

FSA-RDF-3 Security Function Isolation. The IACS embedded device shall isolate security
functions from non-security functions by means of partitions, domains, etc., including
control of access to and integrity of, the hardware, software, and firmware that perform
those security functions.

2.3.3.3 Lifecycle assessment based testing requirements

The security development lifecycle assessment is defined in SDLA-312 [32]. The document
indicates the sources of the lifecycle based testing requirements, a collection of best practices from
IEC 62443, ISO 61508, DO 178, Common Criteria for Information Technology Security,
Comprehensive, Lightweight Application Security Process (CLASP), and Microsoft Secure
Development Lifecycle (MS-SDL). Again, like in the SSA documents, validation activities are
described. The description of validation activities is split into two types:

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 14 of 34

a) Validation of the development process itself.

b) Validation of the output of the applied development process to a certain component
or system under test.

Example SDLA-SIT-1.2, Automatically Generated Test Cases, motivated from MS-SDL:

Requirement: The files or packets that will be used for fuzz testing ("fuzzed") shall be
automatically generated so that a large number of test case (in the thousands) can be
executed.

Component or system validation activity: Review fuzz test results and confirm that a large
number of test cases were executed.

Development and SDL validation activity: Verify that the development process states that
the files or packets that will be fuzzed shall be automatically generated so that a large
number of test case (in the thousands) can be executed. Or, pick a product that is
developed using the process under evaluation and review fuzz test results and confirm that
a large number of test cases were executed. Note: Automated tools (e.g. Codenomicon
Defensics, Hitachi Raven ES) are commercially available for certain types of fuzz testing.

2.3.4 What is the assurance gained?

EDSA / SSA CRT testing gives detailed robustness testing protocols for Ethernet and IP-based
network protocols.

However, for robustness, it is also recognized that the goals of the CRT approach are limited “to
identify the presence of common programming errors and known denial of service vulnerabilities
specifically for networking protocols, which impact the robustness of embedded devices that use
these protocols. Tests are specified to a level such that these goals are covered, although specific
test data is not defined. These tests will not necessarily identify intentionally malicious code, nor is
that a feasible goal for any practical testing regimen.” [19].

Hence, it is up to FSA and SDLA testing and analyses to establish trust for the system under test.

2.4 Security testing and component composition

This chapter will look at security testing in a composed system. First the general use case in a
layered MILS system, especially the I-composition, is explained. Then the approach is taken to the
architecture used in the certMILS project pilots, with hardware, separation kernel and an
application. The separation kernel is the hypervisor used in certMILS for safety certified systems.
In this context, the hardware component is the sum of the physical platform and the specific
platform support package (PSP), which is the hardware abstraction layer for the hypervisor used in
certMILS.

2.4.1 Typical general use-case

In a composed system, a threat analysis generally models an attacker and assets. Figure 4 shows
the typical setup in a layered composed system, which has an outer and an inner component. Both
the inner and the outer component potentially contain assets. In the example, the outer component
covers the inner component. The outer component interacts with the attacker, and communicates,
if the request is well-formed, and asks for a resource provided by the inner component, with the
inner component.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 15 of 34

 The API of the outer component has to be robust against malicious inputs.

 The API of the inner component does not have to be robust against malicious inputs, if the

outer component successfully filters out malicious inputs. That is the inner component relies

on that the outer component filters certain input (upper two arrows). Conversely, the outer

component can rely on that the flow from the inner component to satisfy the specification of

the inner component.

2.4.1.1 What is tested?

In this scenario, the interface to the outer component is tested.

2.4.1.2 What is the testing for?

The testing has the following goals:

 Test that the outer component and its assets, if any, cannot be compromised by the

attacker.

 Test that the inner component and its assets, if any, cannot be compromised by the

attacker.

 Test that the outer component shields all non-robust, if any, parts of the inner API against

an attacker. Specifically, the outer component guarantees that the inner component cannot

be attacked by passed-on input data.

 Test that the attacker cannot use the inner component to bypass the outer component.

Specifically, the inner component guarantees that its output does not attack the outer

component.

2.4.1.3 What are the methods?

Deliverable D1.2, Section 1 (in preparation) gave a table of testing methods according 62443-4-1,
Section 10.1. For reference, that information can also be found in Table 3.

We now apply the classification of Table 3 to the scenario of testing inner and outer components,
when one is directly acting as attacker. The results are shown in Table 6.

Inner
component

(incl. assets)

Outer
component
(incl. assets)

Attacker

Figure 4: Location of attacker in a layered composed system.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 16 of 34

Table 6: Application of testing methods to a composed system.

Name Outer component Inner component

SV-1: Security
requirements
testing

Feasible. Can only be done for security
requirements exported to the outer
component.

SV-2: Threat
mitigation
testing

Threats cover assets provided by
outer and inner component.

Threats cover assets provided by inner
component.

SV-3: General
vulnerability
testing

COTS tools can be used be for
network protocols etc. Fuzzing is
needed for more product-specific
interfaces.

Tools likely not available.

SV-3-x:
Specifically,
fuzzing

Fuzzing needed for more product-
specific interfaces. API fuzzers use
the regular interfaces into a
subsystem.

In-memory fuzzers can inject data
into a system by directly
manipulating stack frames, registers
or other memory locations. NB:
Probably not very interesting for the
separation kernel used in certMILS
as we explicitly want to test the APIs,
handle with low priority

Needs specialized fuzzer architecture
(“layered fuzzing”), adapted to often
non-standardized inner component.
Successful coverage-based layered
fuzzing, which starts at the outer
interface, might penetrate to the
interface of inner components.

SV-4:
Penetration
testing

Based on analysis of the external
interface to the attacker.

Based on analysis of the internal
interface and how / what parts of it are
exposed to the attacker.

2.4.1.4 What is the assurance gained?

The gained assurance mirrors the testing’s target, as mentioned in Section 2.4.1.2.

The testing has the following goals:

 Demonstrate that the outer component and its assets, if any, cannot be compromised by

the attacker.

 Demonstrate that the inner component and its assets, if any, cannot be compromised by

the attacker

 Demonstrate that the outer component shields all non-robust (if any) parts of the inner API

against an attacker. Specifically, the outer component guarantees that the inner component

cannot be attacked by the input not filtered.

 Demonstrate that the attacker cannot use the inner component to bypass the outer

component. Specifically, the inner component guarantees that its output does not attack the

outer component

More generally, regardless of the testing method, give convincing evidence that compositional
aspects have been taken into account.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 17 of 34

2.4.2 Separation kernel I-composition: PSP

The I-composition concept is described in detail in D1.1[13]. The PSP component decouples all
other separation kernel components from platform or board specific details at source and object
code level, which means that the PSP can be exchanged without recompiling any of the other
components.

The main tasks of the PSP are:

 Platform initialization

 Interrupt management

 Hardware timer management

 Console output support

 Memory region management

During project build, the PSP is linked to the kernel and becomes a part of it. The PSP implements
a number of entry points, which to be called by the kernel.

For a separation kernel according to ST (Deliverable D3.1, in preparation) and PP (D2.1, in
preparation) attackers are executables in normal partitions. Thus, if we instantiate Figure 4 for the
PSP, then we obtain the situation shown in Figure 5 for the PSP.

Assets maintained by the PSP are the services provided by the PSP: memory and interrupts (see
Deliverable D3.2). The PSP governs resources of interrupts and memory. They are provisioned by
the PSP at initialization time, giving rise to a variation in the control flow, as shown in Figure 6.
Here the run-time permissions by a normal partition might include load/store accesses to memory,
reading out the interrupts and hardware timer.

PSP

Memory
(incl. cache),
and interrupt
(incl. timer)

Normal
partition

Figure 6: PSP resource management.

PSP
Separation

kernel
Normal

partition

Figure 5: PSP services as part of system composition.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 18 of 34

An interesting special case is a composition with an I/O MMU, represented by Figure 7:

Figure 7: Composition in context of an I/O MMU driver.

That is, a PSP, part of the separation kernel, sets up an I/O MMU at initialization time, so that DMA
accesses from an untrusted device driver are controlled. As a further indirection layer, that
untrusted device driver is controlled from a normal partition.

2.4.3 Separation kernel I-composition: kernel device driver API

Kernel device drivers are executed in the separation kernel’s microkernel context within the Kernel
Driver framework. They support the Port API and the File API, which are comparable to the POSIX
file API. Kernel device drivers are directly linked to the kernel object code.

2.4.3.1 Description of scope and implementation

Figure 8: Correlation of the APIs for kernel device drivers.

We describe three APIs, which can directly or indirectly, interact with kernel device drivers.

1) The first API (called “Partition API” in Figure 8) to kernel device drivers is part of the

Partition API, which is the system call. It allows to control the driver from within a resource

partition. This API is robust (see API classification in section 3.3).

2) The second (inner API) API is the “Callback API”. Each kernel device driver must register a

certain set of callbacks, which will be executed by the kernel for example as a result of

interaction from user space. The inner API relies on guaranteed filtering by the outer

PSP/separation
kernel setting
up I/O MMU

Memory

Untrusted
device
driver

Normal
partition

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 19 of 34

“Partition API”. In return, the inner API guarantees that its output is according to

specification.

3) The “Service API” contains functionality that the kernel device driver framework provides to

the drivers to implement their functionality. It consists of more than 100 functions for

operations like data transfer from/to user space, locking, interrupt management and others.

The “Service API” requires that kernel device drivers are implemented correctly.

2.4.4 T-composition scenarios

Finally, there is the T-composition (see D1.1[13] Section 5.4.1), whose compositional layout is
shown in Figure 9. In such a scenario, a vendor, who exposes e.g. an Ethernet network interface,
wants to understand to what extent that would allow attacks on the separation kernel, or partitions
hosted by it.

 If the Ethernet network interface is implemented in a non-privileged partition, this partition

cannot attack applications in other partitions, thanks to assurance of the separation kernel.

The only attack vector is to deny services or alter the content of allowed communication

from the Ethernet network interface partition with other partitions.

 If the Ethernet network interface is implemented in a privileged partition, then that privileged

partition can try to attack applications in other partitions or even the separation kernel itself.

Hence, in a T-composition scenario, if an application is in a privileged partition the system needs to
be analysed/tested in its entirety. If the application is in an untrusted unprivileged (normal) partition,
then it suffices to analyse/test the extent (if any at all) the application can affect other partitions by
allowed interaction of the partition with other partitions.

2.4.5 Compositional testing in the pilots

The T-composition scenarios in the subway pilot are an implementation of the MILS platform –
based on the I-composition as a generic system – at the application level intended to the specific
use in subway operations. Because the T-composition is an implementation for the specific use, it
needs to be tested against specific requirements, including security requirements.

The testing framework also needs to consider specific applications for an I-composition to provide
a wide range of benefits. Otherwise, it could result in increased development and testing efforts,
increasing product costs and no advantage from security certification due to different security
targets. The final system implementation in specific use shall, as much as possible, exploit features

Separation
kernel

Normal
partition

Embedded
system (e.g.

network
interfaces)

Figure 9: T-Composition.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 20 of 34

of the I-composition and profit from them (i.e. improve cyber security of designed system, decrease
development effort and costs).

Examples of benefits are as follows:

 layer of Defence-in-Depth approach that supports and multiplies system level protection,

 higher level of security assurance for selected security functions,

 decreased system development costs through application of security functions by system

integrators for improved system security.

Current practice for security verification (including testing) of system with specific use follows from
process of risk analysis[36], mainly:

 risk identification (assets, threats, existing measures, vulnerabilities),

 risk analysis and assessment (impacts, likelihoods, risk level, assessment),

 risk treatment (modification, applying, avoiding, transferring)

Monitoring and review are part of farther phases of the system lifecycle. Therefore, they are not the
base for the definition of test cases. The risk analysis is mostly performed using a risk table that
covers all of the mentioned security aspects (assets, threats, vulnerabilities, impacts, likelihoods,
risks and measures, etc.).

The system environment, existing measures or designed countermeasures within the process of
risk treatment create a set of security assumptions. The security assumptions shall be verified and
tested, if possible. Because changes in these can lead to new risks and invalidate the previous
security risk table. These new risks shall be again analysed and assessed.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 21 of 34

Chapter 3 Separation kernel security fuzzing

This section discusses security fuzzing of separation kernels in a generic way. To develop a
fuzzing strategy, it is important to have a clear understanding of interfaces. A separation kernel
either can be monolithic or have a microkernel. To realize a separation kernel, often microkernel
designs (e.g. [37][38][39][40]) have been applied. In a separation kernel based on a microkernel:

 The microkernel implements only the most fundamental operating system services,

including protection of memory and access to CPU privileged states, in a privileged

domain [41].

 Less critical services are in one or several non-privileged domains, called “system

software” (SSW).

Other separation kernels do not use or at least do not claim a microkernel design, e.g. previous
protection profiles for separation kernels [42][43] were architecture-agnostic. In terms of interfaces,
a monolithic kernel can be seen as a specific microkernel without user-space system software. So
to cover the more general case, we assume that the separation kernel has a microkernel
architecture.

3.1 Motivation

As described in Figure 2, security testing consists of

1) SFR / functional testing ,

2) penetration testing,

3) static analysis,

4) fuzzing.

Items (1) and (2) from the above list are already covered by the CC evaluation in certMILS
Task 5.5. Here we concentrate on fuzzing. In safety, “penetration testing” is also referred to as
“robustness testing”.

3.2 Preamble to separation kernel fuzzing

This section is work towards an improved separation kernel fuzz testing strategy. Its purpose is to:

 Give an overview of separation kernel interfaces and existing fuzzing techniques that could

be applied to them by cross matching in a matrix.

 Roughly, estimate the applicability, technical challenges and benefits that will arise in

certain combinations of interfaces and techniques.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 22 of 34

3.3 Separation kernel interfaces

Currently, four separate interfaces (APIs) to a separation kernel’s microkernel and its system
software (see overview in Figure 10) are considered candidates for fuzzing. These are briefly
discussed here, based on information sourced from the separation kernel’s user documentation.

Figure 10: Separation kernel system architecture with highlight on User/Kernel mode scope.

Separation kernel APIs can be separated into two groups, which are categorized as robust and
non-robust here:

Robust APIs occur where callee and caller have different trust/integrity levels, i.e. code with
higher trust is called by code with lower trust. This includes potentially malicious code. No
conceivable call or sequence of calls should be able to compromise the integrity or
availability of a robust API. In terms of fuzzing, every anomaly uncovered here needs
investigation.

Non-robust APIs occur between application parts within in the same security domain, i.e. they
trust each other with regards to input and output – e.g. they share the same address space
and can interfere with each other freely. Since they “trust” each other, the API does not
need to guarantee that all arguments are completely sanitized. Fuzzing non-robust APIs
has to be done with greater care, since it is possible to “abuse” the API and get false
positive findings as a result.

Note: the protections that have to be implemented for APIs that trust the callers (non-robust APIs)
are not that high as the protections that have to be implemented for APIs that does not trust the
callers An issue here comes when the caller which is assumed to be trusted is not trusted anymore
(e.g. when it has been attacked/hijacked). During the penetration testing phase this scenario must
covered.

3.3.1 Microkernel API

The microkernel API is the main interface from user space into the separation kernel’s microkernel.
This does also mean a transition of the CPU from user mode into kernel mode (system call).

Both the applications within resource partitions as well as the SSW use the microkernel API to
communicate with the separation kernel’s microkernel. However, the SSW has a higher privilege
level and can therefore use API calls that normal partitions cannot use. This is controlled through
permissions (“abilities”). The mapping of system calls (“syscalls”) to abilities is listed in the

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 23 of 34

documentation. The SSW task automatically has all existing abilities. Some abilities are also SSW-
exclusive and cannot be granted to tasks in regular partitions.

The microkernel API is exposed to normal partitions.

Provided services in the microkernel API are:

 Hardware abstraction,

 Resource and time partitioning,

 Execution entities (threads),

 Separate address spaces (tasks),

 Communication primitives,

 Timers,

 Exception and interrupt handling,

 Health Monitoring.

Description of scope and implementation

The API currently consists of “true” syscalls, i.e. calls that enter the kernel.

3.3.2 System Software API

The System Software (SSW) component is the first user space application launched by the
microkernel. The SSW component reads the configuration and initializes partitioning and inter-
partition communication according to the configuration. During run-time the system software
component acts as a server providing the following services to the applications executing inside
the different resource partitions:

 Communication via queuing and sampling ports,

 File system services,

 Partition and process management services.

Communication with the SSW takes place via Inter-Process Communication (IPC). Parameters for
the SSW API calls are serialized into the IPC payload by a user space library and de-serialized by
the SSW (return values vice versa).

Like the microkernel API, the SSW API is considered robust.

Description of scope and implementation

The SSW code is executed by so-called partition daemons, which are automatically created for
each partition. Communication with these daemons works via IPC messages. This has the
following implications:

 All calls to the SSW actually pass through the kernel.

 The SSW service calls are wrappers that serialize the arguments to the SSW into IPC

messages, which un-wraps them on the other side by decoding the command code and the

arguments.

 From the security view, attackers can bypass the SSW service call wrappers and all

argument sanitation they might perform. A “security fuzzer” should therefore interface

directly via the IPC interface with the SSW.

 From the safety point of view, the application would always use the SSW functions. A

“safety fuzzer” should therefore use the wrappers.

3.3.3 Kernel device driver API

See the previous chapter 2.4.3 Separation kernel I-composition: kernel device driver API.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 24 of 34

3.3.4 Platform Support Package (PSP) API

See the previous chapter 2.4.2 Separation kernel I-composition: PSP.

3.4 Fuzzing aspects

This section briefly describes different approaches to fuzzing that could be applied to the
separation kernel interfaces that have been described in the previous section. The taxonomy
partially follows the source in[4]. The aspects are mostly orthogonal, so that every fuzzer will have
one or more aspects from each group.

3.4.1 Input generation

Brute-Force based fuzzers generate input completely at random.

Mutation-based fuzzers start with valid input and mutate it by introducing more or less subtle
changes. NB: A previous project tested mutation-based fuzzing with no satisfying results.
This technique should not be researched with high priority.

Template-based fuzzers follow a pre-defined ruleset in order to generate more “interesting”
data that can get past input sanitation.

Coverage-guided fuzzers are able to extract code coverage information from the code under
test and can use this information to adapt the input in order to maximize coverage.

3.4.2 Parallelism

Single-threaded fuzzers are suited to uncover logic bugs such as off-by-one errors which
occur deterministically.

Multi-threaded fuzzers can additionally trigger concurrency bugs such as deadlocks and race
conditions. This type of bug is typically non-deterministic and depends on random events
such as small timing deviations.

3.4.3 State

Stateless fuzzers perform every iteration independently from the previous ones.

Stateful fuzzers preserve state information (e.g. open file handles) between iterations.

3.4.4 Adherence to subsystem boundaries

API fuzzers use the regular interfaces of a subsystem.

In-memory fuzzers can inject data into a system by directly manipulating stack frames,
registers or other memory locations. NB: Probably not very interesting for the separation
kernel as we explicitly want to test the APIs.

3.4.5 Layered fuzzing

The PSP / kernel device driver can be indirectly fuzzed from user-space.

A related approach, to apply in-system fuzzing is published through the “kAFL – OS kernel fuzzing”
framework[44]. The implementation constructs a fuzz-agent, that is injected into the system under
test and tests the test case’s API directly where it has the required access. In terms of the
separation kernel and in-kernel API, this could be a test-specific kernel-driver.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 25 of 34

3.5 Cross-matching matrix

Below, in Table 7, an estimate of the applicability, technical challenges and benefits to matched to
separation kernels interfaces and fuzzing aspects is given.

Table 7: Fuzzer property and applicability cross-matching matrix.

Aspect/API Robust APIs (e.g. Microkernel or SSW interfaces)

Brute-force Sometimes brute-force fuzzing brings early (sometimes not very clear though)
results that can be later used in most advanced fuzzing techniques.
Implementing a brute-force fuzzer is not complex, and the most timing
consuming phase for brute-force fuzzers is the execution, which does not need
to be human attended. As a first step, brute-force fuzzing should always be
taken into account for "Robust APIs". Even if the results might be useless, it
brings a clear scenario for further fuzzing instead.

Template-
based

This can be done by selecting the arguments for kernel APIs are selected from
the valid class of arguments with a special focus on the boundary values.

Coverage-
based

If the separation kernel already has tool support for extracting coverage
information as required by standards such as DO-178 [45] (e.g. Rapita tool
suite), then this is possibly easy to complement. If the format of coverage data
is compatible to the GCC gcov format, then the syzkaller Linux fuzzer could be
re-used for separation kernel fuzzing.

Multi-Threaded Currently implemented: “During the test, the system state is concurrently
modified by high priority threads to induce race conditions.”

Stateful State awareness requires template knowledge

Layered
fuzzing

Not applicable

Aspect/API Non-robust APIs (e.g. kernel device drivers, PSP)

Brute-force Might be problematic for non-robust APIs that do not need to perform thorough
input sanitization.

Template-
based

Lower priority in comparison to coverage-based

Coverage-
based

Intended, feasibility to be proven

Multi-Threaded Optional, complex to realize in comparison to single-threaded

Stateful State awareness requires template knowledge, or in combination with layered
fuzzing and fuzz-agents

Layered
fuzzing

Applicable

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 26 of 34

3.6 Hardware support and integration

Stateless and brute-force fuzzing do not depend on any feedback from the test target. This
simplifies implementation but is very inefficient, as many inputs will be discarded by simple input
check mechanisms of the test target and large dimensions of valid inputs may not reach critical
parts.

Template-based fuzzer can leave out inputs that are irrelevant due to input checks, or which do not
reach separate code paths. On the one hand, this can be very efficient to narrow down the input
space. On the other hand, API designers or testers need to create these templates first, which is
time consuming and might introduce template tainting. Template-based Linux-system-call fuzzer,
such as Syzkaller, also use code coverage through the kcov-kernel interface to improve their
progress.

Code coverage information improves progress to ‘interesting’ input corpuses drastically. For
example, the coverage-feedback based general-purpose fuzzer AFL is known to craft valid (but
meaningless) JPEG images through improving a random start input towards good coverage in a
JPEG-library.

There are different approaches to collect coverage information from the target. The current solution
used by AFL is to instrument branches and calls with extra assembler instructions that copy the
code address taken to a shared memory segment. When the AFL fuzzer runs, it forks multiple
instances of the target program, feeding generated and mutated inputs. The processes execute
and may crash upon the particular input. The disadvantages for kernel fuzzing are the architecture
dependent assembler instructions, the user space fork-to-crash approach and the focus on input-
delivery via the standard input file. Related extensions to AFL have moved the code
instrumentation into compiler-plugins to reduce the instrumentation overhead through C-compiler
optimizations. Even smoother integration with the compilation process is achieved with libFuzz as
part of the LLVM/Clang compiler toolchain.

However, the concurrent process-fork approach does not apply to kernel fuzzing. A system can
only run a single kernel and a kernel-crash would always interrupt the fuzzing process and may
corrupt feedback evaluation. Consequently, for efficiency the fuzzing process cannot run as a user
process of the kernel under test. Thus, kernel fuzzing requires use of virtualization techniques.

In a virtualized scenario, the fuzzing framework starts the test-target in a virtualized environment,
equipped with a fuzz-agent to inject input data and feedback coverage data. Schumilo et al. [44]
published this approach as kAFL for COTS-kernels (Linux, Windows, IOS). To excel performance,
kAFL uses a modified version of the virtualization environment QEMU-KVM. QEMU is an open-
source full-system virtualization software. KVM is the “kernel-based virtual machine” for Linux
operation systems for hardware-assisted virtualization of native guests (same target architecture).
The modification provided by kAFL introduces support of the PT hardware tracing features (Intel
Processor Trace) of current Intel x86 processors. An additional translation tool converts the
captured trace data to AFL coverage maps and feeds it back to kAFL for the next invocation of the
virtualized system.

The kAFL approach currently outperforms any other generic kernel fuzzing framework (e.g.
TriforceAFL), while sustaining good flexibility. The authors have published their approach only for
consumer OS (Mac, Windows, Linux). Nevertheless, there is strong confidence that this approach
also applies to the separation kernel, as it also runs well in a QEMU virtualization environment.

The biggest challenge in porting the kAFL approach to certMILS is in adapting the trace collection
features to other architectures used in certMILS, predominantly ARM64 and PowerPC. Both
architectures have built-in debug and tracing support:

 NXP Nexus Trace in the e6500 PowerPC core (e.g. NXP T4080)

 ARM CoreSight for ETMv4 in cores A53 and A72 (e.g. NXP LS1043)

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 27 of 34

Linaro, as the leading maintainer of the open source ARM toolchain, recently added support for the
Coresight infrastructure to the Linux kernel trace subsystem. In conjunction with QEMU and KVM
this could enable efficient virtualized fuzz testing of the separation kernel and the PSP on the
target system. Furthermore, support for Nexus Trace on PPC and alternatively user-land AFL-
QEMU-mode performance need to be evaluated for feasibility and usability in MILS Security
Testing.

The relevance of code coverage information also has a good correlation to potentially found bugs,
as was demonstrated in [7] (chapter 8.8.6) in 2008. However, the authors make a distinction that
coverage through a particular interface is often limited to subsections of the code. Adjusting for
relative coverage shall not lead to false positive metrics. The security framework addresses this
bug tainting through layered fuzzing techniques.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 28 of 34

Chapter 4 Summary and conclusion

This deliverable has researched the state of the art in security testing techniques. The research
was especially focused on techniques applicable for Industrial Automation and Control Systems
with elevated assurance levels. The assurance requirements also include Information Security
Assurance to raise confidence in the dependability of the system. Dependability is composed of
measures of safety and security. Safety is the adequate reduction of risk that the system can harm
its environment. However, safety is also tightly coupled to availability and integrity of the system to
fulfil its safety policy, i.e. to correctly perform the safety function(s). Security techniques ensure
availability and integrity by employing countermeasures to mitigate threats that impose risks on the
assets.

Safety measures reduce risks coming from random and systematic failures, which are well
modelled and understood, because they are under the control of the supplier. In contrast, security
threats are imposed by the environment, which is uncertain and may change without control of the
supplier, thus potentially invalidating static countermeasures against known vulnerabilities.

These challenges are addressed by standards for testing contexts. This deliverable has analysed
the relevant standards CC and IEC 62443, as well as the related certification scheme
ISASecure/EDSA coupled to IEC 62443 and derived testing methods for component compositions.
Some of the resulting requirements are addressed in other deliverables (e.g. existing test tools in
D1.2).

One of the currently most prominent testing techniques discovering hard to find vulnerabilities is
fuzz testing. Due to the complex mechanisms to apply fuzz testing to a ToE, fuzz frameworks need
to be developed or derived from generic approaches refined for the ToE. In a MILS system this are
components or compositions thereof, involving user-space applications, OS and kernel
components and HW coupled components (e.g. PSP). These aspects require different technical
approaches, which were analysed in a separate chapter. It concludes with the evaluation of a
recently published approach to effectively apply fuzz testing to general purpose operating systems
on x86-architecture platforms. Since the hardware architectures in the certMILS project differ, i.e.
PowerPC and ARM, a different approach to extract processor-based code coverage information is
required. Initial research has found that recent processors of these architectures also provide
extended tracing technologies for in-system analysis. As a result, the certMILS project will
subsequently evaluate the technical feasibility for the security.

Hardware assisted fuzz testing is an important feature of the security testing framework, to provide
robustness tests for most of the components of the MILS systems. This testing can continuously
demonstrate high level of robustness, resulting in confidence that composed systems, e.g. with
patched vulnerabilities, still uphold their effective security measures. This in turn results in integrity
and availability of the system to enforce the required safety policy. Effective security measures of
the basic component providing separation are the basis for a certifiable system, e.g. in a layered
composition, where an inner component executing a safety function has reduced security
requirements due to a greatly reduced attack surface.

As hinted before, one of the utmost expectations on the security framework is its availability not
just to the component developer, but also to the system supplier for integration testing, as well as
the system operator to verify operational patches for the complete lifecycle. Accompanying
guidance to dissect the results of testing framework, especially the fuzzers, must be accessible
and helpful for all technical roles. These requirements and the long term availability have
consequences on the choice of COTS and customized tools. The refinement of the interpretation
parameters of the guidance tools will depend on the output of the test tools, thus will require further
analysis.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 29 of 34

Chapter 5 List of abbreviations

Abbreviation Translation

ADT Asset Discovery Testing

ARP Address Resolution Protocol

ATE CC Assurance class: Tests

AVA CC Assurance class: Vulnerability Assessment

CC Common Criteria

CLASP Comprehensive, Lightweight Application Security Process

CRT Communication Robustness Testing

CVE Common Vulnerabilities and Exposures

DUT Device under Test

EAL Evaluation Assurance Level

EDSA Embedded Device Security Assurance

ERT Embedded Device Robustness Testing

FSA Functional Security Assessment

FSM Finite State Machine

IACS Industrial Automation and Control Systems

ICMP Internet Control Message Protocol

IPC Inter-Process Communication

NPDU Network Protocol Data Unit

NST Network Stress Testing

OWASP Open Web Application Security Project

PP Protection Profile

PSP Platform Support Package

SDL Secure Development Lifecycle

SDLA Security Development Lifecycle Assessment

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 30 of 34

Abbreviation Translation

SDSA Software Development Security Assessment

SecRS Security Requirements Specification

SRT System Robustness Testing

SSA System Security Assurance

SSW System Software

ST Security Target

SUT System under test

TCP Transmission Control Protocol

ToE Target of Evaluation

TSF ToE Security Functionality

TSFI ToE Security Functionality Interface

UDP User Datagram Protocol

VIT Vulnerability Identification Testing

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 31 of 34

Chapter 6 Literature

[1] The Open Web Application Security Project, “The OWASP Testing Framework,” [Online].
Available: https://www.owasp.org/index.php/The_OWASP_Testing_Framework. [Accessed
September 2017].

[2] P. Godefroid, M. Y. Levin and D. Molnar, “SAGE: Whitebox Fuzzing for Security Testing,”
Commun. ACM, pp. 40-44, March 2012.

[3] Google, “OSS-Fuzz - Continuous Fuzzing for Open Source Software,” [Online]. Available:
https://github.com/google/oss-fuzz/. [Accessed August 2017].

[4] H. Pohl, “https://www.softscheck.com,” 2011. [Online]. Available:
https://www.softscheck.com/publications/ProfDrHartmutPohl_Identifizierung_unbekannter_Si
cherheitsluecken_und_Software-Fehler_durch_Fuzzing_kes20115.pdf. [Accessed 2017].

[5] IEC, “IEC TS 62443-1-1:2009 Industrial communication networks - Network and system
security - Part 1-1: Terminology, concepts and models,” IEC, Geneva, 2009.

[6] P. Oehlert, “Violating assumptions with fuzzing,” IEEE Security Privacy, vol. 3, no. 2, pp. 58-
62, 03 2005.

[7] A. Takanen, J. DeMott and C. Miller, Fuzzing for Software Security Testing and Quality
Assurance, Norwood: Artech House Publishers, 2008.

[8] B. Shastry, F. Maggi, F. Yamaguchi, K. Rieck and J.-P. Seifert, “Static Exploration of Taint-
Style Vulnerabilities Found by Fuzzing,” arXiv.org: Cryptography and Security, p.
https://arxiv.org/abs/1706.00206, 2017.

[9] M. Zalewski, “american fuzzy lop,” [Online]. Available: http://lcamtuf.coredump.cx/afl/.
[Accessed 2017].

[10] The LLVM Foundation, “libFuzzer – a library for coverage-guided fuzz testing,” [Online].
Available: http://llvm.org/docs/LibFuzzer.html. [Accessed 2017].

[11] P. Cordemans, J. Boydens and E. Steegmans, “Testing concurrent software: challenges and
tools,” in Belgium Testing Days, Brussels, 2015.

[12] L. N. R. Kakulamarri and M. S. Musuvathi.US Patent US8533682 B2, 2010.

[13] certMILS, “D1.1 Regulative Baseline: Compositional Security Evaluation,” EC, 2017.

[14] CCMB, “Common Criteria for Information Technology Security Evaluation v3.1, Part 1:
Introduction and general model,” 2017. [Online]. Available:
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf.

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 32 of 34

[15] CCMB, “Common Criteria for Information Technology Security Evaluation v3.1, Part 3:
Security assurance requirements,” 2017. [Online]. Available:
https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf.

[16] CCMB, “Common Methodology for Information Technology Security Evaluation v3.1,” 2017.
[Online]. Available: https://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R5.pdf.

[17] The MITRE Corporation, “CVE - Common Vulnerabilities and Exposures,” 2017. [Online].
Available: http://cve.mitre.org/.

[18] CENELEC, “EN50159:2010 Railway application – communication, signalling and processing
systems – safety-related communication in transmission systems,” CENELEC, Brussels,
2010.

[19] ISA Security Compliance Institute, “EDSA-310 Embedded Device Security Assurance –
Requirements for embedded device robustness testing Version 2.2,” 2015. [Online].
Available: http://www.isasecure.org/en-US/Certification/IEC-62443-SDLA-Certification.

[20] ISA Security Compliance Institute, “EDSA-401 Embedded Device Security Assurance –
Testing the robustness of implementations of two common "Ethernet" protocols Version
2.01,” 2010. [Online]. Available: http://www.isasecure.org/en-US/Certification/IEC-62443-
SDLA-Certification.

[21] ISA Security Compliance Institute, “EDSA-402 Embedded Device Security Assurance –
Testing the robustness of implementations of the IETF ARP protocol over IPv4 Version
2.31,” 2010. [Online]. Available: http://www.isasecure.org/en-US/Certification/IEC-62443-
SDLA-Certification.

[22] ISA Security Compliance Institute, “EDSA-403 Embedded Device Security Assurance –
Testing the robustness of implementations of the IETF IPv4 network protocol Version 1.6,”
2015. [Online]. Available: http://www.isasecure.org/en-US/Certification/IEC-62443-SDLA-
Certification.

[23] ISA Security Compliance Institute, “EDSA-404 Embedded Device Security Assurance –
Testing the robustness of implementations of the IETF ICMPv4 network protocol Version
1.3,” 2010. [Online]. Available: http://www.isasecure.org/en-US/Certification/IEC-62443-
SDLA-Certification.

[24] ISA Security Compliance Institute, “EDSA-405 Embedded Device Security Assurance –
Testing the robustness of implementations of the IETF UDP transport protocol over IPv4 or
IPv6 Version 2.6,” 2010. [Online]. Available: http://www.isasecure.org/en-
US/Certification/IEC-62443-SDLA-Certification.

[25] ISA Security Compliance Institute, “EDSA-406 Embedded Device Security Assurance –
Testing the robustness of implementations of the IETF TCP transport protocol over IPv4 or
IPv6 Version 2.01,” 2015. [Online]. Available: http://www.isasecure.org/en-
US/Certification/IEC-62443-SDLA-Certification.

[26] ISA Security Compliance Institute, “SSA-310 System Security Assurance – Requirements for
system robustness testing Version 2.0,” 2015. [Online]. Available:
http://www.isasecure.org/en-US/Certification/IEC-62443-SSA-Certification.

[27] ISA Security Compliance Institute, “SSA-420 System Security Assurance – Vulnerability

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 33 of 34

Identification Testing Policy Specification Version 2.6,” 2014. [Online]. Available:
http://www.isasecure.org/en-US/Certification/IEC-62443-SSA-Certification.

[28] ISA Security Compliance Institute, “EDSA-311 Embedded Device Security Assurance -
Functional Security Asssessment (FSA) Version 1.4,” 2010. [Online]. Available:
http://www.isasecure.org/en-US/Certification/IEC-62443-SDLA-Certification.

[29] ISA Security Compliance Institute, “SSA-311 System Security Assurance - Functional
security assessment for systems, Version 1.82,” 2014. [Online]. Available:
http://www.isasecure.org/en-US/Certification/IEC-62443-SSA-Certification.

[30] ISA Security Compliance Institute, “ISASecure - IEC 62443-3-3 - SSA Certification,” 2017.
[Online]. Available: http://www.isasecure.org/en-US/Certification/IEC-62443-SSA-
Certification.

[31] ISA Security Compliance Institute, “EDSA-312 Embedded Device Security Assurance –
Security development artifacts for embedded devices Version 2.0,” 2015. [Online]. Available:
http://www.isasecure.org/en-US/Certification/IEC-62443-SDLA-Certification.

[32] ISA Security Compliance Institute, “SDLA-312 Security Development Lifecycle Assessment
Version 3.0,” 2014. [Online]. Available: http://www.isasecure.org/en-US/Certification/IEC-
62443-SDLA-Certification.

[33] ISA Security Compliance Institute, “SSA-312 System Security Assurance – Security
development artifacts for systems Version 1.01,” 2014. [Online]. Available:
http://www.isasecure.org/en-US/Certification/IEC-62443-SSA-Certification.

[34] ISA Security Compliance Institute, “EDSA-300 Embedded Device Security Assurance –
ISASecure certification requirements Version 2.8,” 2014. [Online]. Available:
http://www.isasecure.org/en-US/Certification/IEC-62443-SDLA-Certification.

[35] ISA Security Compliance Institute, “SSA-300 System Security Assurance – ISASecure
certification requirements Version 1.4,” 2016. [Online]. Available:
http://www.isasecure.org/en-US/Certification/IEC-62443-SSA-Certification.

[36] ISO, “ISO/IEC 27005:2011 Information technology – Security techniques – Information
security risk management.,” ISO, Geneva, 2011.

[37] J. Liedtke, “On μ-Kernel Construction,” 1995. [Online]. Available:
http://dilip.nijagal.com/technical/ukernel-construction.pdf.

[38] R. Kaiser and S. Wagner, “Evolution of the PikeOS Microkernel,” 2007. [Online]. Available:
http://ertos.nicta.com.au/publications/papers/Kuz_Petters_07.pdf.

[39] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe, K.
Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch and S. Winwood, “seL4: Formal
Verification of an OS Kernel,” Jun 2010. [Online]. Available:
http://ertos.nicta.com.au/publications/papers/Klein_EHACDEEKNSTW_10.pdf.

[40] S. Lescuyer, “ProvenCore: Towards a Verified Isolation Micro-Kernel,” 20 Jan 2015. [Online].
Available: http://dx.doi.org/10.5281/zenodo.47990.

[41] J. H. Saltzer and M. D. Schroeder, “The Protection of Information in Computer Systems,”

D4.1 - Security testing framework: strategy and approach

certMILS D4.1 Page 34 of 34

1975. [Online]. Available: http://web.mit.edu/Saltzer/www/publications/protection/,
http://www.cs.virginia.edu/ evans/cs551/saltzer/.

[42] Information Assurance Directorate, “U.S. Government Protection Profile for Separation
Kernels in Environments Requiring High Robustness. Version 1.03,” June 2007. [Online].
Available: https://web.archive.org/web/20110108022547/http://www.niap-
ccevs.org/pp/pp_skpp_hr_v1.03.pdf.

[43] I. Furgel and V. Saftig, “Common Criteria Protection Profile “Multiple Independent Levels of
Security: Operating System” [V2.03],” 31 Mar 2016. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.51582.

[44] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel and T. Holz, “kAFL: Hardware-Assisted
Feedback Fuzzing for OS Kernels,” in USENIX Security Symposium, 2017.

[45] RTCA SC-205 / EUROCAE WG-71, “DO-178C: Software Considerations in Airborne
Systems and Equipment Certification,” December 2011. [Online].

[46] CCMB, “Common Criteria for Information Technology Security Evaluation v3.1, Part 2:
Security functional requirements,” 2017. [Online]. Available:
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf.

[47] A. Takanen, “Fuzzing For Software Security Testing & Quality Assurance,” in EuroStar 2009,
Stockholmsmässan, Sweden, 2009.

_

	Executive summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Security testing techniques in publications
	1.2 Purpose of this document

	Chapter 2 Testing contexts
	2.1 Common Criteria testing requirements
	2.1.1 Testing in the Common Criteria context
	2.1.2 Vulnerability analysis in the Common Criteria

	2.2 IEC 62443 testing requirements
	2.2.1 Railway pilot testing requirements
	2.2.2 Subway pilot testing requirements

	2.3 Embedded Device Security Assurance testing requirements
	2.3.1 What is tested?
	2.3.2 What is the testing for?
	2.3.3 What are the methods?
	2.3.3.1 Robustness testing
	2.3.3.1.1 Embedded device Robustness testing (ERT) in EDSA

	2.3.3.2 Functional requirements
	2.3.3.3 Lifecycle assessment based testing requirements

	2.3.4 What is the assurance gained?

	2.4 Security testing and component composition
	2.4.1 Typical general use-case
	2.4.1.1 What is tested?
	2.4.1.2 What is the testing for?
	2.4.1.3 What are the methods?
	2.4.1.4 What is the assurance gained?

	2.4.2 Separation kernel I-composition: PSP
	2.4.3 Separation kernel I-composition: kernel device driver API
	2.4.3.1 Description of scope and implementation

	2.4.4 T-composition scenarios
	2.4.5 Compositional testing in the pilots

	Chapter 3 Separation kernel security fuzzing
	3.1 Motivation
	3.2 Preamble to separation kernel fuzzing
	3.3 Separation kernel interfaces
	3.3.1 Microkernel API
	3.3.2 System Software API
	3.3.3 Kernel device driver API
	3.3.4 Platform Support Package (PSP) API

	3.4 Fuzzing aspects
	3.4.1 Input generation
	3.4.2 Parallelism
	3.4.3 State
	3.4.4 Adherence to subsystem boundaries
	3.4.5 Layered fuzzing

	3.5 Cross-matching matrix
	3.6 Hardware support and integration

	Chapter 4 Summary and conclusion
	Chapter 5 List of abbreviations
	Chapter 6 Literature

