
D2.2 – Management module

certMILS D2.2 Page 1 of 14

Chapter 1 Introduction

This section identifies the PP-Module as well as the Base PP and provides a Module overview for
potential users.

1.1 PP Module Reference

Title: MILS Platform Protection Profile Management Module
Sponsor: certMILS Consortium
CC Version: 3.1 (Revision 5)
Assurance Level: see the Base PP.
Version: draft
Keywords: Base-PP, PP-module, Operating System, Separation Kernel, MILS

1.2 Base PP Identification

Base MILS Platform Protection Profile, Version: 1.0

1.3 PP Module Overview

This PP module supplements the Base PP by adding services for management of APIs and and/or
objects. An API is a set of functions. An object is a logical abstraction of a resource (for examples
of objects see Section 8.3).

D2.2 – Management module

certMILS D2.2 Page 2 of 14

Chapter 2 Consistency Rationale

This section states the correspondence between the PP-Module and its Base PP.

2.1 TOE type consistency

The TOE type for which both the Base PP and this PP Module are designed is “a special kind of
operating system, namely an SK.”

An SK is a special kind of operating system that allows to effectively separate different containers
called “partitions” from each other. Applications themselves are hosted in those partitions. They
can also be entire operating systems. The SK is installed and runs on a hardware platform (e.g.
embedded systems, desktop class hardware).

The PP module extends the Base PP by specifying management services for the TOE. Such
management services can be optionally provided by an SK that is compliant to the certMILS base
PP.

2.2 Security Problem Definition consistency

2.2.1 Assets

The section 3.1 of the Base PP describes the assets to be protected:

 Memory

 CPU time

This PP Module adds the following assets:

 API

 Objects

The new assets are independent and compatible with the assets defined in the Base PP as it does
not interfere with the protection of the Memory or CPU time. It adds protection to the API that acts
on the entire TOE and to the objects that can be created in a partition.

2.2.2 Threats

The section 3.2 of the Base PP describes the threats contemplated:

 T.DISCLOSURE

 T.MODIFICATION

 T.DEPLETION

This PP Module contemplates the following additional threat:

 T.EXECUTION

This new threat is independent and compatible with the set of threats defined in the Base PP as it
is focused on SKs that provide management functions not specified in the base PP.
T.EXECUTION covers a new threat scenario where attackers those execute these management
functions, specified in this module, without being authorized to do so.

D2.2 – Management module

certMILS D2.2 Page 3 of 14

2.2.3 Organizational Security Policies

Neither the Base PP nor this PP Module define organizational security policies.

2.2.4 Assumptions

This PP Module does not define additional assumptions. The assumptions defined in section 3.4 of
the Base PP are applicable with no changes.

2.3 Security Objectives consistency

The section 4.1 of the Base PP describes the security objectives to be implemented:

 OT.CONFIDENTIALITY

 OT.INTEGRITY

 OT.AVAILABILITY

This PP Module adds the following security objective for the TOE:

 OT.API_PROTECTION

This security objective adds security functionality to the TOE regarding the API protection which is
compatible to the rest of security objectives for the TOE defined in the Base PP.

2.4 Security Functional Requirements consistency

In addition to the set of SFRs included in section 6.1 of the Base PP, this PP Module defines:

 FMT_MTD.1/API Management of TSF Data–API – This SFR is compatible with the set of
SFRs defined in the Base PP as it adds independent functionality regarding restrictions to
access the API by trusted partitions.

 FMT_MTD.1/OBJ Management of TSF Data–Objects – This SFR is compatible with the set
of SFRs defined in the Base PP as it adds independent functionality regarding restrictions
to access the objects by trusted partitions.

 FMT_SMF.1 Specification of Management Functions – This SFR adds management
functionality to the FMT_SMF.1 SFR included in the Base PP. ST authors may either iterate
this SFR or extend the Base PP FMT_SMF.1 by adding specific management functionality
for APIs and objects.

 FMT_SMR.1 Security Roles – This SFR contemplates the role management by associating
roles to partitions. This SFR is compatible with the set of SFRs defined in the Base PP.

D2.2 – Management module

certMILS D2.2 Page 4 of 14

Chapter 3 Conformance claim

This protection profile module claims conformance to

 Common Criteria for Information Technology Security Evaluation. Part 1: Introduction and
general model. Version 3.1, Revision 5. April 2017. CCMB-2017-04-001 [1]

 Common Criteria for Information Technology Security Evaluation. Part 2: Security
Functional Components. Version 3.1, Revision 5. April 2017. CCMB-2017-04-002 [2]

 Common Criteria for Information Technology Security Evaluation. Part 3: Security
Assurance Components. Version 3.1, Revision 5. April 2017. CCMB-2017-04-003 [3]

as follows

 Part 2 conformant,

The “Common Methodology for Information Technology Security Evaluation, Evaluation
Methodology; Version 3.1, Revision 5, April 2017. CCMB-2017-04-004, [4]” has to be taken into
account.

This protection profile module is associated with the Base MILS Platform Protection Profile Version
1.0.

3.1 Conformance Rationale

Since a PP module cannot claim conformance to any protection profile, this section is not
applicable.

3.2 Conformance Statement

This Protection Profile Module requires strict conformance of any ST or PP claiming conformance
to this PP Module.

Note: claiming conformance to this PP Module also requires claiming conformance to the Base
MILS Platform Protection Profile.

D2.2 – Management module

certMILS D2.2 Page 5 of 14

Chapter 4 Security Problem Definition

This section describes the security aspects of the environment in which the TOE claiming
conformance with the PP will be used and the manner in which the TOE is expected to be
employed. It provides the statement of the TOE security environment, which identifies and explains
all:

- Known and presumed threats countered by either the TOE or by the security environment.

- Organizational security policies with which the TOE must comply.

- Assumptions about the secure usage of the TOE.

4.1 Assets

Asset Name Description

API (AS.API) This asset is a management API that e.g. acts on the entire TOE.

Application note: e.g. this API contains functions to shutdown the entire TOE.

Objects (AS.OBJ) The asset consists of objects (e.g. tasks, threads) that can be created in a

partition.

Table 1: Assets

4.2 Threats

Assets are defined in Table 1 in Section 4.1. The attackers are the defined in the Base PP.

T.EXECUTION

An attacker executes a management function without being authorized to do so.

4.3 Organizational Security Policies

This module defines no organizational security policies.

4.4 Assumptions

The assumptions are the same as in the base PP.

D2.2 – Management module

certMILS D2.2 Page 6 of 14

Chapter 5 Security Objectives

Security objectives are concise, abstract statements of the intended solution to the problem
defined by the security problem definition (see previous section). The set of security objectives for
a TOE form a high-level solution to the security problem. This high-level solution is divided into two
part-wise solutions: the security objectives for the TOE, and the security objectives for the TOE’s
operational environment.

This section presents the solution to the security problem in terms of objectives for the TOE and its
operational environment.

5.1 Security Objectives for the TOE

OT.API_PROTECTION

The TSF shall prevent any execution of a management function unless it is allowed to a partition
by the integrator.

5.2 Security Objectives for the Operational Environment

The security objectives for the operational environment are the same as for the base TOE.

5.3 Security Objectives Rationale

 O
T

.A
P

I_
P

R
O

T
E

C
T

IO
N

T.EXECUTION X

Table 2: Security Objectives Rationale

T.EXECUTION

If the security objective OT.API_PROTECTION has been reached, the threat T.EXECUTION is
completely eliminated.

D2.2 – Management module

certMILS D2.2 Page 7 of 14

Chapter 6 Extended Components Definition

This module does not define any extended component.

D2.2 – Management module

certMILS D2.2 Page 8 of 14

Chapter 7 Security Requirements

This section defines the Security Functional requirements (SFRs) in relationship with the set of
TOE security objectives in the PP-Module and with the security functional requirements of the
Base-PP. This PP Module does not introduce specific assurance requirements. The assurance
requirements are defined by the Base MILS Platform Protection Profile.

7.1 Security Functional Requirements

7.1.1 FMT_MTD.1/API Management of TSF Data–API

FMT_MTD.1.1/API: The TSF shall restrict the ability to [assignment: list of operations on API] the
[API] to [the trusted partitions].

7.1.2 FMT_MTD.1/OBJ Management of TSF Data–Objects

FMT_MTD.1.1/OBJ: The TSF shall restrict the ability to [assignment: list of operations on objects]
the [objects] to [the trusted partitions].

7.1.3 FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1: The TSF shall be capable of performing the following management functions: [

 API management

 object management]

7.1.4 FMT_SMR.1 Security Roles

FMT_SMR.1.1: The TSF shall maintain the roles: [

 [see section 8.1 for guidance]

FMT_SMR.1.2: The TSF shall be able to associate users partitions with roles.

Application Note: The TSF supports roles on partition granularity.

D2.2 – Management module

certMILS D2.2 Page 9 of 14

7.2 Security Requirements Rationale

 O
T

.A
P

I_
P

R
O

T
E

C
T

IO
N

FMT_MTD.1/API X

FMT_MTD.1/OBJ X

FMT_SMF.1 (in Base PP) X

FMT_SMR.1 X

Table 3: SFR Rationale

OT.API_PROTECTION

FMT_SMF.1 (in base PP) specifies the management functions for partitions, tasks, and threads.
FMT_MTD.1/API and FMT_MTD.1/OBJ specify the rules that define when a partition is allowed to
perform the management activity.

7.3 Security Functional Requirements Dependencies Analysis

The following dependencies are defined for the SFRs used in this PP Module:

SFR Dependencies Satisfied?

FMT_MTD.1/API FMT_SMF.1

FMT_SMR.1

yes (base PP)

yes

FMT_MTD.1/OBJ FMT_SMF.1

FMT_SMR.1

yes (base PP)

yes

Table 4: SFR Functional Requirements Dependencies Analysis

D2.2 – Management module

certMILS D2.2 Page 10 of 14

Chapter 8 Application Notes

This section gives some examples how one could use and instantiate SFRs for roles (Section 8.1),
API management (Section 8.2), and object management (Section 8.3).

We do not make any statement about what is the default behaviour when nothing is explicitly
configured by the integrator, whether it is “deny all” management operations or “allow all”
management operations. The user is encouraged to state this in the rules that define when a
partition is allowed to perform the management activity or in the operational user guidance.

8.1 Roles SFR example

Some systems may come with a dichotomy of “trusted” and “untrusted” partitions. Other systems
e. g. could support some partition hierarchy and restricting the functions to partitions that are
hierarchically higher. Yet another type of systems could support some capability matrix that gives
each partition a fine-grained set of capabilities.

Especially in capability-based TOEs some care has to be taken that the specifications do not
contradict each other, e.g. a partition that can shut down the entire TOE, can implicitly also stop
the threads of other partitions, even if this is not explicitly allowed. In TOEs with such capability-
based models the consistency of the capability specification either could be explained in the
operational user guidance, e.g. stating that capability to shut down other partitions implies the
capability to stop threads in other partitions, at least where it is not obvious, or it could be argued
for in the security architecture. Alternatively, a capability-based TOE could state when a partition is
trusted and then use the “trusted” / “untrusted” dichotomy.

Some SK implementations allow trusted partitions. These may allow their host applications to
partially or fully circumvent the system security policy (SSP), e.g. to change scheduling or reassign
memory. This kind of set-up can be useful to implement custom monitoring and control
functionality. The SK shall still control the untrusted partitions, and also control those parts of the
SSP that the trusted partitions cannot bypass.

For instance, if there are only “trusted” and “untrusted” partitions, a possible instantiation of
FMT_SMR.1 would then be

FMT_SMR.1.1: The TSF shall maintain the roles: [

 trusted partition

 untrusted partition

]

8.2 API Management SFR example

If we assume that there are only “trusted” and “untrusted” partitions, and there is an API for trusted
partitions, the FMT_MTD.1 could look like the following:

FMT_MTD.1.1/API: The TSF shall restrict the ability to [invoke] the [Trusted Partition API] to
[trusted partitions].

Application Note: The complete definition of the Trusted Partition API is given in the TOE User
Manuals.

D2.2 – Management module

certMILS D2.2 Page 11 of 14

8.3 Object Management SFR examples

Partitions are a concept unique to SKs. However, an SK may optionally support additional
interfaces mainly borrowed from general-purpose operating systems. In the following we give
examples for objects: threads and tasks.

Thread: A thread is conventionally the smallest schedulable entity. That is, for a thread an OS
maintains a CPU register context (i.e. the state of all CPU registers, often a one- or two-digit
number), that can be stored away when the thread is scheduled away and be restored when the
thread is scheduled in again. User programmable activities such as application code must be done
in a thread. Some SK also might put exception handlers into threads. Also, for the virtualization of
guest OS (virtual CPU), some SKs can opt to use one or many threads.

Address space/task: A virtual address space is an abstraction of physical memory, provided by a
memory management unit (MMU). For SKs that are based on a memory protection unit (MPU), the
concept of address spaces does not exist, unless similar concepts are provided by measures such
as address rewriting at the compiler/linker level. In the following we describe the MMU case: The
MMU manages chunks of physical memory, usually called pages. At the time of writing, on many
systems, the size of a page is 4096 bytes. The MMU assigns on-the-fly pages to “virtual”
addresses when access to any memory address is requested by application code. Address spaces
make programming and deployment easier, as it is no longer needed to compile the applications
into different memory regions. In the SK and embedded systems domain, also often the synonym
task is used.

Application and its relation to tasks/threads: An application, in an MMU-based system is typically
associated to at least one task and (where the thread abstraction is used) at least one thread. The
typical use-case is that when the application is running, the SK uses the assigned quotas of
threads and tasks to invoke a static configuration, that is when the application invokes a service
call to start a new thread or new task it is checked that the assigned quotas are not exceeded.
While in principle, other designs are technically possible, an often-encountered hierarchy is to:

 assign applications to a partition

 assign tasks to an application

 assign threads to a task

For example, in an SK that does not support tasks, but that supports threads, applications and
partitions, the SK’s design hierarchy would skip the task step, that is assign applications to a
partition and assign threads to an application.

In an SK that does neither support tasks nor threads (e.g. real-time operating system – RTOS),
applications are simply assigned to a partition, and that’s all.

Of course, even in systems built on SKs that have all these abstractions (i.e. partitions,
applications, tasks, and threads), a system integrator may opt not to make real use of them for a
given deployment, as illustrated by Figure 1.

Figure 1: threads, tasks, applications, partitions

D2.2 – Management module

certMILS D2.2 Page 12 of 14

Here the left side of Figure 1 shows a partition with two applications, containing 3 and 2 tasks. The
individual tasks contain 3, 2, 1, 3, and 3 threads, respectively. On the right hand side of Figure 1,
there is a partition with just one application, which has just one thread that contains just one task.

Threads and tasks could refine AS.OBJ in the following way.

Tasks (AS.TASK) An application always has at least one task. Tasks are used to structure the

assigned memory into address spaces. This asset consists of this structure.

Threads (AS.THR) An application always has at least one thread. The asset consists of all threads

that can be created in a partition.

For simplicity, we will use in the examples below the dichotomy of “trusted” and “untrusted”
partitions given in Section 8.1.

An assignment for FMT_MTD.1/OBJ for tasks could look like this:

FMT_MTD.1.1/TASK: The TSF shall restrict the ability to [assignment: start/stop/modify/read data
from] the [tasks] to [the owning partition or the trusted partitions].

An assignment for FMT_MTD.1/OBJ for threads could look like this:

FMT_MTD.1.1/THREAD: The TSF shall restrict the ability to [assignment: start/stop/modify/read
data from] the [threads] to [the owning partition or the trusted partitions].

Application note: The term “own” (for a task or a thread) is used in the following way: A partition
owns a task if the task is assigned to it by the integrator in the configuration. A partition owns a
thread if the thread is created by one of its applications.

D2.2 – Management module

certMILS D2.2 Page 13 of 14

Chapter 9 List of Abbreviations

Abbreviation Translation

API Application Programming Interface

MILS Multiple Independent Levels of Safety / Security

PP Protection Profile

SFR Security Functional Requirement

SK Separation Kernel

SSP System Security Policy

TOE Target of Evaluation

TSF TOE Security Functionality

D2.2 – Management module

certMILS D2.2 Page 14 of 14

Chapter 10 Bibliography

[1] Common Criteria for Information Technology Security Evaluation. Part 1: Introduction and
general model. Version 3.1, Revision 5. April 2017. CCMB-2017-04-001

[2] Common Criteria for Information Technology Security Evaluation. Part 2: Security
Functional Components. Version 3.1, Revision 5. April 2017. CCMB-2017-04-002

[3] Common Criteria for Information Technology Security Evaluation. Part 3: Security
Assurance Components. Version 3.1, Revision 5. April 2017. CCMB-2017-04-003

[4] Common Criteria for Information Technology Security Evaluation. Evaluation Methodology.
Version 3.1, Revision 5. April 2017. CCMB-2017-04-004

	Chapter 1 Introduction
	1.1 PP Module Reference
	1.2 Base PP Identification
	1.3 PP Module Overview

	Chapter 2 Consistency Rationale
	2.1 TOE type consistency
	2.2 Security Problem Definition consistency
	2.2.1 Assets
	2.2.2 Threats
	2.2.3 Organizational Security Policies
	2.2.4 Assumptions

	2.3 Security Objectives consistency
	2.4 Security Functional Requirements consistency

	Chapter 3 Conformance claim
	3.1 Conformance Rationale
	3.2 Conformance Statement

	Chapter 4 Security Problem Definition
	4.1 Assets
	4.2 Threats
	4.3 Organizational Security Policies
	4.4 Assumptions

	Chapter 5 Security Objectives
	5.1 Security Objectives for the TOE
	5.2 Security Objectives for the Operational Environment
	5.3 Security Objectives Rationale
	T.EXECUTION

	Chapter 6 Extended Components Definition
	Chapter 7 Security Requirements
	7.1 Security Functional Requirements
	7.1.1 FMT_MTD.1/API Management of TSF Data–API
	7.1.2 FMT_MTD.1/OBJ Management of TSF Data–Objects
	7.1.3 FMT_SMF.1 Specification of Management Functions
	7.1.4 FMT_SMR.1 Security Roles

	7.2 Security Requirements Rationale
	7.3 Security Functional Requirements Dependencies Analysis

	Chapter 8 Application Notes
	8.1 Roles SFR example
	8.2 API Management SFR example
	8.3 Object Management SFR examples

	Chapter 9 List of Abbreviations
	Chapter 10 Bibliography

