

D1.2
List of tools and techniques applicable for high
and medium assurance for efficient assurance

Project number: 731456

Project acronym: certMILS

Project title:

Compositional security certification for medium to

high-assurance COTS-based systems in

environments with emerging threats

Start date of the project: 1st January, 2017

Duration: 48 months

Programme: H2020-DS-LEIT-2016

Deliverable type: Report

Deliverable reference number: DS-01-731456 / D1.2 / V1.0

Work package contributing to the

deliverable:
WP1

Due date: Dec 2017 – M12

Actual submission date: 20th December 2017

Responsible organisation: SRO

Editor: Jan Rollo

Dissemination level: PU

Revision: V1.0

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731456.

Abstract:
Different techniques to achieve medium and high-

assurance for security evaluation are described

Keywords:

medium assurance, high-assurance, applicable

techniques, Common Criteria, IEC 62443, testing,

modelling

D1.2 – List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page II

Editor

Jan Rollo (SRO)

Contributors (ordered according to beneficiary numbers)

Amelia Alvarez de Sotomayor, Benito Caracuel (SCHN)

Alvaro Ortega (E&E)

Reinhard Hametner (THA)

Sergey Tverdyshev, Holger Blasum (SYSGO)

Tomáš Kertis (UCO)

Jan Rollo, Oto Havle (SRO)

Thorsten Schulz (UROS)

Michal Hager (EZU)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author’s view – the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

D1.2 – List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page III

Executive summary

This deliverable summarizes consortium experience and expectations for a number of tools that
can support high-assurance development for embedded systems.

D1.2 – List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page IV

Contents

Chapter 1 Introduction .. 9

Chapter 2 Tools and techniques... 10

2.1 Static analysis ... 10

2.1.1 Taint analysis .. 10

2.1.1.1 Tool acquisition .. 10

2.1.1.2 Tool characterization .. 10

2.1.1.3 Properties that can be asserted ... 10

2.1.1.4 Usage experience .. 11

2.1.1.4.1 Base components ... 11

2.1.1.4.1.1 Input and its preparation ... 11

2.1.1.4.1.2 Output and its interpretation .. 11

2.1.1.4.2 MILS systems ... 11

2.1.1.5 Use in certification ... 11

2.1.1.6 Use in certification: Common Criteria ... 11

2.1.2 Complexity metrics .. 11

2.1.2.1 Tool acquisition .. 11

2.1.2.2 Tool characterization .. 12

2.1.2.3 Properties that can be asserted ... 12

2.1.2.4 Usage experience .. 12

2.1.2.5 Use in certification: Safety certification (such as e.g. IEC 61508 [17], DO-178 [2],
IEC 62290 [18], etc.) ... 13

2.1.2.5.1 IEC 61508 ... 13

2.1.2.5.2 DO-178C [2].. 13

2.1.2.6 Use in certification: Common Criteria [20] .. 14

2.1.2.7 Use in certification: IEC 62443 [21] .. 14

2.2 Formal models .. 14

2.2.1 Isabelle/HOL .. 14

2.2.1.1 Tool acquisition .. 14

2.2.1.2 Tool characterization .. 14

2.2.1.3 Properties that can be asserted ... 14

2.2.1.4 Usage experience .. 15

2.2.1.4.1 Base components ... 15

2.2.1.4.1.1 Input and its preparation ... 15

2.2.1.4.1.2 Output and its interpretation .. 15

2.2.1.4.2 MILS systems ... 15

2.2.1.4.2.1 Input and its preparation ... 15

2.2.1.4.2.2 Output and its interpretation .. 15

2.2.1.4.3 Usability/scalability/interoperability ... 15

D1.2 – List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page V

2.2.1.5 Use in Common Criteria [20] .. 16

2.2.1.5.1 Base components ... 16

2.2.1.5.2 Compositional certification: MILS systems ... 16

2.2.1.6 Use in IEC 62443 [21] .. 16

2.2.1.6.1 Base components ... 16

2.2.1.6.2 MILS system ... 16

2.2.1.7 Related tools .. 17

2.3 Security testing.. 17

2.3.1 OpenVAS .. 17

2.3.1.1 Tool acquisition .. 17

2.3.1.2 Tool characterization .. 17

2.3.1.3 Properties that can be asserted ... 17

2.3.1.4 Usage experience .. 18

2.3.1.4.1 Base components ... 18

2.3.1.4.1.1 Input and its preparation ... 18

2.3.1.4.1.2 Output and its interpretation .. 19

2.3.1.5 Use in certification: Safety certification (IEC 61508 [17], DO-178 [2], IEC 62290 [18],
etc.) 19

2.3.1.6 Use in certification: Common Criteria [20] .. 19

2.3.1.7 Use in certification: IEC 62443 [21] .. 19

2.3.1.8 Use in certification: Other Security certification (IEC TS 62531 [42], DIN VDE V
0831-104 [43]) ... 19

2.3.1.9 Related tools .. 20

2.3.2 Achilles .. 20

2.3.2.1 Tool acquisition .. 20

2.3.2.2 Tool characterization .. 20

2.3.2.3 Properties that can be asserted ... 21

2.3.2.4 Usage experience .. 22

2.3.2.4.1 Base components ... 22

2.3.2.4.1.1 Input and its preparation ... 22

2.3.2.4.1.2 Output and its interpretation .. 22

2.3.2.5 Use in certification: Safety certification (IEC 61508 [17], DO-178 [2], IEC 62290 [18],
etc.) 22

2.3.2.6 Use in certification: Common Criteria [20] .. 22

2.3.2.7 Use in certification: IEC 62443 [21] .. 22

2.3.2.8 Use in certification: Other Security certification (IEC TS 62531 [42], DIN VDE V
0831-104 [43]) ... 22

2.3.2.9 Related tools .. 23

2.3.3 Fuzzing .. 23

2.3.3.1 Tool acquisition .. 23

2.3.3.2 Tool characterization .. 23

2.3.3.3 Properties that can be asserted ... 23

2.3.3.4 Usage experience .. 23

2.3.3.4.1 Usability/scalability/interoperability ... 23

2.3.3.5 Use in certification: Common Criteria [20] .. 24

2.3.3.6 Use in certification: IEC 62443 [21] .. 24

D1.2 – List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page VI

2.3.3.7 Use in certification: Other Security certification (IEC TS 62531 [42], DIN VDE V
0831-104 [43]) ... 24

2.4 Tools for documentation and assurance case creation ... 24

2.4.1 DOORS ... 24

2.4.1.1 Tool acquisition .. 24

2.4.1.2 Tool characterization .. 24

2.4.1.3 Properties that can be asserted ... 24

2.4.1.4 Usage experience .. 24

2.4.1.4.1 Input and its preparation ... 24

2.4.1.4.2 Output and its interpretation ... 25

2.4.1.4.3 Usability/scalability/interoperability ... 25

2.4.1.5 Use in certification: Safety certification (IEC 61508 [17], DO-178 [2], IEC 62290 [18],
etc.) 25

2.4.1.6 Use in certification: Common Criteria [20] .. 25

2.4.1.6.1 Base components ... 25

2.4.1.7 Use in certification: IEC 62443 [21] .. 25

2.4.1.8 Related tools .. 25

2.4.2 Medini analyze .. 26

2.4.2.1 Tool acquisition .. 26

2.4.2.2 Tool characterization .. 26

2.4.2.3 Properties that can be asserted ... 26

2.4.2.4 Usage experience .. 26

2.4.2.5 Use in certification ... 28

2.4.2.6 Related tools .. 29

Chapter 3 Discussion .. 30

3.1 Security properties / assurance that can be asserted ... 30

3.2 Efforts of tool use .. 30

3.3 Compositional aspects .. 30

3.4 Tool scope for standards ... 30

3.5 Check against tools listed in security tool registries .. 31

3.6 Further research / interaction between project partners .. 31

Chapter 4 List of abbreviations .. 32

Chapter 5 Appendix: Comparison with other tool lists .. 34

5.1 Types of Assurance .. 34

5.2 Other security tools ... 36

5.3 Results .. 40

Chapter 6 Appendix: Used Template ... 41

6.1.1 Tool name ... 41

6.1.1.1 Tool acquisition .. 41

6.1.1.2 Tool characterization .. 41

6.1.1.3 Properties that can be asserted ... 41

D1.2 – List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page VII

6.1.1.4 Usage experience .. 41

6.1.1.4.1 Base components ... 41

6.1.1.4.1.1 Input and its preparation ... 41

6.1.1.4.1.2 Output and its interpretation .. 41

6.1.1.4.2 MILS systems ... 41

6.1.1.4.2.1 Input and its preparation ... 41

6.1.1.4.2.2 Output and its interpretation .. 41

6.1.1.4.3 Usability/scalability/interoperability ... 41

6.1.1.5 Use in certification: Safety Certification (IEC 61508 [17], DO-178 [2], IEC 62290
[18], etc.) 41

6.1.1.5.1 Base components ... 41

6.1.1.5.2 Compositional certification: MILS systems ... 41

6.1.1.6 Use in certification: Common Criteria [20] .. 41

6.1.1.6.1 Base components ... 41

6.1.1.6.2 Compositional certification: MILS systems ... 41

6.1.1.7 Use in certification: IEC 62443 [21] .. 41

6.1.1.7.1 Base components ... 42

6.1.1.7.2 Compositional certification: MILS system ... 42

6.1.1.8 Use in certification: Other Security Certification (such as e.g. IEC TS 62531 [42],
DIN VDE V 0831-104 [43], etc.) .. 42

6.1.1.8.1 Base components ... 42

6.1.1.8.2 Compositional certification: MILS systems ... 42

6.1.1.9 Related tools .. 42

Chapter 7 References .. 43

D1.2 – List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page VIII

List of figures

Figure 1: Session with pmccabe ... 12

Figure 2: Branching diagram of function branch: 7 nodes (showing the line numbers given in

Figure 1) and 9 edges ... 13

Figure 3: Test bed emulating an ICS ... 18

Figure 4: Communication protocols supported by the Achilles platform ... 21

Figure 5: medini analyze – HARA in the railway profile. .. 27

Figure 6: medini analyze – requirements of EN 62290. ... 28

Figure 7: medini analyze – verification checklist of railway development phases. 28

List of tables

Table 1: Reported tool scope. “y” means applicable, “p” means potentially applicable, and “n”
means “not commonly used” ... 30

Table 2: Security Development Life Cycle outlined in IEC 62443-4-1 .. 34

Table 3: Security Development Life Cycle elements in IEC 62443-4-1 .. 35

Table 4: IEC 62443-4-1 testing approaches, from IEC 62443-4-1, Section 10.1 36

Table 5: Tools collected from partner experience and security websites 40

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 9 of 47

Chapter 1 Introduction

The certMILS project targets medium and high assurance security certification. Security assurance
can be gained by a large number of analysis methods. This document serves to establish a
baseline of state-of-the-art analysis techniques that can be considered during a later phase of the
project to support establishing such assurance, for the MILS separation kernel, one or several of
the prototypes.

This deliverable has a simple structure: the main part is the list of tools and technologies in
Chapter 2; that is any subsection(s) of Chapter 2 can be read independently. Chapter 3 gives a
(short) discussion how the results can be used further on. Chapter 4 contains a list of
abbreviations.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 10 of 47

Chapter 2 Tools and techniques

This section summarizes the experience of partners with certain tools and techniques.

The section has been originally based on a template that had been distributed to some certMILS
partners, to encourage reporting on different tools. The template-based approach is the reason
why each section of Chapter 2 has many subsections. We generally avoided merging subsections
to maintain easy comparability, with the only exception that empty subsections have been deleted.
The template itself is reproduced in the appendix, see Chapter 5. In order not to stifle creativity by
a too formal approach, it was intentionally left optional, whether a description was more based on a
specific tool or a specific technique. For each tool / technique, we asked, how used tool(s) have
been acquired, which safety/security properties that can be asserted by the tool, what is the usage
experience, and, if known, specific usage for Common Criteria and IEC 62443, and/or other
safety/security standards, including, if applicable, compositional certification.

Tools and techniques have been grouped into:

 Static analysis (Section 2.1): Astrée (Section 2.1.1), complexity metrics (Section 2.1.2)

 Formal models (Section 2.2): Isabelle/HOL (Section 2.2.1)

 Security testing (Section 2.3): OpenVAS (Section 2.3.1), Achilles (Section 2.3.2), fuzzing

(Section 2.3.3)

 Documentation and assurance creation (Section 2.4): DOORS (Section 2.4.1), medini

(Section 2.4.2)

2.1 Static analysis

2.1.1 Taint analysis

Taint analysis is a static analysis that consists in tracking how information flows between different
parts of a program or system. The goal is to show whether some untrusted inputs (so-called tainted
inputs) may interact with and harm sensitive parts of the systems (the so-called sinks). Taint
analysis can be expressed in an abstract interpretation framework, allowing for sound and efficient
integration with existing abstract domains, such as those used by Astrée.

2.1.1.1 Tool acquisition

Astrée is commercial software developed by AbsInt Angewandte Informatik GmbH [1]. In the
ARAMiS II project, AbsInt and SYSGO want to explore the use of taint analysis in a safety analysis
of an embedded operating system. AbsInt will develop the taint analysis, whereas SYSGO will
apply the analysis on the source code of a separation kernel.

2.1.1.2 Tool characterization

Astrée is a logically sound static analyser designed to prove the absence of runtime errors and
further critical program defects. It is based on the abstract interpretation of the C programming
language.

Astrée shares the front-end and user interface with RuleChecker, a static analysis tool that checks
compliance to coding standards, such as MISRA C 2012 and SEI CERT C.

2.1.1.3 Properties that can be asserted

Properties that can be asserted are:

 Two processes running on the same system are isolated: that is they must not be able to

write into each other’s memory at all.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 11 of 47

 Two processes are separated under control of the operating system: That is the two

processes can only interact with proper checks from the operating system. In that case, a

variable may be a taint source for a process, but a sink for another one.

2.1.1.4 Usage experience

2.1.1.4.1 Base components

2.1.1.4.1.1 Input and its preparation

The inputs for Astrée are the C language source files of the main part of an embedded real-time
separation kernel. Parts written in assembly, platform-dependent code, scheduler, initialization
code, and kernel drivers are excluded and replaced with suitable stubs. The Astrée analysis entry
point is a stub main function, which invokes all functions that implement system calls. The assert()
statements are adapted, an assertion failure in the separation kernel source code leads to an
alarm reported by Astrée.

2.1.1.4.1.2 Output and its interpretation

Astrée shows list of alarms after the analysis terminates. Alarms include C language undefined
behaviour and assertion failures. Astrée contains RuleChecker, which is used to check coding
standard compliance of the separation kernel’s source code.

In addition, taint analysis is being developed. In its current form, that taint analysis is not able to
analyse the whole separation kernel without false positives. AbsInt reported some success with
analysis of the separation kernel initialization phase. The taint sources will be the system call
arguments and the copy-from-user functions (i.e. functions that copy from a non-separation kernel
user address space to an address space of the separation kernel), the taint sinks will be the
system call return values and the copy-to-user functions. The data stored in the operating system’s
thread descriptors will be considered as taint sinks. Further development will be needed regarding
abstraction of pointers to thread descriptors and a relational abstract domain for tainting.

2.1.1.4.2 MILS systems

Astrée taint analysis is used to prove separation of a Multiple Independent Levels of Security and
Safety (MILS) separation kernel, i.e. that the separation kernel properly propagates the separation
of the MILS system to its internals. This is the very heart of MILS systems.

2.1.1.5 Use in certification

Taint analysis is a new technique specifically valuable for MILS systems, and, to the best of our
knowledge, in the form of “taint analysis” not yet specifically demanded by generic safety and
security standards. However, taint analysis is an optional high-assurance means of confirming
partitioning integrity, as required by e.g. DO-178 [2].

2.1.1.6 Use in certification: Common Criteria

Astrée is a useful tool that can be used under the vulnerability analysis scope of Common Criteria
for finding implementation-type vulnerabilities such as buffer overflows.

2.1.2 Complexity metrics

A complexity metric is used to evaluate code understandability by evaluation of structural or
syntactical code properties.

2.1.2.1 Tool acquisition

The pmccabe tool can be obtained from the tool’s web site [3].

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 12 of 47

2.1.2.2 Tool characterization

A wide range of complexity measures exists. In this section, we describe the McCabe cyclomatic
complexity measure [4], as it is conceptually simple to explain and widely used [5]. The pmccabe
tool computes the number of code execution branches, v(G) = e - n + 2 p where:

 p: parts = connected components / functions [single entry + single exit]

 e: edges

 n: nodes

v(G) is 1 for a non-branching function. The number of code execution branch corresponds to the
number of basic blocks produced by a compiler, as well as the number of test cases that have to
be generated to achieve decision code coverage.

2.1.2.3 Properties that can be asserted

Complexity of code according to a metric.

2.1.2.4 Usage experience

The pmccabe tool is simple to install and use:

$cat branching.c

#include "stdio.h"

void nobranch() {

 return;

}

void branch(intprototype_id) { // line 8

 if (prototype_id == 1) { // line 9

 printf("smart grid"); // line 10

 } //line 11

 if (prototype_id == 2) { //line 12

 printf("subway"); //line 13

 } //line 14

 if (prototype_id == 3) { //line 15

 printf("railway"); //line 16

 } //line 17

} //line 18

$ sudo apt-get install pmccabe

$ pmccabe branching.c

1 1 1 3 3 branching.c(3): nobranch

4 4 6 7 11 branching.c(7): branch

Figure 1: Session with pmccabe

Figure 1 shows a session with pmccabe. The first column of the output shows the non-branching

function nobranch has a McCabe complexity of 1 (n=1, e=0, p=1), whereas the function branch,

which has three if statements, has a McCabe complexity of 4 (n=7, e=9, p=1; see Figure 2). In his

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 13 of 47

original paper McCabe suggested that the cyclomatic complexity should not exceed a value of 10,
other tools, e.g. by Microsoft, recommend a maximum of 25.

Figure 2: Branching diagram of function branch: 7 nodes (showing the line numbers given in

Figure 1) and 9 edges

The McCabe complexity measure is easy to calculate, but caution is advised [6][7][8][9][10]. For
instance, when we experimentally applied pmccabe to the source code of a separation kernel, a
rather high value came out for the system initialization routine. However, system initialization is just
a sequence of actions, with platform and configuration dependent parameters that are executed
sequentially, and the code is not very hard to understand. For operating system code, Jbara [11]
has observed that many operating systems (Linux, BSD, Windows) have high cyclomatic
complexity e.g. due to long switch tables, and that “simplifying” away the cyclomatic complexity
would probably not improve readability. For instance, structural code complexity is balanced by
code regularity [12]. Structural code complexity strongly correlates with potentially even simpler
parameters such as lines of code [8][9][13]. Moreover, in addition to complexity at function level
there is also complexity at design level [14][15][16] and low complexity at function level may lead to
high complexity at design level.

2.1.2.5 Use in certification: Safety certification (such as e.g. IEC 61508 [17], DO-
178 [2], IEC 62290 [18], etc.)

2.1.2.5.1 IEC 61508

IEC 61508 Part 7 C.5.13 describes “Complexity metrics”. According to IEC 61508 Part 3 Table B.9,
the technique is recommended for SIL 1 and SIL 2 and highly recommended for SIL 3 and SIL 4.

IEC 61508 Part 7 C.5.13 states that the aim of complexity metrics is “to predict the attributes of
programs from properties of the software itself or from its development or test history” and goes on
with the following description: “These models evaluate some structural properties of the software
and relate this to a desired attribute such as reliability or complexity. Software tools are required to
evaluate most of the measures. Some of the metrics, which can be applied, are given below:

 Graph theoretic complexity – this measure can be applied early in the lifecycle to assess

trade-offs, and is based on the complexity of the program control graph, represented by its

cyclomatic number.

 Number of ways to activate a certain software module (accessibility) – the more a software

module can be accessed, the more likely it is to be debugged.

 Halstead type metrics science – this measure computes the program length by counting the

number of operators and operands; it provides a measure of complexity and size that forms

a baseline for comparison when estimating future development resources.

 Number of entries and exits per software module – minimising the number of entry/exit

points is a key feature of structured design and programming techniques.”

For further background on metrics, IEC 61508 references a book by Kan on “metrics and models
on software” [19].

2.1.2.5.2 DO-178C [2]

DO-178 Section 5.2.2 “Software Design Process Activities” states, “the current state of software
engineering does not permit a quantitative correlation between complexity and the attainment of
system safety objectives. While no objective guidance can be provided, the software design
process should avoid introducing complexity because as the complexity of software increases, it

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 14 of 47

becomes more difficult to verify the design and to show that the safety-related requirements are
satisfied”

Further mentions are Section 6.3.4 d: “Conformance to standards: The objective is to ensure that
the Software Code Standards were followed during the development of the code, for example,
complexity restrictions and code constraints. Complexity includes the degree of coupling between
software components, the nesting levels for control structures, and the complexity of logical or
numeric expressions. This analysis also ensures that deviations to the standards are justified.” and
11.7 f. “Complexity restrictions, for example, maximum level of nested calls or conditional
structures, use of unconditional branches, and number of entry/exit points of code components.”

2.1.2.6 Use in certification: Common Criteria [20]

CC, Part 3, Section A.3 “ADV_INT: Supplementary material on TSF internals” states that the “wide
variety of TOEs makes it impossible to codify anything more specific than “well-structured” or
“minimum complexity”. The CC states also suggests to use a modular design and justifies this in
the following way: “Software written with a modular design aids in achieving understandability by
clarifying what dependencies a module has on other modules (coupling) and by including in a
module only tasks that are strongly related to each other (cohesion).” [CC, Part 3, Section A.3.1].
At the same place, the CC caution [CC, Part 3, Section 3.2]: “Modules that are mutually dependent
may rely on one another to formulate a single result, which could result in a deadlock condition, or
worse yet, a race condition (e.g., time of check vs. time of use concern), where the ultimate
conclusion could be indeterminate and subject to the computing environment at the given instant in
time.”

2.1.2.7 Use in certification: IEC 62443 [21]

We have not found a discussion of complexity metrics in IEC 62443.

2.2 Formal models

2.2.1 Isabelle/HOL

Isabelle/HOL is an interactive theorem prover.

2.2.1.1 Tool acquisition

Isabelle/HOL is developed under a BSD license and can be downloaded free of charge [22].

2.2.1.2 Tool characterization

Isabelle/HOL is equipped with a GUI that simplifies writing proof scripts that are checked by the
tool interactively. The user suggests proof steps for a theorem and Isabelle/HOL checks whether
these proofs steps are correct and gives visual feedback. Isabelle/HOL also can be used non-
interactively to check proofs. Moreover, Isabelle/HOL can export proof scripts to PDF documents.

2.2.1.3 Properties that can be asserted

The logic used by Isabelle/HOL (HOL, higher-order logic) is expressive enough so that it can be
used as an axiomatic foundation for mathematics [23]. In the software domain, it is possible to
express negative requirements and non-functional properties [24], Section 1.4.

Thus, in MILS systems, Isabelle/HOL is commonly used to formulate top-level properties such as

 data separation and non-interference,

 temporal separation [25].

Isabelle/HOL can also express low-level or intermediate properties, e.g. what a part of a separation
kernel does, what invariants it maintains etc.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 15 of 47

It is always possible to replace a higher-level description of properties by a lower-level description
and to show (or attempt to show) that the lower-level description implies the higher-level
description. This process is called refinement.

Code level-verification by a combination of frameworks to derive Isabelle from Haskell and to
derive C from Haskell has been used in the verification of other operating system code (seL4
kernel, [26]).

2.2.1.4 Usage experience

2.2.1.4.1 Base components

2.2.1.4.1.1 Input and its preparation

In the FP7 project EURO-MILS, SYSGO and SRO prepared a top-level model of a separation
kernel. The top-level model was based on previous work on separation kernels by Rushby [27].
The top-level model includes support for pre-emption and interrupts [28]; concrete proof obligations
are given for pre-emption on single-core [29] and multi-core [30].

The second input was the formal specification of part of the API of the separation kernel. Partners
have created proofs that the formal API specification of the API of the separation kernel implies the
top-level model for any configuration provided by the system integrator, i.e. there is no illicit
information flow, which is not allowed by the integrator.

The proof is structured along different API invocations ([28], Section 2.3), claiming invariants such
as data separation (no infiltration = “locally respects”, no exfiltration = “view-partition equivalent” in
[28], Section 2.3) and information flow on each. Reasoning on API invocations can have
dependencies (e.g. the IPC API depends on the memory API), which are reflected in the proofs.

2.2.1.4.1.2 Output and its interpretation

As outlined in [28], in EURO-MILS the output was that

- the theorems describing the top-level property held within the top-level theory and

- that the functional specification of the separation kernel satisfied the assumptions of the

top-level theory,

from which followed that the functional specification of the separation kernel satisfied the property
for information flow control of the top-level theory, which implies also the property of separation of
data.

2.2.1.4.2 MILS systems

2.2.1.4.2.1 Input and its preparation

In EURO-MILS, a firewall has been modelled on top of the separation kernel [31].

2.2.1.4.2.2 Output and its interpretation

In a study of a firewall based on separation kernel presented at the MILS workshop [31], a MILS
system, which consisted of a firewall and untrusted applications was described. It was shown that
the MILS system behaved according to the firewall’s configuration.

2.2.1.4.3 Usability/scalability/interoperability

A comfortable GUI of Isabelle/HOL is available for Linux, MacOS and Windows. However, the
activity of establishing formal invariants is demanding, the effort for generating proofs is large, e.g.
the generic multicore theory MCISK [29] consists of 9367 lines of code and the instantiation by the
separation kernel is even larger than that ([28], Section 3.8).

A limitation of logical computer-based reasoning in general is that once a model is unsatisfiable
(has a contradiction), any conclusion holds. A model can be shown satisfiable by providing a
witness. As EURO-MILS has only used definitional reasoning (no axiomatizations), Isabelle/HOL
allowed to do a relatively small consistency proof ([29], file Step_locale.thy).

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 16 of 47

A limitation of refinement approaches (in general) is that it is easy to overlook underlying
properties, e.g. a memory controller shared between partitions can bypass partitioning provided by
the separation kernel.

The security domains that were underlying the information flow analysis were that each partition
was a security domain, and information flow between partitions either existed or not. This model of
security domains and their interaction might be overly crude (many ways of separation with
controlled interaction exist).

2.2.1.5 Use in Common Criteria [20]

Isabelle is explicitly mentioned in the CC [20], Part 3. Several published STs mention Isabelle [32],
[33], [34], or, as similar tool, Coq [35]. The CC only requires formal models for levels of Evaluation
Assurance Level (EAL) 6 and higher (the CC assurance family for this is called ADV_SPM where
SPM means security policy modelling), thus, for the CC evaluation done in certMILS, it is not
mandatory to have a formal security policy model for the EAL levels targeted by certMILS.

2.2.1.5.1 Base components

In the EURO-MILS project, rules for using Isabelle/HOL in a CC-conformant way have been
formulated, including their direct application to the artefacts in the form of a compliance statement
to a style guide ([24], Sections 1.7.2 and 3). In EURO-MILS, a self-assessment exercise, whether
the EURO-MILS R&D effort would fully meet the “production” guidelines for ADV_SPM by ANSSI
and BSI was done ([36], Section 2.3.2). On the positive side, most other requirements of the
ANSSI and BSI guidelines were fully matched.

2.2.1.5.2 Compositional certification: MILS systems

The CCDB [37] demand to “determine whether the application uses services of the underlying
platform within its own Composite-ST to provide domain separation, self-protection, non-
bypassability and protected start-up; if no, there is no further composite activities for ADV_ARC”
(paragraph 76); that “the evaluator shall examine the statement of compatibility to determine that
the Platform-TSF being used by the Composite-ST is complete and consistent for the current
composite TOE” (ASE_COMP.1-2) and that “the evaluator shall examine the statement of
compatibility to determine that the relevant organisational security policies of the Platform-ST are
not contradictory to those of the Composite-ST” (ASE_COMP.1-7).

A formal model can ease to make statements on consistency and completeness.

2.2.1.6 Use in IEC 62443 [21]

Surprisingly, there appears to be no direct mention of Isabelle, HOL, or even “formal methods” in
IEC 62443 [21]. However, HOL is directly mentioned in IEC 62443’s parent standard, IEC 61508
[17], Part 7, C.2.4.4.

2.2.1.6.1 Base components

Isabelle may be used for a base component, giving credits for, e.g., IEC 62443 Part 4-1 [38]
Section 7.3.1, SR-2 Threat model, where “all products shall have an up-to-date threat model with
the following characteristics: a) correct flow of categorized information throughout the system: x)
trust boundaries; y) processes; z) data stores” as the information flow can be directly modeled as a
formal model.

2.2.1.6.2 MILS system

The MILS design eases to satisfy functional and assurance requirements for IEC 62443 [39].

Isabelle may be used for a MILS system, e.g., in the context of IEC 62443 Part 4-1 [38], Section
7.3.1, SD-2 “Defence in Depth Design”, Isabelle may give credits by giving high assurance that a
composition of layers cannot be compromised, which backs “A process shall be employed for
including multiple layers of defense where each layer provides additional defense mechanisms.
Each layer should assume that the layer in front of it may be compromised. Secure design
principles are applied to each layer”.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 17 of 47

2.2.1.7 Related tools

Many other interactive theorem provers exist, an overview is given by Wiedijk [40]. Other
interactive theorem provers used on operating system code are ACL2 and Coq. Together with
ACL2, and Coq, Isabelle/HOL seems to be among the market leaders in interactive theorem
proving.

2.3 Security testing

2.3.1 OpenVAS

OpenVAS is a framework to perform vulnerability scans and solution management.

2.3.1.1 Tool acquisition

The tool can be downloaded from OpenVAS official site: http://www.openvas.org/

2.3.1.2 Tool characterization

OpenVAS (Open Vulnerability Assessment System) is an open source framework composed of
several services and tools to perform vulnerability scans and solution management.

The OpenVAS security scanner is continually updated with new Network Vulnerability Tests
(NVTs). Currently, there are over 50,000 NVTs included in total.

All OpenVAS products are Free Software. Most components are licensed under the GNU General
Public License (GNU GPL).

OpenVAS used the Common Vulnerability Scoring System (CVSS). CVSS is an industry standard
for the classification and rating of vulnerabilities that assists in prioritizing the remediation
measures.

2.3.1.3 Properties that can be asserted

OpenVAS assesses vulnerabilities considering three different perspective of an attacker:

 External: The system is attacks the network externally. This way it can identify badly

configured or misconfigured firewalls.

 DMZ: Through this type of tests, OpenVAS can identify actual vulnerabilities of the system

under assessment that could be exploited by attackers if they get past the firewall.

 Internal: OpenVAS also includes tests to evaluate vulnerabilities in the case that attacks are

executed internally by insiders through methods of social engineering or a worm. This

perspective is considered crucial for the security of the IT infrastructure.

For DMZ and internal scans, they can be differentiated between authenticated and non-
authenticated scans. When performing an authenticated scan the OpenVAS uses credentials and
can discover vulnerabilities in applications that are not running as a service but have a high-risk
potential. This includes web browsers, office applications or document viewers.

http://www.openvas.org/

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 18 of 47

2.3.1.4 Usage experience

2.3.1.4.1 Base components

2.3.1.4.1.1 Input and its preparation

Figure 3: Test bed emulating an ICS

OpenVAS was tested on a test bed emulating an ICS (Industrial Control System) basic architecture
with basic functionalities for substation monitoring and control [41] shown in Figure 3. This test bed
was composed as follows:

 Field Site Level: This level was composed by the Acquisition System. This system

implements the acquisition functions of the test bed. It consists of a set of devices that

provide real-time control and automation applications. The system included the following

elements:

Control RTU: the CPU module performs the control functions, centralizing the information

acquired by acquisition modules and executing the programmable logic control, the

communication protocols and user specific applications. The CPU module provides a

wider range of functionalities, especially in terms of communication protocols, serial and

Ethernet communication ports and synchronization mechanisms.

Acquisition RTU: it consists of I/O modules, which are connected to the CPU module and

perform data acquisition and pre-process signals, control and execute commands to

field devices.

 Communication Centre Level: The communication centre level of the test bed performed

the communication interface between the Acquisition System and the SCADA System.

It consisted of a control/communication RTU, with several communication protocols, serial

and Ethernet communication ports and synchronization mechanisms.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 19 of 47

 Control Centre: At the higher level, the test bed implemented the SCADA, which was

responsible for real-time data gathering, interactive device control, alarm notification and

response, historical data storing and automated reporting.

The SCADA System included the following elements:

SCADA server: it is a real-time database and program package that collects data from the

Acquisition System, checks for alarm conditions, scales values, drives devices, provides

storage space and enables the user to send out commands to field devices in the

Acquisition System. SCADA server communicates with the RTU sending commands

and gathering system information.

HMI: it is the Graphic User Interface, used to interact with the SCADA. HMI lets operators

and authorized users to interact with the other components of the SCADA System.

Data Historian: it provides the storage space for historical data as well as the data mining

capabilities to generate reports. Data Historian is connected to the SCADA Server to

transfer information from the real-time into the historical system.

In addition to the components emulating the ICS, the test bed included the following components:

 Laboratory Agent: the role of this agent is to carry out the security tests on the test bed,

so this is the component where the OpenVAS framework was deployed.

This component was connected to the emulated ICS with a VPN connection.

 RTU Configuration and Management Tools: it consisted on a set of monitoring,

maintenance and configuration tools for RTU devices.

The deployed ICS allowed Schneider Electric to test vulnerabilities for the operation of the
integrated system as well as for the following specific targets:

 Communications: Ethernet, Serial

 Protocols: DNP 3.0, IEC 104, Modbus, Profibus, CAN

2.3.1.4.1.2 Output and its interpretation

After using OpenVAS scanner on the architecture described above, we obtained a vulnerability
report. This report included a summary of the problem, the possible causes and risks. At the end of
the report, solutions that can be adopted are suggested.

After following instructions provided by the report and performing a new scan, the vulnerability was
solved.

2.3.1.5 Use in certification: Safety certification (IEC 61508 [17], DO-178 [2], IEC
62290 [18], etc.)

OpenVAS is not used for Safety certification

2.3.1.6 Use in certification: Common Criteria [20]

OpenVAS could be used to detect vulnerabilities of the product.

2.3.1.7 Use in certification: IEC 62443 [21]

OpenVAS could be used to detect security vulnerabilities of the product.

2.3.1.8 Use in certification: Other Security certification (IEC TS 62531 [42], DIN
VDE V 0831-104 [43])

OpenVAS could be used to detect security vulnerabilities of the product.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 20 of 47

2.3.1.9 Related tools

The following tools were used together with OpenVAS Scanner to be able to perform more tests:

 Nmap: Free and open source utility for network discovery and security auditing.

 Nikto: Web server scanner that tests web servers for dangerous files/CGIs, outdated server

software and other problems.

 ike-scan: Command-line tool that uses the IKE protocol to discover, fingerprint and test

IPSec VPN servers.

 Snmp: Protocol created to monitor network.

 Pnscan: Scanner for TCP network services.

 Amap: Application protocol detection tool.

 w3af-console: Web application security scanner.

 Ncrack: Network authentication cracking tool used to perform high speed parallel cracking

using an engine adaptable to different network situations.

 ldap-utils: Utilities to access a local or remote LDAP server.

 Phrasendrescher: Modular and multi-processing pass phrase cracking tool.

 Smbclient: Ftp-like client to access SMB/CIFS resources on servers.

 wmi-client: Tool to remotely execute commands and query parameters on a Windows Host.

 Dirb: Web content scanner that looks for existing and/or hidden web objects.

 Arachni: Web Application Security Scanner Framework.

 Dsniff: Collection of tools for network auditing and penetration testing.

 Wapiti: Web application vulnerability scanner.

2.3.2 Achilles

Achilles Test Platform detects vulnerabilities on communication interfaces, including network
monitoring and evaluation of operational parameters.

2.3.2.1 Tool acquisition

The tool can be bought at https://www.ge.com/digital/products/achilles-vulnerability-testing-
platform. The product started as a bare software tool and has grown into a solution with an
additional hardware platform.

2.3.2.2 Tool characterization

The Achilles Test Platform offers manufacturers of critical infrastructures an efficient tool to test
their products for vulnerabilities to cyber-attacks.

The test platform is focused on communication robustness, being able to monitor both network and
operation parameters. Thus, allowing vulnerabilities to be discovered, faults to be reproduced,
isolated, identified and resolved before products are commercialized.

It is mainly used to evaluate products robustness according to ISASecure’s EDSA criteria.

https://www.ge.com/digital/products/achilles-vulnerability-testing-platform
https://www.ge.com/digital/products/achilles-vulnerability-testing-platform

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 21 of 47

2.3.2.3 Properties that can be asserted

Achilles Test Platform is focused on detecting vulnerabilities on communication interfaces,
including network monitoring and evaluation of operational parameters.

As the Achilles Test Platform is used for certification of products in accordance with Achilles
Communication Certifications and ISASecure EDSA Communication Robustness Testing (CRT)
component, it is provided with tests related to industry-recognized standards.

In addition, it covers a very extensive set of control protocols, with tests designed specifically for
devices found in critical infrastructures and addressing real-life scenarios in the field.

The tests are classified as follows:

 Achilles Grammars: It is used to evaluate protocol boundary conditions in device

communications. It consists of systematic iterations over each field and combinations of

fields to produce repeatable, quantifiable tests of the common types of implementation

errors. During these tests, invalid, malformed or unexpected packets are sent to the Device

Under Test to detect vulnerabilities in specific layers of the protocol stack.

 Achilles Storms: The module generates packets at a high rate to evaluate the ability of the

Device Under Tests to handle high traffic rates for different communication protocols. It also

includes the ability to search for the denial-of-service threshold for a given type of storm

traffic; this is the storm rate at which the device is no longer able to respond normally to

other requests.

 Known Vulnerabilities: These test cases exploit traffic for categorized vulnerabilities with

high probability of existence in control devices.

Figure 4 shows the communication protocols for critical infrastructures that can be evaluated with
this platform:

Figure 4: Communication protocols supported by the Achilles platform

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 22 of 47

2.3.2.4 Usage experience

2.3.2.4.1 Base components

2.3.2.4.1.1 Input and its preparation

While OpenVAS was used by Schneider Electric to evaluate vulnerabilities of operating systems
and applications, the Achilles Testing Platform was used for evaluating robustness of Schneider
Electric devices in accordance with level 2 of ISASecure EDSA Communication Robustness
Testing (CRT).

Devices that were tested with the Achilles Testing Platform are: one RTU of Saitel DR family
(HU_A model) with VxWorks operating system and one RTU of Saitel DP family (SM_CPU866e)
with Linux operating system.

Both RTU were configured with Schneider Electric configuration tools to have enabled the following
communication interfaces and protocols:

- Process: EtherNet/IP

- Low layer communications: ARP, ICMP

- High layers communication: TCP and UDP ports

- Utility: DNP3 and Modbus/TCP

2.3.2.4.1.2 Output and its interpretation

Taken into account that the Achilles Testing Platform performs security tests focused on network
protocols (ARP, TCP, UDP, DNP3.0, etc.) and not on services, the obtained results were not able
to detect vulnerabilities on services. Nevertheless, it operated adequately to detect weaknesses in
protocol implementations, at both software and hardware level.

The fault reporting generated with the tool allowed us to identify some minor faults. The tool shows
packet captures and reports with the required information to be able to reproduce problems and
solve them.

2.3.2.5 Use in certification: Safety certification (IEC 61508 [17], DO-178 [2], IEC
62290 [18], etc.)

Achilles is not used for Safety certification.

2.3.2.6 Use in certification: Common Criteria [20]

Achilles can be used under the vulnerability analysis scope of Common Criteria for TOEs
implementing communication security.

2.3.2.7 Use in certification: IEC 62443 [21]

The Achilles Test Platform provides the exact test suites utilized in the ISA Secure EDSA
Communications Robustness Testing Component, in addition to ACC Level 1 and ACC Level 2
test suites (Achilles Communication Certification).

2.3.2.8 Use in certification: Other Security certification (IEC TS 62531 [42], DIN
VDE V 0831-104 [43])

GE Digital Cyber Security offers two certification programs: Achilles Practices Certification (APC)
and Achilles Communications Certification (ACC). APC verifies that an organization employs
industry standard best practices for security, while ACC verifies the network robustness of
industrial devices. Both help address security and robustness in the development lifecycle.

Achilles Communications Certification (ACC) from GE Digital is designed to assess the network
robustness of industrial devices and certify that they remain operational when subjected to network
tests. ACC provides device manufacturers with an independently verified result to communicate
product robustness to customers while providing confidence to control system operators in the
products and systems they deploy and use.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 23 of 47

Besides ISA Secure EDSA CRT test suites, Achilles test platform also performs test suites utilized
in ACC Level 1, ACC Level 2.

2.3.2.9 Related tools

No additional tools are mentioned.

2.3.3 Fuzzing

This section covers tools related to the dynamic analysis aspect of security testing, the vulnerability
testing (SV-3), in particular fuzz-testing. Fuzzing is an advanced testing technique that has
received rising attention in recent years by identifying security vulnerabilities overlooked by other
techniques. A fuzzer artificially generates randomly deviated data and feeds this into the test target
in consecutive iterations. The data deviation methods distinguish the fuzzer type. Multiple methods
of fuzzing are in active development. They require different input-data preparation techniques (e.g.
templates), code instrumentation (e.g. to retrieve code coverage information) and result
interpretation (e.g. false positive detection). Currently there is no established limit on the number of
different tools to employ and the iterations to run them. This chapter examines one of multiple
tools.

2.3.3.1 Tool acquisition

AFL (“American Fuzzy Lop”) is available as Open Source under the Apache License 2.0. Google
Inc. owns the copyright. Currently, the source code is downloadable through
http://lcamtuf.coredump.cx/afl/, and also packaged in most Linux distributions.

2.3.3.2 Tool characterization

The tool author gives a characterization as follows: “American fuzzy lop is a security-oriented
fuzzer that employs a novel type of compile-time instrumentation and genetic algorithms to
automatically discover clean, interesting test cases that trigger new internal states in the targeted
binary. This improves the functional coverage for the fuzzed code. The compact synthesized
corpora produced by the tool are also useful for seeding other, more labour- or resource-intensive
testing regimes” [44].

2.3.3.3 Properties that can be asserted

 AFL uses input deviation methods by deterministic mutation based on feedback from code-

coverage instrumentation of the binary.

 Code instrumentation integrates with (but is not limited to) compilers Clang and GCC.

 There also exists a QEMU-run-mode for binaries without access to source that does the

instrumentation through the virtual machine

 AFL stores input corpuses that led to a crash to later also test for regressions or for use in

other analysers or as a start point for fuzzers that are more TOE specific.

 For performance reasons, AFL is bound to Linux and BSD systems (quicker process fork).

 The AFL framework also provides integrated analysis tools to spot-light a crash result

 There exist derivatives for kernel system calls [45] and other programming languages

than C.

2.3.3.4 Usage experience

There exists some experience by partner SRO.

2.3.3.4.1 Usability/scalability/interoperability

Fuzz-testing is computation intense and requires large resources in terms of RAM and CPU speed.
It can be efficiently parallelized, both on multi-core CPUs and on computation clusters.

http://lcamtuf.coredump.cx/afl/

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 24 of 47

The output of AFL can be fed into further analysis tools, tracking frameworks and implanted into
test frameworks.

2.3.3.5 Use in certification: Common Criteria [20]

Fuzzing is an acceptable technique to be used under the vulnerability analysis scope of Common
Criteria from AVA_VAN.2 to AVA_VAN.5.

2.3.3.6 Use in certification: IEC 62443 [21]

AFL is currently not officially recognized as part of a tool for communication robustness testing.
AFL is not directly applicable as a fuzz-test tool for network traffic. According to [46], network traffic
can be redirected through file-pipes of the target. Concerning ISA-62443-4-1 §10.4.1-2 AFL can
provide functionality to run test cases for “abuse case or malformed or unexpected input testing
focused on uncovering security issues.”

AFL can focus on existing test vectors to probe publically known vulnerabilities and regressions.

Furthermore §10.4.2 suggests manual preparation of input corpuses or running a different fuzzing
tool. Both are typical use cases for AFL, e.g. input initialization files and running in parallel with e.g.
LibFuzzer [47].

2.3.3.7 Use in certification: Other Security certification (IEC TS 62531 [42], DIN
VDE V 0831-104 [43])

Fuzzing is explicitly mentioned in ISASecure Security Development Lifecycle Assurance (SDLA)
[48].

2.4 Tools for documentation and assurance case creation

2.4.1 DOORS

DOORS [49] is a requirement management tool.

2.4.1.1 Tool acquisition

DOORS has to be licensed from IBM. The list price is currently starting at 5300 USD per user. [50]

2.4.1.2 Tool characterization

DOORS comes with a GUI that maintains requirements. From the view of DOORS, each
requirement is a short block of text, usually one or a few paragraphs. A document consists of
requirements (DOORS calls a document “module”). DOORS adds unique identifiers to
requirements, and allows to define arbitrary attributes, baselines and maintains a history of
changes. DOORS allows to insert directed links between requirements within the same or different
modules. Amongst others, DOORS allows export to/import from Microsoft Office and export to CSV
and HTML. DOORS allows to run scripts in a scripting language (DXL). DOORS can maintain links
to test cases and source code.

2.4.1.3 Properties that can be asserted

DOORS uses natural language, i.e., any property can be expressed.

2.4.1.4 Usage experience

A high-level property is usually asserted by refinement, i.e. it is linked to lower-level requirements.
The consistency of linkage has to be established and reviewed manually.

2.4.1.4.1 Input and its preparation

The input consists of thoughts about what a product shall do and how this functionality shall be
implemented. This input is reviewed by testers at an early stage.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 25 of 47

2.4.1.4.2 Output and its interpretation

The output is a hierarchy of requirements: high-level requirements, interface requirements, design
requirements, and linkage to test cases, analysis documents. This linkage can be used to make an
assurance case that the implementation satisfies the requirements, i.e. traceability matrix.

2.4.1.4.3 Usability/scalability/interoperability

The GUI is user-friendly and DXL scripting is used to automate more tedious analyses and
operations. DOORS allows concurrent editing of different requirements at the same time, i.e., an
editor can choose to lock only small portions of a document. Microsoft Office, ReqIF [51] or other
requirement exchange formats can be used.

2.4.1.5 Use in certification: Safety certification (IEC 61508 [17], DO-178 [2], IEC
62290 [18], etc.)

MILS has strong roots in avionics. For the avionics as well as the railway domain, DOORS is
mentioned as requirement engineering and configuration management tool [52].

2.4.1.6 Use in certification: Common Criteria [20]

2.4.1.6.1 Base components

In product Security Targets (STs) and certification reports [53] downloaded [54] from the Common
Criteria Portal, “DOORS” is mentioned in a certification report of a tachograph [55] where it is used
to keep functional requirements and test cases together.

At SYSGO, for a separation kernel, DOORS is used to provide documentation about the functional
specification (in CC terms: ADV_FSP), the separation kernel design (ADV_TDS) and linkage to
test cases in the form of DOORS modules. Also, the security architecture (ADV_ARC) is kept in
DOORS. Moreover, the DOORS modules contain links to a proxy document representing the
Security Target.

2.4.1.7 Use in certification: IEC 62443 [21]

Because DOORS and requirements are a comparatively non-formal approach, they might be a
good tool to fulfil IEC 62443 Part 4-1, SR-5, security requirements review: “A process shall be
employed to ensure that security requirements are reviewed, updated as necessary and approved
to ensure their clarity, validity and their ability to be verified. At least one person from each of the
following shall participate in this process:

 Developers (those who will implement the requirements);

 Testers (those who will validate that the requirements have been met); and

 Customer advocate (such as sales, marketing, or customer support).”

The good traceability that can be achieved using DOORS, can also be used to fulfil [21], Part 4-1,
SD-1, “A process shall be employed for developing and documenting a secure design that
identifies and characterizes each exposed interface of the product, including physical and logical
interfaces.”

2.4.1.8 Related tools

Other requirement engineering tools exist, e.g., also from IBM, Jazz. In the Trusted Architecture for
Securely Shared Services (TAS3) research project [56], Graphviz was used to visualize traceability
[57]. In the DO-178 guide by Hilderman [52], Synergy and (for small projects) Excel are mentioned
as alternatives to DOORS. There is also support from the eclipse development platform for
requirements engineering such as the eclipse Requirements Management Framework (RMF) /
ProR [58].

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 26 of 47

2.4.2 Medini analyze

2.4.2.1 Tool acquisition

medini analyze is part of the ANSYS product family.

Most of information about the product, licence policy and distributors is available at the following
address: http://www.medini.eu.

2.4.2.2 Tool characterization

medini analyze is an integrated tool which implements efficiently core activities of the functional
safety analysis and integrates them with the existing processes. Target users are safety managers
and experts as well as development engineers and quality managers involved in the development
of electronic and software based components mainly in the automotive industry [59].

2.4.2.3 Properties that can be asserted

Main features of the tool are [60]:

- quality analysis for product design and related processes according to SAE J1739, VDA

quality handbook etc.,

- safety analysis and design according to ISO 26262 for software controlled safety related

functions,

- integration of architectural/functional design with quality, reliability and functional safety

analysis methods,

- support of driving situation analysis, hazard and risk analysis, Fault Tree Analysis

(FTA), Failure Mode and Effects Analysis (FMEA), probabilistic analysis and hardware

failure metrics,

- complete end-to-end traceability, e.g. of

o requirements to the design or other object which fulfil them (UML/SysML blocks

and connections),

o modelled objects to their implementation (UML/SysML blocks, connections and

external links),

o requirements and modelled objects to the verification method that verifies them

and links to the internal and external evidence (requirements, UML/SysML

blocks, connections, and external links).

- customizable work product/documentation generation,

- teamwork with detailed compare and merge,

- integration with IBM® Rational® DOORS, IBM® Rational® Rhapsody, Enterprise

Architect, MATLAB®/Simulink®, Stateflow®, PTC Integrity, MS® Office, TortoiseSVN,

IBM® Rational® ClearCase, IBM® Rational® Team Concert and others.

2.4.2.4 Usage experience

UCO has become familiar with the tool within the SESAMO project (Security and Safety
Modelling). Medini analyze was used for system description and analysis of system requirements,
it also allowed performing FMEA and FTA analysis. [61]

Although the tool is following mainly needs of the automotive domain (according to ISO 26262), it
is useful tool for initial (i.e., development) phases of the railway lifecycle and others using
customization functions allowed by UML/SysML based meta-model structure, i.e., profiling. The
profiling allows to create additional properties (such as safety and security aspects) for each model
component (system components, requirements, etc.). Specific UML connectors serve to create
interdependencies among the model items at different levels, which are used for ensuring
traceability. Besides the very useful functions of the tool described above, the tool has
implemented OCL (Object Constraint Language) and JavaScript engines. This provides a versatile

http://www.medini.eu/

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 27 of 47

tool with many possibilities for customization and adaptation to various domains. It also provides
transformation of created models into other formats for external tools (using certain transformation
rules).

UCO has created a railway profile for the tool that contains among others the following properties
and functions (the profile is a product of UCO, intended for internal business needs):

- project structure according to railway system life cycle,

- checklists for verification during development phases,

- requirements of railway standards

EN50126, EN50128, EN50129, EN 50159, EN 62290,

- libraries of UCO products and products’ specific features (e.g. partitioning),

- profiling; customization of model block properties to railway terminology (possibility to

assign a safety integrity level (SIL); risk table; railway specific stakeholders, influencing

factors; specific operation conditions – stations, tunnel, track, depots, etc.)

- JavaScript library to export a system model with all components and interdependencies

into a collection of web pages for to operation and maintenance purposes (e.g.

maintenance manual).

The following three figures show three screenshot of the tool customization. The first is an example
of Hazard analysis and Risk assessment (HARA) according to the railway domain.

Figure 5: medini analyze – HARA in the railway profile.

Figure 6 captures a set of selected railway standards’ requirements.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 28 of 47

Figure 6: medini analyze – requirements of EN 62290.

Figure 7 is an example of a checklist on the railway system life cycle phases. The figure also
visualizes the traceability (the “trace” mark with the number of connected items), where each
verification question is traced to an appropriate resource in the project (it could be an external
resource, an analysis, a model, standard’s requirement that produces the question etc.).

Figure 7: medini analyze – verification checklist of railway development phases.

UCO is going to use the tool also in the certMILS project for the demonstrator development.

2.4.2.5 Use in certification

Within any certification process, the tool and its outputs (in any form, such as analysis reports,
filled checklists, structured requirements and their satisfactions, system models) are helpful for
providing evidence of quality and safety assurance. The tool specifically provides evidence based

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 29 of 47

on requirement traceability, verification using checklists and references to the appropriate parts of
the model or other external resources – many design aspects needed both in safety and security.

In the case of the certMILS project, UCO is going to enhance the railway profile with requirements
of security standards. It will then be analysed and decided about the right set of requirements for
the intended use case. Then the profile will be applied for system modelling, architecture, design
description, requirement management, part of verification and traceability to provide the best
evidences for the certification.

2.4.2.6 Related tools

The ANSYS medini Technologies AG guarantees integration with:

- IBM® Rational® DOORS,

- IBM® Rational® Rhapsody,

- Enterprise Architect,

- MATLAB®/Simulink®,

- Stateflow®,

- PTC Integrity,

- MS® Office,

- TortoiseSVN,

- IBM® Rational® ClearCase,

- IBM® Rational® Team Concert.

The integration depends on the selected license of the tool. UCO has implemented integration with
TortoiseSVN; MS Office; Redmine server for management of development tasks; and it features
model transformation to/from Enterprise Architect.

Beside these integration possibilities, there is the option to create own transformation rules using
e.g. JavaScript to transform the model to or from other tools.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 30 of 47

Chapter 3 Discussion

3.1 Security properties / assurance that can be asserted

Some tools directly show a separation property, like Astrée taint analysis or Isabelle/HOL
modelling. Other tools target general robustness, such as Achilles, OpenVAS, and fuzzing where
robustness is defined that certain attacks are mitigated/denied and that the system is still
operational after these attacks. A third category targets to ease development processes such as
DOORS or medini.

3.2 Efforts of tool use

Some tools can be used out of the box on existing source code like Astrée or pmccabe and ensure
conformance to syntactic (Astrée RuleChecker), or structural (pmccabe showing number of
branches within each function). Achilles and OpenVAS operate in a networked environment with
deployed components, and investigate the vulnerability of components by executing known attacks
and weaknesses.

Customized methods are more labour-intensive, e.g. fuzzing is a means of showing non-
compliance of an implementation or non-robustness whereas modelling by Isabelle/HOL had been
used to show separation. Also, the use of Astrée taint analysis needs customization to match the
separation kernel under test.

3.3 Compositional aspects

None of the tools specifically addressed compositional certification. However, by formalizing one
specific certification layer, the higher-level argument can be made in an easier way. Moreover, we
realize that at the specification level, the scope of medini analyze is quite broad, so that ideas and
workflow taken from medini could be used for further thinking about how to formulate compositional
aspects of certification.

3.4 Tool scope for standards

Tool Safety CC IEC 62443 Other security

taint n y n p

complexity y p n p

Isabelle/HOL y y n p

OpenVAS n y y y

Achilles n y y y

fuzzing n y p y

DOORS y y y y

medini y y y y

Table 1: Reported tool scope. “y” means applicable, “p” means potentially applicable, and “n”
means “not commonly used”

Table 1 summarizes the reported tool scope for standards. We can see that documentation tools
are universally usable, whereas some more specialized tools like OpenVAS or Achilles are more

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 31 of 47

specifically tailored to security. Most investigated standards are cautious on complexity metrics.
The CC does not explicitly demand fuzzing or network penetration testing, but these are
acceptable techniques to be used under the vulnerability analysis scope of the Common Criteria.
On the other hand, IEC 62443 does not have much focus on low-level methods (such as
complexity or formal methods). Overall, the results show that the certification of MILS base
components may benefit from a different tool set than tools used for networked MILS system.

3.5 Check against tools listed in security tool registries

While this was not in the original scope of the planned deliverable, for additional verification, we
checked some online tool registries for inspiration. These mostly address static code analysis and
network attacks. E.g., we could find OpenVAS and Achilles to be recommended by ISASecure.
However, the intersection of the online registries of ISASecure, CWE-compatible and SCAP is
completely empty as of June 2017, which was a non-anticipated result. For more details, see the
appendix “Comparison with other tool lists” (Chapter 5).

3.6 Further research / interaction between project partners

A first result of creating this deliverable is that partners understand better each other’s experience.
For example, we plan to present the medini tool within the consortium. OpenVAS is also used by
THA. Fuzz-testing and the Achilles Platform is of high interest to THA to learn and integrate the
approach.

For code metrics, we have learned that the application of code metrics has to be closely monitored
in order not to create unwanted distortions, and that most standards are also cautious about this.
Something to keep an eye on in the future, and not yet covered in this deliverable, are metrics for
measuring code coupling and cohesion.

Beyond directly learning about new tools, one result of this tool comparison is that we get a better
grasp of the breadth of what state-of-the-art tools can do and what is still beyond the state of the
art. From experience, even when a tool output is not directly used in certification, adoption of any
tool allows to verify an informal working hypothesis, and by requiring machine-readable input, per
se enforces semi-formal architectural thinking. For instance, when Isabelle/HOL was used for a
formal model of the separation kernel, even if that model was not directly used for an EAL 6
certification (which, for operating systems, would be very ambitious), it gave us a better feeling on
how to structure an argument on separation, e.g., the different assets to be considered.
Discussions on medini analyze also motivate us to keep UML/SysML-formalizability in mind when
working on future MILS guidance in the certMILS work package WP2 context.

It is important to avoid raising too high expectations: when we plan to further outline our strategy,
specifically for compositional systems in D1.3 (“Compositional security certification methodology”),
it is not expected that each tool discussed here will be reflected in D1.3. However, this deliverable
D1.2 has clarified what security properties exist and offered a better understanding what the effort
is to ascertain them. Tools targeting to ease development processes also will be discussed the
scope of the certMILS Protection Profile (PP) standardization reach-out in D2.4 (“Guidelines to use
and apply PP for all involved stakeholders”).

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 32 of 47

Chapter 4 List of abbreviations

Abbreviation Translation

ACC Achilles Communications Certification

ACS Authenticated Configuration Scanner

AFL American Fuzzy Lop

APC Achilles Practices Certification

API Application Programming Interface

ARP Address Resolution Protocol

BSD Berkeley Software Distribution

CAN Controller Area Network

CC Common Criteria

CERT Computer Emergency Response Team

CIFS Common Internet File System

CPU Central Processing Unit

CRT Communication Robustness Testing

CSV Comma-separated values

CVSS Common Vulnerability Scoring System

CWE Common Weaknesses Enumeration

DM Security Defect Management

DMZ Demilitarized Zone

DNP Distributed Network Protocol

DOORS Dynamic Object Oriented Requirements System

DXL DOORS eXtension Language

EAL Evaluation Assuance Level

EDSA Embedded Device Security Assurance

FMEA Failure Mode and Effects Analysis

FP7 7th Framework Programme

FTA Fault Tree Analysis

GCC GNU C Compiler

GE General Electrics

GUI Graphical User Interface

GNU GNU’s not Unix

GPL General Public License

HARA Hazard Assessment and Risk Analysis

HMI Human Machine Interface

HOL Higher-Order Logic

HTML Hypertext Markup Language

IBM International Bureau Machines

ICMP Internet Control Message Protocol

ICS Industrial Control System

IEC International Electrotechnical Commission

IKE Internet Key Exchange

IP Internet Protocol

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 33 of 47

Abbreviation Translation

IPC Inter-process Communication

ISA International Society of Automation

ISO International Organization for Standardization

LDAP Lightweight Directory Access Protocol

MCISK Multicore Controlled Interruptible Separation Kernel

MILS Multiple Independent Levels of Security and Safety

MISRA Motor Industry Software Reliability Association

NVT Network Vulnerability Tests

OCIL Open Checklist Interactive Language

OCL Object Constraint Language

OpenVAS Open Vulnerability Assessment System

PDF Portable Document Format

PM Security update management

PP Protection Profile

QEMU Quick Emulator

RAM Random Access Memory

RMF Requirements Management Framework

RTU Remote Terminal Unit

SAE Society of Automotive Engineers

SCADA Supervisory Control and Data Acquisition

SCAP Security Content Automation Protocol

SD Secure by Design

SDLA Security Development Lifecycle Assurance

SEI Software Engineering Institute

SESAMO Security and Safety Modelling

SG Security Guidelines

SI Secure Implementation

SIL Safety Integrity Level

SM Security Management

SMB Server Message Block

SR Specification of Security Requirements

ST Security Target

SV Secure Verification and Validation Testing

TAS3 Trusted Architecture for Securely Shared Services

TCP Transport Control Protocol

UDP Universal Datagram Protocol

UML Universal Modeling Language

USD US Dollars

VDA Verband der Automobilindustrie

VITT Vulnerability Identification Testing Tool

VPN Virtual Private Network

XML Extensible Markup Language

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 34 of 47

Chapter 5 Appendix: Comparison with other tool

lists

We will take a quick look at different types of assurance based on stages of the life cycle, as well
as how available tools fit into those stages.

5.1 Types of Assurance

Assurance can and needs to be obtained at every stage of the life-cycle, as illustrated for example
by Microsoft’s well-known security development life-cycle [62]. Table 2 shows the life cycle outlined
by IEC 62443-4-1 as of the March 2016 draft [38] as it is a standard relevant for the certMILS
industrial control domains.

Practice Name Acronym

Practice 1 Security Management SM

Practice 2 Specification of Security
Requirements

SR

Practice 3 Secure by Design SD

Practice 4 Secure Implementation SI

Practice 5 Secure verification and validation
testing

SV

Practice 6 Security defect management DM

Practice 7 Security update management PM

Practice 8 Security guidelines SG

Table 2: Security Development Life Cycle outlined in IEC 62443-4-1

In 62443-4-1, these life cycle practices are further broken down into elements as shown in Table 3.

Number Name

Practice 1 Security management

SM-1 Development process

SM-2 Identification of responsibilities

SM-3 Identification of applicability

SM-4 Security expertise

SM-5 Process tailoring

SM-6 Code signing

SM-7 Development environment security

SM-8 Third-party embedded component security

SM-9 Special purpose third-party components

SM-10 Addressing of security-related issues

SM-11 Process verification

Practice 2 Specification of security requirements

SR-1 Product security context

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 35 of 47

Number Name

SR-2 Threat model

SR-3 Product security requirements

SR-4 Product security requirements content

SR-5 Security requirements review

Practice 3 Secure by design

SD-1 Secure design principles

SD-2 Defense in depth design

SD-3 Security design review

SD-4 Assessing security-related issues

SD-5 Addressing security-related issues

SD-6 Secure design industry recommended practices

Practice 4 Secure implementation

SI-1 Security implementation review

SI-2 Assessing security-related implementation issues

SI-3 Addressing security-related issues

SI-4 Secure implementation recommended practices

Practice 5 Security verification and validation testing

SV-1 Security requirements testing

SV-2 Threat mitigation testing

SV-3 Vulnerability testing

SV-4 Penetration testing

SV-5 Independence of testers

Practice 6 Security defect management

DM-1 Receiving notifications of security-related issues

DM-2 Reviewing security-related issues

DM-3 Assessing security-related issues

DM-4 Addressing security-related issues

DM-5 Disclosing security-related issues

DM-6 Periodic review of security defect management practice

Practice 7 Security update management

PM-1 Security update qualification

PM-2 Security update documentation

PM-3 Dependent component or operating system security update

PM-4 Security update delivery

PM-5 Timely delivery of security patches

Practice 8 Security guidelines

SG-1 Product defense in depth

SG-2 Defense in depth measures expected in the environment

SG-3 Security hardening guidelines

SG-4 Secure disposal guidelines

SG-5 Secure operation guidelines

SG-6 Account management guidelines

SG-7 Documentation review

Table 3: Security Development Life Cycle elements in IEC 62443-4-1

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 36 of 47

As example, and because SV is a dominant category in Table 5 below, it is also worth to present
the IEC 62443-4-1 descriptions in the field of verification (SV), where the following four types of
verification given in Table 4 are distinguished.

Name Description

SV-1:
Security
requirements
testing

This testing focuses on verifying all the security requirements in the security
requirements specification (SecRS) have been met. Functional, negative,
boundary, performance and other types of standard testing will be performed on the
security capabilities in the SecRS.

SV-2:
Threat
mitigation
testing

This testing is derived from creating threat trees from the threats identified in the
threat model and ensures that the mitigations designed and implemented in the
product are effective in stopping the proposed threat. Testers will design their tests
to attempt to thwart the mitigation using the type of threat identified.

SV-3:
General
vulnerability
testing

This testing focuses on using standard tools or published instructions for
discovering potential security vulnerabilities. No attempt is made to exploit the
vulnerability or assess the ability to exploit the potential vulnerability and the
product is tested without consideration to the implementation or its defense in depth
design.

SV-4:
Penetration
testing

This testing focuses specifically on compromising the confidentiality, integrity or
availability of the product. It can involve defeating multiple aspects of the defense in
depth design. This is an unstructured test that depends on the skills and knowledge
of the attacker. In this case, the tester tries to play the role of an attacker. This
testing is not based on an analysis of the design or threat model, rather it
encompasses the tester trying to defeat the security of the system using any
technique that he chooses. This testing often will identify types of vulnerabilities
that need to be fixed rather than single vulnerabilities. This testing will often detect
problems that are not detected in threat model driven testing because there may be
errors or omissions in the threat model itself.

Table 4: IEC 62443-4-1 testing approaches, from IEC 62443-4-1, Section 10.1

5.2 Other security tools

The results of a search of several websites and partner knowledge for security tools is shown in
Table 5. We tentatively have assigned each tool to a practice of IEC 62443-4-1. This analysis
showed that the bulk of tools marked for security are heading towards secure implementation (SI)
and secure verification and validation testing (SV).

ISA-
62243-

4-1
practice
element

s

Company Tool

Is
a
S

e
c
u

re

V
IT

T
 [6

3
]

Is
a
S

e
c
u

re

C
R

T
 [6

4
]

C
W

E
-

c
o

m
p

a
tib

le

[6
5
]

S
C

A
P

 A
C

S

[6
6
]

S
C

A
P

 C
V

E

[6
6
]

S
C

A
P

 O
C

IL

[6
6
]

C
o

v
e

re
d

 in

th
is

d
e
liv

e
ra

b
le

SD-1 ANSYS medini Se
ctio
n
2.4
.2

SD-1,
SR-5

IBM DOORS Se
ctio
n
2.4
.1

SD-2 Cambridge/Mu Isabelle/HOL Se

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 37 of 47

ISA-
62243-

4-1
practice
element

s

Company Tool

Is
a
S

e
c
u

re

V
IT

T
 [6

3
]

Is
a
S

e
c
u

re

C
R

T
 [6

4
]

C
W

E
-

c
o

m
p

a
tib

le

[6
5
]

S
C

A
P

 A
C

S

[6
6
]

S
C

A
P

 C
V

E

[6
6
]

S
C

A
P

 O
C

IL

[6
6
]

C
o

v
e

re
d

 in

th
is

d
e
liv

e
ra

b
le

nich/Paris ctio
n
2.2
.1

SI-1 AbsInt Astrée Se
ctio
n
2.1
.1

SI-1 AdaCore CodePeer y

SI-1 Bame PMCCABE Se
ctio
n
2.1
.2

SI-1 Beijing Beida
Software
Engineering
Development
Co., Ltd.

COBOT y

SI-1 CAST CAST Application
Intelligence Platform

 y

SI-1 Conviso
Application
Security

Conviso Security Compliance
(CSC)

 y

SI-1 Coverity, Inc. Coverity Quality Advisor y

SI-1 Coverity, Inc. Coverity Security Advisor y

SI-1 David A.
Wheeler

Flawfinder y

SI-1 Denim Group,
Ltd

ThreadFix y

SI-1 Evenstar BigLook y

SI-1 Fasoo.com,
Inc.

SPARROW y

SI-1 GrammaTech,
Inc.

CodeSonar y

SI-1 GTONE Co.,
Ltd.

SecurityPrism y

SI-1 Hewlett-
Packard
Development
Company, L.P.

HP Fortify On Demand y

SI-1 Hewlett-
Packard
Development
Company, L.P.

HP Fortify Software Security
Center

 y

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 38 of 47

ISA-
62243-

4-1
practice
element

s

Company Tool

Is
a
S

e
c
u

re

V
IT

T
 [6

3
]

Is
a
S

e
c
u

re

C
R

T
 [6

4
]

C
W

E
-

c
o

m
p

a
tib

le

[6
5
]

S
C

A
P

 A
C

S

[6
6
]

S
C

A
P

 C
V

E

[6
6
]

S
C

A
P

 O
C

IL

[6
6
]

C
o

v
e

re
d

 in

th
is

d
e
liv

e
ra

b
le

SI-1 Hewlett-
Packard
Development
Company, L.P.

HP Fortify Static Code
Analyzer

 y

SI-1 IBM Security
Systems

IBM Security AppScan
Standard

 y

SI-1 Julia S.R.L. Julia y

SI-1 Klocwork, Inc. Klocwork Insight y

SI-1 LDRA LDRA Testbed y

SI-1 LDRA LDRArules y

SI-1 LDRA Tbvision y

SI-1 Lucent Sky
Corporation

Lucent Sky Application
Vulnerability Mitigation (AVM)

 y

SI-1 MathWorks,
Inc.

Polyspace Bug Finder y

SI-1 Programming
Research, Inc.

QA*C – CWE Compliance
Module for C Programming
Language

 y

SI-1 Soft4Soft Co.,
Ltd.

RESORT Code Analysis y

SI-1 SonarSource
SA

SonarQube platform with
C/C++ plugin

 y

SI-1 SonarSource
SA

SonarQube platform with
Java plugin

 y

SI-1 SonarSource
SA

SonarQube platform with
Objective-C plugin

 y

SI-1 Suresoft
Technologies
Inc.

CodeScroll Code Inspector y

SI-1 Suresoft
Technologies
Inc.

CodeScroll SNIPER y

SI-1 Veracode, Inc. Veracode Dynamic Analysis y

SI-1 Veracode, Inc. Veracode Static Analysis y

SV-1 Veracode, Inc. Veracode Manual Testing y

SV-3 Beyond
Security

beSTORM y

SV-3 bmc Client Management 12.0.0 y y

SV-3 bmc Server Automation 8.6 y y y

SV-3 CIS Center for
Internet
Security

CIS-CAT Pro Assessor y y

SV-3 CNCERT Acheron y

SV-3 Hewlett-
Packard

HP Assessment
Management Platform (ASP)

 y

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 39 of 47

ISA-
62243-

4-1
practice
element

s

Company Tool

Is
a
S

e
c
u

re

V
IT

T
 [6

3
]

Is
a
S

e
c
u

re

C
R

T
 [6

4
]

C
W

E
-

c
o

m
p

a
tib

le

[6
5
]

S
C

A
P

 A
C

S

[6
6
]

S
C

A
P

 C
V

E

[6
6
]

S
C

A
P

 O
C

IL

[6
6
]

C
o

v
e

re
d

 in

th
is

d
e
liv

e
ra

b
le

Development
Company, L.P.

SV-3 Hewlett-
Packard
Development
Company, L.P.

HP Fortify Real-Time
Analyzer

 y

SV-3 Hewlett-
Packard
Development
Company, L.P.

HP WebInspect y

SV-3 High-Tech
Bridge SA

ImmuniWeb y

SV-3 Hitachi Raven ES y

SV-3 IBM Endpoint Manager 9 y

SV-3 IBM BigFix y y

SV-3 intel Policy Auditor 6.2 y y

SV-3 Microsoft SCAP Extensions for
Microsoft System Center
Configuration Manager

 y y

SV-3 Qualys SCAP Auditor 1.2 y y

SV-3 Rapid Nexpose 6 y y

SV-3 Red Hat, Inc. openSCAP 1 y y

SV-3 Red Hat, Inc. openSCAP 1.0 y y

SV-3 SAINT SAINT Security Suite 8 y y

SV-3 Security-
Database

Security-Database Web
Services

 y

SV-3 SPAWAR SCAP Compliance Checker y Y y

SV-3 Synopsis Defensics X y

SV-3 tenable nessus y Se
c-ti
on
2.3
.1(
Op
en
VA
S)

SV-3 tenable SecurityCenter y y

SV-3 ThreatGuard Secutor Prime (S-CAT) 5 y y

SV-3 ThreatGuard Secutor Prime 5 y y y

SV-3 tripwire Enterprise 8 y y

SV-3 Veracode, Inc. Veracode Analytics y

SV-3 Wurldtech Achilles y Se
c-ti
on

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 40 of 47

ISA-
62243-

4-1
practice
element

s

Company Tool

Is
a
S

e
c
u

re

V
IT

T
 [6

3
]

Is
a
S

e
c
u

re

C
R

T
 [6

4
]

C
W

E
-

c
o

m
p

a
tib

le

[6
5
]

S
C

A
P

 A
C

S

[6
6
]

S
C

A
P

 C
V

E

[6
6
]

S
C

A
P

 O
C

IL

[6
6
]

C
o

v
e

re
d

 in

th
is

d
e
liv

e
ra

b
le

2.3
.2

x
(N.A.)

Cr0security Cr0security Certified Security
Testing

 y

x
(N.A.)

Cr0security Cr0security Penetration
Testing and Consultant
Services

 y

x
(N.A.)

CXSecurity World Laboratory of Bugtraq
(WLB) 2

 y

x
(N.A.)

High-Tech
Bridge SA

High-Tech Bridge Security
Advisories

 y

x
(N.A.)

National
Institute of
Standards and
Technology
(NIST)

Software Assurance
Reference Dataset (SARD)

 y

x
(N.A.)

Red Hat, Inc. Red Hat Customer Portal y

x
(N.A.)

ToolsWatch vFeed API and Vulnerability
Database Community

 y

x
(N.A.)

WebLayers,
Inc.

WebLayers Center Security
Policy Library

 y

Table 5: Tools collected from partner experience and security websites

5.3 Results

Interestingly, in Table 5, the intersection of the online registries of ISASecure, CWE-compatible
and SCAP is completely empty as of June 2017, which was a non-anticipated result.

If we apply this classification, then most commercially available generic tools from Table 5 fall into
category SV-3, as they are not customized for a particular product. Developing a customized
fuzzing strategy would probably fall into category SV-4, giving highest credit. While this deliverable
simply collects current state of the art, in particular, the approach of developing a customized
fuzzing and robustness testing strategy will be followed in certMILS deliverables D4.1 and D4.4.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 41 of 47

Chapter 6 Appendix: Used Template

This is the template that had been used for Chapter 2.

6.1.1 Tool name

6.1.1.1 Tool acquisition

<Describe where to download or buy the tool.>

6.1.1.2 Tool characterization

<Describe what the tool does (one paragraph).>

6.1.1.3 Properties that can be asserted

<Describe what properties of a system can be asserted.>

6.1.1.4 Usage experience

<Describe your usage experience with the tool. Usage can be both industrial and R&D contexts. If
you wish you can split it along base components and MILS systems, like in the structure below.
(I.e., it is optional to have entries for both. You also can opt for a simpler structure that does not
split between base components and MILS systems.)>

6.1.1.4.1 Base components

6.1.1.4.1.1 Input and its preparation

6.1.1.4.1.2 Output and its interpretation

6.1.1.4.2 MILS systems

6.1.1.4.2.1 Input and its preparation

6.1.1.4.2.2 Output and its interpretation

6.1.1.4.3 Usability/scalability/interoperability

6.1.1.5 Use in certification: Safety Certification (IEC 61508 [17], DO-178 [2], IEC
62290 [18], etc.)

<If possible, describe your knowledge and/or expectations for where the tool gives credit for safety
certification. This section is optional.>

6.1.1.5.1 Base components

6.1.1.5.2 Compositional certification: MILS systems

6.1.1.6 Use in certification: Common Criteria [20]

<If possible, describe your knowledge and/or expectations for where the tool gives credit for
Common Criteria. This section is optional.>

6.1.1.6.1 Base components

6.1.1.6.2 Compositional certification: MILS systems

6.1.1.7 Use in certification: IEC 62443 [21]

<If possible, describe your knowledge and/or expectations for where the tool gives credit for IEC
62443. Again, this section is optional.>

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 42 of 47

6.1.1.7.1 Base components

6.1.1.7.2 Compositional certification: MILS system

6.1.1.8 Use in certification: Other Security Certification (such as e.g. IEC TS
62531 [42], DIN VDE V 0831-104 [43], etc.)

6.1.1.8.1 Base components

6.1.1.8.2 Compositional certification: MILS systems

<If possible, describe your knowledge and/or expectations for where the tool gives credit for other,
e.g. domain specific security certification. This section is optional.>

6.1.1.9 Related tools

<Mention related tools>.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 43 of 47

Chapter 7 References

[1] AbsInt GmbH, “Fast and sound runtime error analysis,” 2017. [Online]. Available:
https://www.absint.com/astree/index.htm.

[2] RTCA SC-205 / EUROCAE WG-71, DO-178C: Software Considerations in Airborne Systems
and Equipment Certification, Radio Technical Commission for Aeronautics (RTCA), Inc.,
1150 18th NW, Suite 910, Washington, D.C. 20036, 2011.

[3] P. Bame, “PMCCABE Overview,” 2017. [Online]. Available:
https://people.debian.org/~bame/pmccabe/overview.html.

[4] T. J. McCabe, “A complexity measure,” IEEE Transactions on software Engineering, no. 4,
pp. 308-320, 1976.

[5] N. Saini, S. Kharwar and A. Agrawal, “A study of significant software metrics,” 2014. [Online].
Available: http://www.ijeijournal.com/papers/Vol.3-Iss.12/A030120107.pdf.

[6] J. Delange, J. J. Hudak, W. R. Nichols, J. McHale and M.-Y. Nam, “Evaluating and Mitigating
the Impact of Complexity in Software Models,” 2015. [Online].

[7] S. Burger and O. Hummel, “Applying Maintainability Oriented Software Metrics to Cabin
Software of a Commercial Airliner,” mar 2012. [Online]. Available:
https://doi.org/10.1109/CSMR.2012.58.

[8] N. E. Fenton and M. Neil, “A critique of software defect prediction models,” IEEE
Transactions on software engineering, vol. 25, no. 5, pp. 675-689, 1999.

[9] M. Shepperd, “A critique of cyclomatic complexity as a software metric,” Software
Engineering Journal, vol. 3, no. 2, pp. 30-36, 1988.

[10] A. Muslija, “On the Complexity Measurement of Industrial Control Software,” 2017. [Online].
Available: http://www.idt.mdh.se/utbildning/exjobb/files/TR1984.pdf.

[11] A. Jbara, “High-MCC Functions in the Linux Kernel,” 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/6240512/.

[12] A. Jbara and D. G. Feitelson, “How programmers read regular code: a controlled experiment
using eye tracking,” jun 2017. [Online]. Available: http://link.springer.com/10.1007/s10664-
016-9477-x.

[13] Y. Gil and G. Lalouche, “On the correlation between size and metric validity,” oct 2017.
[Online]. Available: http://link.springer.com/10.1007/s10664-017-9513-5.

[14] T. J. McCabe and C. W. Butler, “Design Complexity Measurement and Testing,” dec 1989.
[Online]. Available: http://doi.acm.org/10.1145/76380.76382.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 44 of 47

[15] D. J. Sturtevant, “System design and the cost of architectural complexity,” 2013. [Online].

[16] U. Tiwari and S. Kumar, “Cyclomatic complexity metric for component based software,” feb
2014. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2557833.2557853.

[17] International Electrotechnical Commission, Technical Committee 65: Industrial-process
measurement and control, Subcommittee 65A: System aspects, “IEC 61508: Functional
safety of electrical/electronic/programmable electronic safety-related systems,” 2010.
[Online]. Available: http://www.iec.ch/.

[18] International Electrotechnical Commission, “IEC 62290: Railway applications - Urban guided
transport management and command/control systems - Part 1: System principles and
fundamental concepts,” 2014. [Online].

[19] S. Kan, Metrics and Models in Software Quality Engineering, Addison Wesley, 2003.

[20] Common Criteria Sponsoring Organizations, “Common Criteria for Information Technology
Security Evaluation. Version 3.1, revision 4,” September 2012. [Online]. Available:
http://www.commoncriteriaportal.org/cc/.

[21] International Electrotechnical Commission, Technical Committee 65: Industrial-process
measurement and control, “IEC 62443: Security for industrial automation and control
systems,” 2017. [Online]. Available: http://www.isa99.org/.

[22] L. Paulson, T. Nipkow and M. Wenzel, “Isabelle,” 2017. [Online]. Available:
http://www.cl.cam.ac.uk/research/hvg/Isabelle/.

[23] F. Wiedijk, “Is ZF a hack? Comparing the complexity of some (formalist interpretations of)
foundational systems for mathematics,” 2006. [Online]. Available:
http://www.cs.ru.nl/F.Wiedijk/zfc-etc/zfc-etc.pdf.

[24] H. Blasum, O. Havle, S. Tverdyshev, B. Langenstein, W. Stephan, A. Feliachi, Y. Nemouchi,
B. Wolff, C. Proch, F. Verbeek and J. Schmaltz, “Used Formal Methods,” 13 Oct 2015.
[Online]. Available: http://dx.doi.org/10.5281/zenodo.47297.

[25] Y. Zhao, D. Sanan, F. Zhang and Y. Liu, “High-Assurance Separation Kernels: A Survey on
Formal Methods,” 2017. [Online]. Available: https://arxiv.org/abs/1701.01535.

[26] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe, K.
Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch and S. Winwood, “seL4: Formal
Verification of an OS Kernel,” Jun 2010. [Online]. Available:
http://ertos.nicta.com.au/publications/papers/Klein_EHACDEEKNSTW_10.pdf.

[27] J. Rushby, “Design and verification of secure systems,” 1981. [Online]. Available:
http://www.sdl.sri.com/papers/sosp81/sosp81.pdf.

[28] F. Verbeek, O. Havle, J. Schmaltz, S. Tverdyshev, H. Blasum, B. Langenstein, W. Stephan,
B. Wolff and Y. Nemouchi, “Formal API Specification of the PikeOS Separation Kernel,”
2015. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-17524-9_26.

[29] F. Verbeek, J. Schmaltz, O. Havle, B. Wolff and B. Langenstein, “MCISK,” 30 Mar 2016.
[Online]. Available: http://dx.doi.org/10.5281/zenodo.48658.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 45 of 47

[30] F. Verbeek, S. Tverdyshev, O. Havle, H. Blasum, B. Langenstein, W. Stephan, Y. Nemouchi,
A. Feliachi, B. Wolff and J. Schmaltz, “Formal Specification of a Generic Separation Kernel,”
2014. [Online]. Available: http://afp.sourceforge.net/entries/CISC-Kernel.shtml.

[31] J. Schmaltz, H. Blasum, B. Langenstein, B. Leconte, K. Müller, F. Verbeek and R. Koolen,
“Formal Framework for MILS Integration,” 03 Feb 2016. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.57413.

[32] BAE SYSTEMS DATAGATE (formerly Tenix Datagate), “Tenix Interactive Link Data Diode
Device Version 2.1,” 2005. [Online]. Available:
http://www.commoncriteriaportal.org:80/files/epfiles/st_vid9512-st.pdf.

[33] BAE SYSTEMS DATAGATE (formerly Tenix Datagate), “Tenix Interactive Link Data Diode
Device, Gigabit Variant, Version 3.0,” 2006. [Online]. Available:
http://www.commoncriteriaportal.org:80/files/epfiles/st_vid9513-st.pdf.

[34] BAE SYSTEMS DATAGATE (formerly Tenix Datagate), “Tenix Interactive Link Version 5.1,”
2005. [Online]. Available: http://www.commoncriteriaportal.org:80/files/epfiles/st_vid1021-
st.pdf.

[35] Gemalto, “Java Card Virtual Machine of LinqUs USIM 128k platform on SC33F640E,” 2012.
[Online]. Available: http://www.commoncriteriaportal.org:80/files/epfiles/ANSSI-CC-
cible_2012-18en.pdf.

[36] EURO-MILS, “Guide to EURO-MILS results,” 31 Aug 2016. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.61251.

[37] NLNCSA, “Composite product evaluation for Smart Cards and similar devices,” 2012.
[Online]. Available: https://www.commoncriteriaportal.org/files/supdocs/CCDB-2012-04-
001.pdf.

[38] International Society of Automation, Working Group 04, Task Group 06, “IEC 62443:
Security for industrial automation and control systems: Part 4-1: Secure product
development life-cycle requirements,” March 2016. [Online]. Available:
http://isa99.isa.org/Public/Series/Documents/ISA-62443-4-1-Public.pdf.

[39] S. Nordhoff and H. Blasum, “Ease Standard Compliance by Technical Means via MILS,”
2017. [Online]. Available: https://doi.org/10.5281/zenodo.571176.

[40] F. Wiedijk and D. Scott, “The Seventeen Provers of the World,” 2005. [Online]. Available:
http://www.cs.ru.nl/~freek/comparison/comparison.pdf.

[41] Schneider Electric, “SCADALAB (2012 – 2014),” 2017. [Online]. Available:
http://www.schneider-electric.com/b2b/en/products/medium-voltage-switchgear-and-energy-
automation/r-and-d-projects/scadalab.jsp.

[42] International Electrotechnical Commission, Technical Committee 57, “IEC TS 62351 Power
systems management and associated information exchange - Data and communications
security,” 2007. [Online]. Available: http://www.iec.ch/.

[43] DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik in DIN und VDE,
UK 351.3 Bahn-Signalanlagen, “DIN VDE V 0831-104: Elektronische Bahn-Signalanlagen -

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 46 of 47

Teil 104: Leitfaden für die IT-Sicherheit auf Grundlage IEC 62443,” Oct 2015. [Online].

[44] M. Zalewski, “american fuzzy lop (2.52b),” 2017. [Online]. Available:
http://lcamtuf.coredump.cx/afl/.

[45] V. Nossum and Q. Casasnovas, “Filesystem Fuzzing with Americal Fuzzy Lop,” 2018.
[Online]. Available:
http://events.linuxfoundation.org/sites/events/files/slides/AFL%20filesystem%20fuzzing%2C
%20Vault%202016_0.pdf.

[46] Lolware, “Fuzzing nginx - Hunting vulnerabilities with afl-fuzz,” 2015. [Online]. Available:
https://lolware.net/2015/04/28/nginx-fuzzing.html .

[47] LLVM, “libFuzzer – a library for coverage-guided fuzz testing,” [Online]. Available:
http://llvm.org/docs/LibFuzzer.html#afl-compatibility.

[48] ISA Security Compliance Institute, “SDLA-312 Security Development Lifecycle Assessment
Version 3.0,” 2014. [Online]. Available: http://www.isasecure.org/en-US/Certification/IEC-
62443-SDLA-Certification.

[49] IBM, “Rational DOORS,” 2017. [Online]. Available: http://www-
03.ibm.com/software/products/en/ratidoor/.

[50] IBM, “Rational DOORS: Purchase,” 2017. [Online]. Available: https://www.ibm.com/us-
en/marketplace/requirements-management/purchase.

[51] Object Management Group, “Requirements Interchange Format,” 2016. [Online]. Available:
http://www.omg.org/spec/ReqIF/1.2/PDF/.

[52] V. Hilderman and T. Baghi, Avionics certification: A Complete Guide to DO-178 (Software)
DO-254 (Hardware), Leesburg, VA: Avionics Communications Inc., 2007.

[53] Common Criteria Sponsoring Organizations, “Certified Products,” 2017. [Online]. Available:
http://www.commoncriteriaportal.org/products/.

[54] H. Blasum, “ccportaldump,” 2017. [Online]. Available:
https://github.com/hblasum/ccportaldump.

[55] TNO Certification, “NSCIB-CC-09-11192 Certification Report STARCOS 3.4 ID Tachograph
C2,” 2010. [Online]. Available:
http://www.commoncriteriaportal.org/files/epfiles/Certification_Report_NSCIB-CC-09-11192-
CR2.pdf.

[56] Trusted Architecture for Securely Shared Services, “Trusted Architecture for Securely
Shared Services: Overview,” 2017. [Online]. Available: http://tas3.eu/.

[57] S. Gürses, M. Seguran and N. Zannone, “Requirements engineering within a large-scale
security-oriented research project: lessons learned,” 2013. [Online]. Available:
http://dx.doi.org/10.1007/s00766-011-0139-7.

[58] eclipse Foundation, “ProR Requirements Engineering Platform,” 2017. [Online]. Available:
http://www.eclipse.org/rmf/pror/.

D1.2 - List of tools and techniques applicable for medium and high assurance

certMILS D1.2 Page 47 of 47

[59] ANSYS, “medini analyze - functional safety,” ANSYS medini Technologies AG, 2017.
[Online]. Available: http://www.medini.eu/index.php/en/products/functional-safety. [Accessed
18. May 2017].

[60] ANSYS, “medini analyze - Quality, Safety and Reliability Engineering,” [Online]. Available:
http://www.medini.eu/images/stories/ikv/pdf/medinianalyzekeyfacts.pdf. [Accessed 18. May
2017].

[61] SESAMO, “Security and Safety Modelling,” ARTEMIS Joint Undertaking (Grant Agreement
No. 295354), [Online]. Available: http://sesamo-project.eu/. [Accessed 18. May 2017].

[62] M. Howard and S. Lipner, “The Security Development Lifecycle,” 2006. [Online]. Available:
https://aka.ms/SDL/PDF.

[63] ISASecure, “Vulnerability Identification Testing Tool,” 2017. [Online]. Available:
http://isasecure.org/en-US/Test-Tools/Vulnerability-Identification-Testing-Tool.

[64] ISASecure, “CRT Test Tools,” 2017. [Online]. Available: http://isasecure.org/en-US/Test-
Tools/Recognized-CRT-Test-Tools.

[65] MITRE, “CWE-Compatible Products and Services,” 2017. [Online]. Available:
https://cwe.mitre.org/compatible/compatible.html.

[66] NIST Computer Security Resource Center, “NVD - SCAP Validated Tools,” 2017. [Online].
Available: https://nvd.nist.gov/scap/validated-tools#scap_labs.

	Executive summary
	Contents
	List of figures
	List of tables
	Chapter 1 Introduction
	Chapter 2 Tools and techniques
	2.1 Static analysis
	2.1.1 Taint analysis
	2.1.1.1 Tool acquisition
	2.1.1.2 Tool characterization
	2.1.1.3 Properties that can be asserted
	2.1.1.4 Usage experience
	2.1.1.4.1 Base components
	2.1.1.4.1.1 Input and its preparation
	2.1.1.4.1.2 Output and its interpretation

	2.1.1.4.2 MILS systems

	2.1.1.5 Use in certification
	2.1.1.6 Use in certification: Common Criteria

	2.1.2 Complexity metrics
	2.1.2.1 Tool acquisition
	2.1.2.2 Tool characterization
	2.1.2.3 Properties that can be asserted
	2.1.2.4 Usage experience
	2.1.2.5 Use in certification: Safety certification (such as e.g. IEC 61508 [17], DO-178 [2], IEC 62290 [18], etc.)
	2.1.2.5.1 IEC 61508
	2.1.2.5.2 DO-178C [2]

	2.1.2.6 Use in certification: Common Criteria [20]
	2.1.2.7 Use in certification: IEC 62443 [21]

	2.2 Formal models
	2.2.1 Isabelle/HOL
	2.2.1.1 Tool acquisition
	2.2.1.2 Tool characterization
	2.2.1.3 Properties that can be asserted
	2.2.1.4 Usage experience
	2.2.1.4.1 Base components
	2.2.1.4.1.1 Input and its preparation
	2.2.1.4.1.2 Output and its interpretation

	2.2.1.4.2 MILS systems
	2.2.1.4.2.1 Input and its preparation
	2.2.1.4.2.2 Output and its interpretation

	2.2.1.4.3 Usability/scalability/interoperability

	2.2.1.5 Use in Common Criteria [20]
	2.2.1.5.1 Base components
	2.2.1.5.2 Compositional certification: MILS systems

	2.2.1.6 Use in IEC 62443 [21]
	2.2.1.6.1 Base components
	2.2.1.6.2 MILS system

	2.2.1.7 Related tools

	2.3 Security testing
	2.3.1 OpenVAS
	2.3.1.1 Tool acquisition
	2.3.1.2 Tool characterization
	2.3.1.3 Properties that can be asserted
	2.3.1.4 Usage experience
	2.3.1.4.1 Base components
	2.3.1.4.1.1 Input and its preparation
	2.3.1.4.1.2 Output and its interpretation

	2.3.1.5 Use in certification: Safety certification (IEC 61508 [17], DO-178 [2], IEC 62290 [18], etc.)
	2.3.1.6 Use in certification: Common Criteria [20]
	2.3.1.7 Use in certification: IEC 62443 [21]
	2.3.1.8 Use in certification: Other Security certification (IEC TS 62531 [42], DIN VDE V 0831-104 [43])
	2.3.1.9 Related tools

	2.3.2 Achilles
	2.3.2.1 Tool acquisition
	2.3.2.2 Tool characterization
	2.3.2.3 Properties that can be asserted
	2.3.2.4 Usage experience
	2.3.2.4.1 Base components
	2.3.2.4.1.1 Input and its preparation
	2.3.2.4.1.2 Output and its interpretation

	2.3.2.5 Use in certification: Safety certification (IEC 61508 [17], DO-178 [2], IEC 62290 [18], etc.)
	2.3.2.6 Use in certification: Common Criteria [20]
	2.3.2.7 Use in certification: IEC 62443 [21]
	2.3.2.8 Use in certification: Other Security certification (IEC TS 62531 [42], DIN VDE V 0831-104 [43])
	2.3.2.9 Related tools

	2.3.3 Fuzzing
	2.3.3.1 Tool acquisition
	2.3.3.2 Tool characterization
	2.3.3.3 Properties that can be asserted
	2.3.3.4 Usage experience
	2.3.3.4.1 Usability/scalability/interoperability

	2.3.3.5 Use in certification: Common Criteria [20]
	2.3.3.6 Use in certification: IEC 62443 [21]
	2.3.3.7 Use in certification: Other Security certification (IEC TS 62531 [42], DIN VDE V 0831-104 [43])

	2.4 Tools for documentation and assurance case creation
	2.4.1 DOORS
	2.4.1.1 Tool acquisition
	2.4.1.2 Tool characterization
	2.4.1.3 Properties that can be asserted
	2.4.1.4 Usage experience
	2.4.1.4.1 Input and its preparation
	2.4.1.4.2 Output and its interpretation
	2.4.1.4.3 Usability/scalability/interoperability

	2.4.1.5 Use in certification: Safety certification (IEC 61508 [17], DO-178 [2], IEC 62290 [18], etc.)
	2.4.1.6 Use in certification: Common Criteria [20]
	2.4.1.6.1 Base components

	2.4.1.7 Use in certification: IEC 62443 [21]
	2.4.1.8 Related tools

	2.4.2 Medini analyze
	2.4.2.1 Tool acquisition
	2.4.2.2 Tool characterization
	2.4.2.3 Properties that can be asserted
	2.4.2.4 Usage experience
	2.4.2.5 Use in certification
	2.4.2.6 Related tools

	Chapter 3 Discussion
	3.1 Security properties / assurance that can be asserted
	3.2 Efforts of tool use
	3.3 Compositional aspects
	3.4 Tool scope for standards
	3.5 Check against tools listed in security tool registries
	3.6 Further research / interaction between project partners

	Chapter 4 List of abbreviations
	Chapter 5 Appendix: Comparison with other tool lists
	5.1 Types of Assurance
	5.2 Other security tools
	5.3 Results

	Chapter 6 Appendix: Used Template
	6.1.1 Tool name
	6.1.1.1 Tool acquisition
	6.1.1.2 Tool characterization
	6.1.1.3 Properties that can be asserted
	6.1.1.4 Usage experience
	6.1.1.4.1 Base components
	6.1.1.4.1.1 Input and its preparation
	6.1.1.4.1.2 Output and its interpretation

	6.1.1.4.2 MILS systems
	6.1.1.4.2.1 Input and its preparation
	6.1.1.4.2.2 Output and its interpretation

	6.1.1.4.3 Usability/scalability/interoperability

	6.1.1.5 Use in certification: Safety Certification (IEC 61508 [17], DO-178 [2], IEC 62290 [18], etc.)
	6.1.1.5.1 Base components
	6.1.1.5.2 Compositional certification: MILS systems

	6.1.1.6 Use in certification: Common Criteria [20]
	6.1.1.6.1 Base components
	6.1.1.6.2 Compositional certification: MILS systems

	6.1.1.7 Use in certification: IEC 62443 [21]
	6.1.1.7.1 Base components
	6.1.1.7.2 Compositional certification: MILS system

	6.1.1.8 Use in certification: Other Security Certification (such as e.g. IEC TS 62531 [42], DIN VDE V 0831-104 [43], etc.)
	6.1.1.8.1 Base components
	6.1.1.8.2 Compositional certification: MILS systems

	6.1.1.9 Related tools

	Chapter 7 References

