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 Objective: Jatropha curcus belonging to the Family, Euphorbiaceous commonly known as 

physic nuts.  It is well known herb all over the world. J.curcas oil is not edible and is 

traditionally used for manufacturing soap and other  medicinal applications.  It is an 

alternative fuel for diesel engines. This review is based on focusing on the biodiesel 

production from the plant Jatropha curcas. Methods: Production of Biodiesel from Jatropha 

curcas seed oil involved  three  steps include  extraction of oil from the seed, acid-catalyzed 

transesterification, and base-catalyzed transesterification, each of which is well-known and 

widely-utilized in today’s biodiesel industry The  produced  bio diesel was characterized to 

obtain its physicochemical parameters such as flash point, pour point, cloud point, viscosity 

and density. Results: The results obtained from the calculation of the yield of oil extracted 

revealed 54% of oil could be obtained from the Jatropha seeds used. According to the results, 

the values obtained from the analysis of the oil especially free fatty acid, density and 

kinematic viscosity of the oil were found to compare well with the standard (ASTM), which 

was an indication that the extracted oil was good and suitable for biodiesel production The 

considered parameters oil content, iodine value, peroxide value, saponification value and acid 

value. These parameters were done in order to study the oil property of J curcas L which 

makes the oil most suitable for biodiesel production. Conclusions: In these reveals that 

biodiesel has become more attractive as an alternative to fossil diesel because of its 

environmental benefits and the fact that it is made from renewable resource. J. curcas L. is a 

promising source of biodiesel since its seeds contain high amount of oil and the species has 

good agronomic traits. 

Please cite this article in press as Dhanapal Venkatachalam et al.Review Studies on Bio-Diesel Production from Physic Nut 

(Jatropha Curcus) Oil. Indo American Journal of Pharmaceutical Research.2019:9(02). 
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INTRODUCTION: 

Jatropha curcas L. or physic nut is a drought resistant large shrub or small tree, belonging to the genus Euphorbiaceae, 

producing oil containing seeds (Jongschaap et al, 2007). Jatropha curcas L. is the commonest specie found in  India, but many species 

exist in different parts of the world. Heller,(1996) reported about 165-175 species that were known from the genus Jatropha Bhagat 

and Kulkarni(nd) report 14 wild and cultivated species in India. Jatropha is suitable for quick and efficient domestication compared 

with other woody species (Achten, et al, 2010). Names used to describe the plant vary per region or country. It is most commonly 

known as ‘Physic nut‟. In Mali it is known as “Pourghere”. Unlike the major oil seed crops, there are currently no agronomica lly 

improved varieties available for J. curcas. At present, the varieties being used to established plantations in Africa and Asia are 

inedible (King et al,2009) Due to its toxicity, J.curcas oil is not edible and is traditionally used for manufacturing soap and medicinal 

applications (Jongschaap et al, 2007).  

Due to the fact that the seeds of J.curcas contains some toxins compounds such as those reported by (King et al, 2009) a 

protein (curcin) and phorbol-esters (diterpenoids), other researchers (Goel, et al,2007) suggested that the detoxification or complete 

removal of phorbol esters is essential before its use in industrial or medicinal applications.  

Biodiesel production is one of the current areas of research in academics because of the serious search for alternative effect of 

temperature and mixing rate variation on biodiesel production from Jatropha using sodium hydroxide catalyst and methanol. In the 

work, high temperature and high mixing intensity were found to increase the rate constants of the process best combination of the 

parameters for production of biodiesel from Jatropha curcas were 6:1 molar ratio of methanol to oil, 0.92% NaOH catalyst, 60oC 

reaction temperature and 60 min of reactionel from Jatropha curcas seed oil using potassium hydroxide catalysed transesterification 

process
1
. In order to achieve this aim, extraction of the oil from Jatropha curcas seed using solvent extraction method, Then the oil 

from Jatropha curcas is mainly converted into biodiesel for use in diesel engines
2
 The cake resulting from oil extraction, a protein-

rich product, can be used for fish or animal feed (if detoxified). It is also a biomass feedstock to power electricity plants or to produce 

biogas, and a high-quality organic fertilizer
3
 In 2007, Goldman Sachs cited Jatropha curcas as one of the best candidates for future 

biodiesel production. It is resistant to drought and pests, and produces seeds containing 27-40% oil, averaging 34.4%. The remaining 

press cake of jatropha seeds after oil extraction could also be considered for energy production. However, despite their abundance and 

use as oil and reclamation plants, none of the Jatropha species have been properly domesticated and, as a result, their productivity is 

variable, and the long-term impact of their large-scale use on soil quality and the environment is unknown
4
 2009 research found that 

Jatropha biodiesel production requires significantly more water than other common bio fuel crops, and that initial yield estimates 

were high
5
  

This paper attempts to review the production of biodiesel from the seeds of Jatropha curcus. 

 

Plant profile: 

 

    
 

Figure 1- Jatropha curcus plant with unripe fruit.       Figure 2- Fresh seeds of Jatropha curcus 
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Figure 3- Seeds of Jatropha curcus.                           Figure 4- Dried seeds of Jatropha curcus. 

 

The origin of Jatropha curcas and the Countries that are prominent in growing the plant: 

Jatropha curcas originates from central America and was distributed by Portuguese seafarers via the cape Verde Islands to 

countries in Africa and Asia .(Hernning,2003). Jatropha is widely grown in Mexico,Nicaragua, N.E.Thailand and in parts of India.  

 

Chemical Composition of Jatropha curacas L.  

Seed:  
The seeds contain around 20% saturated fatty acids and 80% unsaturated fatty acids, and they yield 25–40% oil by weight. In 

addition, the seeds contain other chemical compounds, such as saccharose, raffinose, stachyose, glucose, fructose, galactose, and 

protein. The oil is largely made up of oleic and linoleic acids. Furthermore, the plant also contains curcasin, arachidic, myristic, 

palmitic, and stearic acids and curcin.  

 

Seed Husks  
Seed kernel contains predominantly crude fat oil and protein while the seed coat (husk) contains mainly fibre.  

 

Seed Cake  
Seed cake makes an excellent organic fertilizer with high nitrogen content similar to, or better than, chicken manure with 

macronutrient contents such as Nitrogen% (4.4-6.5), P% (2.1-3.0), K% (0.9-1.7), Ca% (0.6-07) and Mg% (1.3-1.4) seed cake contains 

mainly proteins and carbohydrates.  

 

Seed Oil  

Jatropha seed oil chemically consists of triacylglycerol with linear fatty acid chain (unbranched) with/without double bonds. 

 

 
 

Biodiesel production from seed oil of the Jatropha curcas plant 

The production of biodiesel from Jatropha Curcas seeds were comprised of three major steps: 

1. Extraction of seed oil: A solvent extraction method is used to extract the oil from crushed Jatropha seed flakes. 

2. Treatment of seed oil: The free fatty acid content in the seed oil is reduced by acid-catalyzed transesterification to give a higher 

biodiesel yield product in the third and final step. 

3. Conversion of seed oil to biodiesel: This step utilizes base- catalyzed transesterification process which effectively produces 

biodiesel from the treated Jatropha Curcas seed oil
6
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Extraction of oil from Jatropha seeds: 

 

 
 

In preparation for oil extraction from the Jatropha seeds, they (the seeds) were sun dried, shelled and weighed. After then, 

they were sun dried again, ground and the weight of the ground seeds was taken. Solvent extraction method, using n-hexane as the 

solvent, was employed in extracting the oil from the ground seed meal. The choice of n-hexane as the extraction solvent was owing to 

the fact that it is non-poisonous and volatile with high affinity for oil. Besides, it can be easily recovered. At the end of oil extraction, 

the extract was filtered and the solvent was recovered using a rotary evaporator.The oil was further evaporated in an oven at 105ºC to 

eliminate residual solvent and moisture content. The percentage yield was then calculated using the relationship given in the following  

Equation
7
  

 

%Yield =% Weight of sample / Weight of oil 100 
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Extraction of Seed Oil Alternatives  
Alternatives methods for extracting the oil with in Jatropha seeds include mechanical pressing and ultrasonification. Of 

these, mechanical pressing with either manual or electrical power is most common. This technique lacks in efficiency, though, as only 

50-60% of the oil is able to be extracted from the seed husks. Also, heat generated during pressing of the oil and reduces the overall 

quality and yield. Ultra sonification, another method considered, entire the use of high-intensity acoustic energy and specialty 

equipment. The chosen method, solvent extraction, utilizes a solvent to extract oil from the seed husks. Many chemicals can serve as 

the solvent for this process, including hydrocarbon solvents like hexane, halogenated solvents like trichloroethylene, and supercritical 

solvents such as supercritical CO2. Hexane was chosen as the best solvent for this process due to two favorable characteristics—an 

extraction grade of 48-98% and a narrow distillation range
8
  

 

Determination of the Characteristics of the Oil  
The oil extracted from the Jatropha seeds was characterized and its physicochemical parameters such as acid value, 

saponification value, Iodine value, free fatty acids, density and kinetic viscosity were determined by official methods
9-13

.   It results 

showed to be sure that it would be suitable for biodiesel production. 

Acid value - (mgKOH/g) - 4.77  

Saponification value - (mgKOH/g) - 115.83  

Iodine value- (mEq/g) - 119.1  

Free fatty acid - (mgKOH/g) - 2.3  

Density - (g/cm3) - 0.874  

Kinematic viscosity - (cm3/s) - 4.57 

 

Process description for biodiesel production: 
As previously mentioned the proposed method for biodiesel production requires three main steps. These steps include hexane 

solvent extraction, acid-catalyzed transesterification, and base-catalyzed transesterification, each of which is well-known and widely-

utilized in today’s biodiesel industry. These steps also allow for a high yield of the final biodiesel product, the primary goal of process 

optimization, and each has been classified into one of four areas of the resulting simulation. Extraction of seed oil via hexane solvent 

extraction takes place in Area 100, treatment and conversion via transesterification occurs in Area 300, and biodiesel treatment and 

methanol recovery take place in Area 400. Hexane recovery, another important step, occurs in Area 200.  Simulation of this process 

was based on an annual biodiesel production of two million gallons
14

  

 

Biodiesel Production  
Transesterification process, which is the process of converting extracted oil into biodiesel, was carried out in this work by 

reacting the extracted Jatropha oil with methanol in the presence of potassium hydroxide as a catalyst to produce ester and glycerol. 

At the end of the reaction, glycerol and biodiesel formed two layers. After settling, the glycerol was at the bottom while the biodiesel 

was at the top of the container used. The layers were later separated from each other by draining the glycerol from the bottom of the 

flask containing the mixture. The initial triglyceride content of the oil was determined by titrimetric analysis. Keeping reaction 

temperature and stirring rate constant at 65ºC and 460 rpm respectively, three different biodiesel production conditions were varied. 

Firstly, transesterification was done keeping the molar ratio of oil to methanol at 4:1 and 2.5% catalyst concentration and varying 

reaction time. Secondly, keeping the reaction time at 75 minutes, 4:1 molar ratio and varying the catalyst load, another set of biodiesel 

was produced. Thirdly, the methanol to oil molar ratio was varied while keeping constant the reaction time at 75 min and the catalyst 

concentration at 2.5%. Thereafter, another biodiesel production was carried out using the obtained optimum parameters from the 

investigations carried out before, and the yield of that was determined by titrimetric analysis and appropriate calculations
15

 

 

Design Alternatives  
There are several design alternatives for the production of biodiesel from Jatropha curcas seed oil. Alternatives for the main 

steps of the production process are as follows
16

  

 

Treatment of Seed Oil and Conversion of Seed Oil to Biodiesel Alternatives  
Biodiesel production process was designed as follows, beginning with the extraction of the raw seed oil. First, raw Jatropha 

Curcas seeds are crushed in a grinder. The Jatropha curcas oil (JCO) is then removed from the seed flakes using hexane solvent 

extraction. The hexane solvent extraction and recycle system is comprised of a rotocel extractor, a stripper column, a rotary dryer, and 

a decanter. The recycle system effectively separates the hexane from both the extracted flakes and the hexane-JCO mixture, also 

known as the miscella. This extraction system consists of the equipment required to separate the hexane from the miscella and wet 

seed cake
17

 Hexane found in the miscella exiting the rotocel extractor is recovered by stripping it from the JCO. This takes place in the 

steam-fed stripping column, and hexane is recovered from the hexane-wet flake slurry by evaporating it with steam in the rotary dryer. 

The water-hexane mixtures are condensed and sent to the decanter, where the water is separated and the hexane is recycled
18
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Section X-100  
The heart of the solvent extraction process, the extractor, must transport the Jatropha curcas flakes as intended but still allow 

adequate exposure of the flakes to the hexane stream. The extraction of JCO from seed husks begins by feeding ground Jatropha 

curcas seed flakes into the extractor of choice for this design, a continuous rotocel extractor (X-100). This device resembles a 

carousel, with walled, annular sectors that lie on a horizontal plane and are slowly rotated by a motor. The cells, which catch and hold 

the solids, have perforated undersides to allow for solvent drainage. Each cell successively passes through a solids feed area, a series 

of solvent sprays, a final spray and drainage area, and a solids discharge area. Fresh solvent is supplied to the cell at a rate of 2373 

L/hr, with flakes being supplied at a rate of 2760kg/hr. The wet seed cake is then fed into a discharge hopper and sent to the rotary 

dryer, while the miscella is sent to the stripper for hexane recovery
19

  

 

Section X-101  
The wet seed cake exiting the rotary extractor contains 25-30 wt% hexanes. To recover this hexane, the cake is fed directly 

into a rotary dryer (X-101). This dryer consists of a rotating cylindrical shell that is slightly inclined. This incline is specified as 

having a slope of less than 8cm/m from the horizontal plane. The wet seed cake is fed into the dryer at the high end of the shell, and 

the dry cake is discharged from the low end. A steam stream flows counter-current to the solids at a rate of 250L/hr, thus evaporating 

the hexane from the seed cake. The bulk solids occupy 10-18% of the cylinder volume with a residence time of 30 minutes. The dry 

cake exiting the rotary dryer is then sent to an incinerator, with hexane-water vapors being condensed and collected into a decanter. 

Heat produced from dry cake incineration is used for heat exchange and to preheat the steam used in this step, providing an added 

level of efficiency and cost savings
20

  

 

Section T-120  
The miscella leaving the extractor is approximately 66 wt% hexane. To recover this hexane, the miscella stream is fed into a 

stripper column (T-120). The stripper of choice is a vertically structured column with eight valve trays, each separated by 12 inches. 

The column is 22 feet tall and has a diameter of 8.4 inches. There is a four foot head space above the top tray where entrained liquid is 

removed. Also, a 10- foot space below the bottom tray adds bottoms surge capacity. Two streams enter into the stripper—the miscella 

and a steam stream used to strip hexane from the JCO within the miscella. The steam stream is fed conditions of 160°C and 240 kPa, 

and the column operates at 160°C and 200 kPa. The boiling point of the JCO, approximately 870°C, is far greater than that of hexane, 

approximately 69°C, so the hexane stripped JCO flows downward and exists as the bottoms product. This process is highly-effective, 

removing approximately 99.99% of the hexane from the JCO. The resulting hexane-steam mixture is condensed and sent to the 

decanter, and the JCO is pumped to the appropriate storage tank. All condensed hexane-water mixture is collected into the decanter 

where, because of a difference in densities, the hexane and water separate. This solution is then heated to remove the hexane, and the 

water is discharged to the sewer. The vaporized hexane is recycled and directed back to the rotocel extractor
21

  

 

Area 200: Hexane Recovery  
 Thus, Area 200 was designed to prevent excessive emission of hexane from the closed systems in Area 100. In addition to 

increasing plant safety through confining all hexane into a single system, this design also provides the benefit of increased hexane 

recovery for recycle. Vapors from the extractor, the condensers, the rotocel extractor, and the heaters are all directed to Area 200 in 

order to recover any hexane present. The hexane recovery system consists of a vent condenser and a mineral oil stripper-absorber 

system
22 

 

Section E-200  
As indicated in the above figure, a vent blower maintains a slight negative pressure on the entire extraction system. If a leak 

occurs in the system, this pressure will cause air to enter into system, rather than having hexane leak out. The vent vapor from the 

condensers and process tanks first enters the vent condenser (E-200), and then continues to the mineral oil absorption column
23

  

 

Section T-210  
The mineral oil absorption column (T-210) is a vertically structured column with nine valve trays, each separated by 12 

inches. The column is 23feet tall and has a diameter of 13.9 inches. There is a four foot head space above the top tray where water 

vapor is allowed to be removed. A 10-foot space below the bottom tray adds bottoms surge capacity. Two streams enter into the 

absorber—hexane water vapor and a cooled mineral oil stream used to absorb hexane vapors. The vapor streams flow counter current 

to a stream of cooled mineral oil. Because hexane and mineral oil are both non-polar liquids, they are miscible. The cooler the mineral 

oil, the higher is hexane’s affinity to dissolve into it. The vapor, now free of hexane, exits the top of the column and is safely 

discharged into the surrounding atmosphere. The mineral oil absorbs the hexane and collects in the bottom of the column. After 

exiting the bottom of the column, the solution is pumped through a heater, and sent to the stripper column
24  
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Section T-211  
The mineral oil stripper column (T-211) is a vertically structured column with nine valve trays, each separated by 12 inches. 

The column is 23feet tall and has a diameter of 13.9 inches. There is a four foot head space above the top tray where water vapor is 

allowed to be removed. A 10-foot space below the bottom tray adds bottoms surge capacity. Two streams enter into the stripper - rich 

oil from the absorber column and steam which is used to strip hexane vapors from the mineral oil. In this column, the heated mineral 

oil-hexane mixture flows counter current to the steam stream, stripping the hexane from the mineral oil. The hot mineral oil, now free 

of hexane, is pumped through the oil cooler. The hexane vapor and steam from the top of the column are condensed in the vent 

condenser and the hexane-water mixture is sent to the decanter V110, where hexane and water are separated and hexane is recycled 
25

  

 

Area 300: Treatment and Conversion of Seed Oil to Biodiesel  
Area 300 is comprised of two batch tank reactors and two decanters. The treatment of the crude JCO, an acid-catalyzed 

transesterification process, reduces the free fatty acid content of Jatropha curcas seed oil from 10-20% to less than 1%, achieved by 

converting the free fatty acids into biodiesel intermediates. This increases the overall efficiency of the conversion process that follows, 

where the seed oil is converted into biodiesel. This conversion process is a base-catalyzed transesterification process which occurs in 

the second batch reactor. Following each batch tank is a decanter which allows the reactor effluents to settle and separate before 

continuing on to the next step in the process
26

  

 

Section X-300  
JCO enters the first batch reactor tank (X-300) at a pressure of 1 atm and a temperature of 60°C. For each batch, 6665 L of 

JCO is fed into the reactor, where base-catalyzed transesterification takes place. This process requires that the Jatropha curcas seed 

oil be treated with 0.28 volume/volume of methanol, using 1.43% volume/volume of sulfuric acid (H2SO4) as a catalyst. The volumes 

of methanol and sulfuric acid added to the reactor are 2458 L and 16 L, respectively. Both the methanol and the sulfuric acid enter at 

atmospheric pressure and 25°C. This reaction has been optimized to run for 88 minutes at a temperature of 60°C. The optimized 

reaction time for each batch is 88 minutes. A head space of approximately 10 % of the overall volume was specified for this reactor, 

and the size of the reactor tank will be 10500 L. The exit stream contains 9174 L, consisting of 33% treated JCO and 60% biodiesel; 

the remainder is comprised of methanol, sulfuric acid, FFAs, and water
27

  

 

Section V-310  
The exit stream from the reactor flows into the horizontal decanter (V-310), where a gravity-induced settling occurs and two 

layers separate due to density differences. Two layers that separate in this decanter an organic layer containing JCO, biodiesel, FFAs, 

and a small amount of sulfuric acid, and a second layer containing water, glycerol, methanol, and the remaining sulfuric acid. The 

organic layer then proceeds to the second reactor, while the second layer continues for treatment in Area 400
28

  

 

Section X-301  
The second reactor (X-301) converts the remaining source oil into biodiesel. This step also neutralizes the sulfuric acid in the 

treated Jatropha curcas oil stream leaving the reactor. This reactor tank carries out a base-catalyzed transesterification reaction which 

converts the JCO in the form of mono-, di-, and triglycerides into the final biodiesel product. The purified JCO is added in batches of 

9130 L and treated with 0.20 volume/volume of methanol, approximately 2557 L, and with 0.55% weight/volume of sodium 

hydroxide, approximately 85.4 kg. Each batch has an optimized reaction time of 30 minutes and runs at a temperature of 60°C. 

A headspace of approximately 10% of the total volume is necessary, with a reactor tank size of 13500 L. The side products in 

this reactor include glycerin, sodium sulfate, water, and residual soaps. These side products must be treated in Area 400 before a 

sellable product can be achieved
29

  

 

Section V-311  
The exit stream from the second reactor flows into a second horizontal decanter (V-311) to allow for settling and the 

separation of layers. Similar to the previous decanter, the organic layer contains mostly biodiesel, with trace amounts of JCO, FFAs, 

and sodium sulfate. The bottom layer is comprised of glycerol, methanol, sulfuric acid, sodium sulfate, and residual soaps. The 

biodiesel-rich layer is treated in Area 400 to increase its purity. The bottom layer will also be directed to Area 400 for treatment and 

methanol recovery 
30

  

 

Area 400: Biodiesel Treatment and Methanol Recovery  

Section T-400  
Distillation column (T-400) separates methanol from the crude glycerol and vapors vented from Area 300. The separated 

methanol is recycled back to methanol feed area and is reused in Area 300. The glycerol exiting the bottom of the distillation column 

is sent to storage and is ready for resale. This column operates with a pressure of 101.3 kPa. Crude glycerol enters at a flow rate of 

88.3 L/hr. The column contains 10 stages, with the feed entering in the 6 th stage. The specified diameter is six inches and its height is 

15 feet, with an optimized reflux ratio of 1.34. The distillate is comprised of 70 mol% glycerol, 12.8 mol% water, and a remainder of 

Na2SO4 salts 
31
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Section V-410  
The glycerol leaving the bottom of the distillation column is collected into a storage tank (V-410), which has been specified 

to hold up to 10 batches. This equates to approximately a 15,000 L capacity 
32

  

 

Section T-401  
The counter current liquid-liquid extraction spray column (T- 401). This design allows for a pure product with as little waste 

water as possible. Crude biodiesel from Area 300 enters the bottom of the column and travels upward while contacting water droplets 

sprayed from the top of the column. The washed biodiesel exits the top of the spray column and is collected into a storage tank (V-

411). Waste water exiting the bottom of the column is sent into the drainage system. Washing the biodiesel is extremely important 

because contaminates such as unreacted methanol and catalyst will damage equipment and burn poorly in diesel engines. This is 

reflected in the ASTM D6751 biodiesel standards which require the removal of glycerin, catalyst, alcohols, and FFAs. In order to 

wash the biodiesel, water is sprayed into the tower as the dispersed phase. As it travels through the crude biodiesel, the water collects 

methanol, dissolved salts, and unused catalyst found in the diesel. The total volume of water suggested for washing biodiesel is a 

standard 2:1 volumetric ratio of water to biodiesel. The column operates with a pressure of 101.3 kPa. Crude biodiesel enters the 

column at a rate of 897 L/hr. The column contains 10 stages, with the feed entering in the 6th stage. The diameter is six inches and its 

height is 15 feet, with an optimized reflux ratio of 1.34. The distillate is comprised of 96.2mol% Jatropha-based biodiesel, 1.78 mol% 

water, and a remainder of methanol. 4.5.4.
33

  

 

Section V-411  
The biodiesel exiting the top of the distillation column is collected into a storage tank (V-411), which has been specified to 

hold up to 10 batches. This equates to approximately a 90,000 L capacity.
34 
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Exploitation of Jatropha (Gubitz, et al, 1998) 
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CONCLUSION 

 Biodiesel has become more attractive as an alternative to fossil diesel because of its environmental benefits and the fact that it 

is made from renewable resource. J. curcas L. is a promising source of biodiesel since its seeds contain high amount of oil and the 

species has good agronomic traits. These properties of J. curcas L. have attracted a lot of projects developers. At present, many 

countries have started cultivating Jatropha trees on large scale, although little is known about the positive and negative effects of the 

large scale production of J. curcas L. on ecology as well as other socio-economic situations. There is need to research on the life cycle 

analysis (LCA) for the biodiesel production from Jatropha curcas L. at small scale and industrial production units particularly in 

developing countries where there is large scale production of J. curcas L. The LCA studies will result in data on the energy balance, 

the greenhouse gas balance and the land use impact of the J. curcas L. biodiesel system. 
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