PRISMS PhaseField
Anisotropy (with Coupled CH-AC Dynamics)

Consider a free energy expression of the form:
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where f, and fg are the free energy densities corresponding to a and f phases, respectively, and are functions

of composition c¢. H is a function of the structural order parameter 1. The interface normal vector n is given

by
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for Vi # 0, and n = 0 when V7 = 0.

1 Variational treatment

Following standard variational arguments (see Cahn-Hilliard formulation), we obtain the chemical potentials:
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The component of the anisotropic gradient m are given by

0v(n
s =) (V-4 191035 = iy 1), 6
J
where d;; is the Kronecker delta.
2 Kinetics
Now the PDE for Cahn-Hilliard dynamics is given by:
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and the PDE for Allen-Cahn dynamics is given by:
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where M. and M, are the constant mobilities.



3 Time discretization

Considering forward Euler explicit time stepping, we have the time discretized kinetics equation:
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4 Weak formulation

In the weak formulation, considering an arbitrary variation w, the above equations can be expressed as

residual equations:
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The above values of 7, ryq, 7 and rq, are used to define the residuals in the following equations file:

applications/CHA C_anisotropy/equations.h



