KKS Phase Field Model of Precipitate Evolution
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1 Variational formulation

The total free energy of the system (neglecting boundary terms) is of the form,

H(C, 7717772777376) - /Qf(c, N, N2, 13, 6) dav (1)

where c is the concentration of the § phase, 7, are the structural order parameters and ¢ is the small strain
tensor. f, the free energy density is given by

f(ca n,n2,13, 6) = fchem(cy 12, 7]3) + fgrad(nla 2, 773) + felastic(@ m,n2,13, 6) (2)
where
3 3
Fenem(c;m,m2,m3) = falcsmma,ms) (1= Hnp) | + fa(e,mm2,m3) Y H(np) + W fLandau (1,712, 713)
3)
foraa(m,n2,m3) Z K1 Tp,iTlp.j (4)
1 0 0
fetastic(c,m,m2,m3,€) = icijkl(nlyn%ni’)) (Eij - Eij(ca 7717772,773)) (Ekl —eplc, 771,772,773)) (5)
%(c,m,m2.1m3) = H(m)ey, (cg) + H(m)en, (cp) + H(113)ey, (cp) (6)
C(m,n2,m3) = H(m)Cy, + H(n2)Cny + H(n3)Cny + (1 — H(m) — H(nz2) — H(nz)) Ca (7)
Here eop are the composition dependent stress free strain transformation tensor corresponding to each

structural order parameter, which is a function of the § phase concentration, cg, defined below.

In the KKS model (Kim 1999), the interfacial region is modeled as a mixture of the o and 3 phases
with concentrations cqiphe and cpetq, respectively. The homogenous free energies for each phase, f, and fg
in this case, are typically given as functions of ¢, and cg, rather than directly as functions of ¢ and 7).
Thus, fehem(c,m,n2,13) can be rewritten as
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The concentration in each phase is determined by the following system of equations:
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Given the following parabolic functions for the single-phase homogenous free energies:
fa(ca) = Agci + Alca + AO (11)

fﬁ(Cﬁ) = BQC% + Blcﬁ + By (12)



the single-phase concentrations are:
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2 Required inputs

o fo(ca), fa(cg) - Homogeneous chemical free energy of the components of the binary system, example
form given above

® frandau(M,n2,n3) - Landau free energy term that controls the interfacial energy and prevents pre-
cipitates with different orientation varients from overlapping, example form given in Appendix I

e W - Barrier height for the Landau free energy term, used to control the thickness of the interface

e H(np) - Interpolation function for connecting the a phase and the pth orientation variant of the §
phase, example form given in Appendix I

e k" - gradient penalty tensor for the p!* orientation variant of the 5 phase

e C,, - fourth order elasticity tensor (or its equivalent second order Voigt representation) for the pth
orientation variant of the 3 phase

e C, - fourth order elasticity tensor (or its equivalent second order Voigt representation) for the «

phase
° Egp - stress free strain transformation tensor for the p* orientation variant of the 8 phase

In addition, to drive the kinetics, we need:
e M - mobility value for the concentration field

e L - mobility value for the structural order parameter field

3 Variational treatment

We obtain chemical potentials for the chemical potentials for the concentration and the structural order
parameters by taking variational derivatives of II:
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4 Kinetics

Now the PDE for Cahn-Hilliard dynamics is given by:
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where M is a constant mobility and the factor of —— is added to guarentee constant diffusivity in the two

phases. The PDE for Allen-Cahn dynamics is glven by

onp
o = Lhw

where L is a constant mobility.

5 Mechanics

Considering variations on the displacement u of the from u + ew, we have

6UH = / Vuw: 0(77177727773) : (5 — EO(C, 7’]17172,173)) dV =0
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where o = C(n1,m2,m3) : (€ — €%(¢,m1,m2,m3)) is the stress tensor.

6 Time discretization

Using forward Euler explicit time stepping, equations 17 and 18 become:
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7 Weak formulation

Writing equations 17 and 18 in the weak form, with the arbirary variation given by w yields:
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The expression of %uc can be written as:
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Applying the divergence theorem to equation 23, one can derive the residual terms r. and r.;:
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Expanding p,, in equation 24 and applying the divergence theorem yields the residual terms r;, and
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8 Appendix I: Example functions for f., f3, frandau, H (1))

fa(ca) = Azci -+ Alca —+ Ao (28)

fﬁ(Cﬁ) = BQC% + Bicg + By (29)

frandau(m,m2,n3) = (07 +m5 +n3) — 2(03 + 03 + n3) + (01 +n3 +n3) + 5(nins +n3ns +nins) + 5minan3)
(30)

H(np) =32 — 21} (31)



