
PRISMS-PF Application Formulation:
grainGrowth

This example application implements a simple set of governing equations for isotropic grain growth. The

model is a simplified version of the one in the following publication:

Simulating recrystallization in titanium using the phase field method, S.P. Gentry and K. Thornton, IOP

Conf. Series: Materials Science and Engineering 89 (2015) 012024.

Consider a free energy expression of the form:
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where ηi is one of N structural order parameters, α is the grain interaction coefficient, and κ is the gradient

energy coefficient.

1 Variational treatment

The driving force for grain evolution is determined by the variational derivative of the total energy with

respect to each order parameter:
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2 Kinetics

The order parameter for each grain is unconserved, and thus their evolution can be described by Allen-Cahn

equations:
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where L is the constant mobility.

3 Time discretization

Considering forward Euler explicit time stepping, we have the time discretized kinetics equation:
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4 Weak formulation

In the weak formulation, considering an arbitrary variation w, the above equation can be expressed as a

residual equation:
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The above values of rηi and rηix are used to define the residuals in the following parameters file:

applications/grainGrowth/equations.h
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