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The Nucleation Model application for PRISMS-PF incorporates a stochastic method to add nuclei to
the KKS phase field model for precipitate growth. Nuclei are seeded throughout the time evolution of the
system based on a probability that depends on the local solute supersaturation. This document is divided
in two sections. In the first section, the phase field model formulation for precipitate evolution in a binary
alloy (without elastic effects) is presented. In the second section the nucleation method is presented.

1 Precipitate Evolution

1.1 Variational formulation

In the absence of elastic effects total free energy of the 2-component system (neglecting boundary terms)
is of the form,

M(e,n) = /Q fle,m) AV (1)

where c is the concentration of the 5 phase and 7 is the set of structural order parameters. The free energy
density, f, is given by

f(ca 77) = fchem(c7 77) + fgrad(n) (2)
where
fchem(cv 77) = fa(cv 77) (1 - H(U)) + fﬂ(cv U)H(n) + WfLandau(n) (3)
and
Foradn) = 551V (1)

In the KKS model (Kim 1999), the interfacial region is modeled as a mixture of the o and [ phases
with concentrations ¢, and cg, respectively. The homogenous free energies for each phase, f, and f3 in
this case, are typically given as functions of ¢, and cg, rather than directly as functions of ¢ and 7,. Thus,
fenem(c,m) can be rewritten as

fchem(ca 77) = fa(ca) (1 - H(U)) + fﬁ(cﬁ)H(n) =+ WfLandau('r/) (5)

The concentration in each phase is determined by the following system of equations:

c=ca(l=H(n)+csH(n (6)
Ofalca) _ dfp(cp)
dco Jcg (7)

Given the following parabolic functions for the single-phase homogenous free energies:

falca) = Asc? + Arcq + Ag (8)
fs(cg) = Bach + Bicg + By (9)
the single-phase concentrations are:
o — Bsc + %(Bl — Al)H(’n)
“ " AyH(n) + B2 (1 — H(n))

o = A2ct 3(A1 = Bi)[1 = H()]
57 T AH(m) + By [L— H(n)]

(10)

(11)



1.2 Required inputs

e fo(ca), fa(cg) - Homogeneous chemical free energy of the components of the binary system, example
form given above

® frandau(n) - Landau free energy term that controls the interfacial energy. Example form given in
Appendix 1

e W - Barrier height for the Landau free energy term, used to control the thickness of the interface

e H(n) - Interpolation function for connecting the o phase and the  phase. Example form given in
Appendix 1

e k" - gradient penalty coefficient for the a — 3 interface

In addition, to drive the kinetics, we need:
e M - mobility value for the concentration field

e [ - mobility value for the structural order parameter field

1.3 Variational treatment

We obtain chemical potentials for the concentration and the structural order parameter by taking varia-
tional derivatives of II:

tre = fa,e (1 = H(n)) + fz,.H(n) (12)
Hn = [fﬁ - fa - (Cﬁ - Ca)fﬁ,cﬁ] H(n),n + WfLandau,n — RN (13)

1.4 Kinetics
Now the PDE for Cahn-Hilliard dynamics is given by:

Jc 1
—_v. MV . 14
o=y (ﬂm V“) 14

where M is a constant mobility and the factor of i is added to guarentee constant diffusivity in the two
phases. The PDE for Allen-Cahn dynamics is given by:

on
2= Ly, (15)
where L is a constant mobility.
1.5 Time discretization
Using forward Euler explicit time stepping, equations 14 and 15 become:
1
Al =" p At [v- <f chﬂ (16)
,cC

ny =y — AtLpy, (17)



1.6 Weak formulation

Writing equations 14 and 15 in the weak form, with the arbirary variation given by w yields:

/ wc" v = / we” + wAt [V- ( MV,LLC)] av (18)

Q Q fcc

/wn"HdV = / wn" — wAtLu,dV (19)
Q Q

The expression of %uc can be written as:
,cc
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Applying the divergence theorem to equation 18, one can derive the residual terms r. and rq:

1
wc"+1dV:/w " +Vw . (—AtM —
/(; Q v ( f,cc

Tex

Vie)dV (21)
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Expanding p,, in equation 19 and applying the divergence theorem yields the residual terms 7, and 7;:

/an"JrldV = /Q w{ n" — AtL [(fg = fo)HM"™) = (eg = ca) fa.es HM") .y + W fLandauy
e (22)

+ Vw - (—AtLen™)dV
———
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2 Nucleation method

We follow the same approach as Jokisaari and Thornton [Comput. Mater. Sci. 112, 1287138 (2016)]
which consists of adding nuclei throughout a phase field simulation based on a probability that depends
on the local supersaturation. This probability is calculated every fixed number of time steps and for every
element of the computational domain. In each nucleation event, nucleation is triggered at a point within
the a phase. Each nucleus is then added to the system by modifying the order parameter to it’s 5 phase
value within a small domain around the selected nucleation center. This domain can be spherical /circular
or ellipsoidal/elliptical.

2.1 Nucleation rate

From classical nucleation theory, the nucleation rate for critical nuclei J* is given by

*

J*(r,t) = ZnB" exp <— §§T> exp (—%) , (23)




where Z is the Zeldovich factor, n is the number of nucleation sites per volume, 8* is the frequency at
which a critical nucleus becomes supercritical, AG* is the nucleation energy barrier, kp is the Boltzmann
constant, T' is the temperature, ¢ is time and 7 is the incubation time. It can be shown that, in the dilute
limit and for constant temperature, Eq. (23) can be simplified by grouping approximately constant terms
in both the exponential and pre-exponential factors:

T

J*(r,t) = ky exp (—(Af;d_l) exp <—;> , (24)

where k1 and ks are now taken as constant parameters, Ac = ¢(r,t) — cg! is the local supersaturation in
the o phase and d is the dimensionality of the system (e.g. d = 2 or d = 3).

2.2 Nucleation probability

Considering J* to be approximately constant within a small volume, AV, and for a small time interval,
At, the probability that at least one nucleation event occurs in AV within At is given by

P(r,t) =1—exp (—J AV AY) (25)

2.3 Hold time

After each nuclei is added there is a ‘hold’ time, Atj, interval during which the order parameter value is
fixed within a window that encompasses the new nucleus. The purpose of this hold time is to provide the
concentration is allowed to evolve within the nucleus to a value close to the coexistance composition for 3
phase and to create small a solute depleted zone around the nucleus. After the hold time, the nucleus is
about to evolve into a precipitate.
2.4 Required nucleation inputs

e k; - Constant pre-exponential factor in Eq. (24)

e ko - Parameter that groups all constant terms of the first exponential factor in Eq. (24)

e 7 - Incubation time constant in Eq. (24)
e Aty - Nucleation hold time.
Dimensions (ellipsoidal semiaxes) of precipitate seeds
e a - semiaxis in the x-direction
e b - semiaxis in the y-direction

e c - semiaxis in the x-direction
Appendix I: Example functions for f., fs, frandau, H (1)

fa(ca) = Asc? + Ajca + A (26)
fa(cp) = Bgc% + Bicg + By (27)
Frandau(n) = n* = 20* + 1’ (28)

H(n) = 3n* - 2n° (29)



