PRISMS PhaseField
Faceted Anisotropy (with Coupled CH-AC Dynamics)

This application is essentially a specialization of the CHAC _anisotropyRegarized application with a par-
ticular choice of interfacial energy anisotropy 7(n). In this document, we repeat the formulation for that
model for completeness and then describe the anisotropy used in this application. Consider a free energy

expression of the form:
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where f, and fz are the free energy densities corresponding to o and 3 phases, respectively, and are functions
of composition ¢. H is a function of the structural order parameter 7. § is a scalar regularization parameter.

The interface normal vector n is given by
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for Vi # 0, and n = 0 when V7 = 0.

1 Variational treatment
Following standard variational arguments (see Cahn-Hilliard formulation), we obtain the chemical potentials:
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The components of the anisotropic gradient m are given by
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where d;; is the Kronecker delta.

2 Kinetics

Now the PDE for Cahn-Hilliard dynamics is given by:
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and the PDE for Allen-Cahn dynamics is given by:
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where M. and M, are the constant mobilities. In order that the formulation only includes second order
derivatives, an auxiliary field ¢ is introduced to break up the biharmonic term:

¢ =An (10)
and the PDE for Allen-Cahn dynamics becomes
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3 Time discretization

Considering forward Euler explicit time stepping, we have the time discretized kinetics equation:
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4 Weak formulation

In the weak formulation, considering an arbitrary variation w, the above equations can be expressed as

residual equations.
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The above values of r4., 7y, Thz, rc and rq; are used to define the residuals in the following equations
file: applications/anisotropyFacet/equations.h



5 Anisotropy

The above formulation is generic to any v(n). In this application, we use an anisotropy of the form

v(n) = o <1 - Zai(mi ‘n)""O(m, - n)) ; (20)

where m is a unit vector corresponding to a crystallographic orientation, 7 is a scaling factor for interfacial
energy, «; and w; are scalar parameters specific to each orientation, and ©(-) is the Heaviside function. The
derivatives with respect to components of the normal are
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Calculation of y(n) and dv(n)/dn; is performed in an application-specific function located in applica-
tions/anisotropyFacet/facet_anisotropy.h.

This anisotropy was developed by M. Salvalaglio et al. (doi: 10.1021/acs.cgd.5b00165), and is extensively
documented in their paper. Briefly, we note that a; determines the interfacial energy at the orientation m;,
and w; determines how localized the change interfacial energy is around m;. The Heaviside function ©(m;-n)
, which returns zero if m; -n < 0 and one otherwise, ensures that orientations are considered independently;
i.e. there is no change in v(n) around —m; unless that corresponds to another listed orientation m;. In its
intended configuration, with 0 < «; < 1 and high w; (e.g. w; = 50), this anisotropy results in nearly flat
facets at the orientations m,;.



