
PRISMS PhaseField
Faceted Anisotropy (with Coupled CH-AC Dynamics)

This application is essentially a specialization of the CHAC anisotropyRegarized application with a par-

ticular choice of interfacial energy anisotropy γ(n). In this document, we repeat the formulation for that

model for completeness and then describe the anisotropy used in this application. Consider a free energy

expression of the form:

Π(c, η,∇η) =

∫
Ω

(fα(1−H) + fβH) +
1

2
|γ(n)∇η|2 +

δ2

2
(∆η)2 dV (1)

where fα and fβ are the free energy densities corresponding to α and β phases, respectively, and are functions

of composition c. H is a function of the structural order parameter η. δ is a scalar regularization parameter.

The interface normal vector n is given by

n =
∇η

|∇η|
(2)

for ∇η 6= 0, and n = 0 when ∇η = 0.

1 Variational treatment

Following standard variational arguments (see Cahn-Hilliard formulation), we obtain the chemical potentials:

µc = (fα,c(1−H) + fβ,cH) (3)

µη = (fβ,c − fα,c)H,η −∇ ·m + δ2∆(∆η) (4)

The components of the anisotropic gradient m are given by

mi = γ(n)

(
∇η + |∇η|(δij − ninj)

∂γ(n)

nj

)
, (5)

where δij is the Kronecker delta.

2 Kinetics

Now the PDE for Cahn-Hilliard dynamics is given by:

∂c

∂t
= − ∇ · (−Mc∇µc) (6)

= Mc ∇ · (∇(fα,c(1−H) + fβ,cH)) (7)

and the PDE for Allen-Cahn dynamics is given by:

∂η

∂t
= −Mηµη (8)

= −Mη [(fβ,c − fα,c)H,η −∇ ·m + δ2∆(∆η)] (9)
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where Mc and Mη are the constant mobilities. In order that the formulation only includes second order

derivatives, an auxiliary field φ is introduced to break up the biharmonic term:

φ = ∆η (10)

and the PDE for Allen-Cahn dynamics becomes

∂η

∂t
= −Mη ((fβ,c − fα,c)H,η −∇ ·m) + δ2∆φ. (11)

3 Time discretization

Considering forward Euler explicit time stepping, we have the time discretized kinetics equation:

φn+1 = ∆ηn (12)

ηn+1 = ηn −∆tMη ((fnβ,c − fnα,c)Hn
,η −∇ ·mn + δ2∆φn) (13)

cn+1 = cn + ∆tMη ∇ · (∇(fnα,c(1−Hn) + fnβ,cH
n)) (14)

4 Weak formulation

In the weak formulation, considering an arbitrary variation w, the above equations can be expressed as

residual equations. ∫
Ω

wφn+1 dV =

∫
Ω

∇w ·∇ηn︸︷︷︸
rφx

dV (15)

∫
Ω

wηn+1 dV =

∫
Ω

wηn − w∆tMη ((fnβ,c − fnα,c)Hn
,η − κ∆ηn) dV (16)

=

∫
Ω

w

ηn −∆tMη ((fnβ,c − fnα,c)Hn
,η)︸ ︷︷ ︸

rη

+ ∇w · (−∆tMη)(mn − δ2φn)︸ ︷︷ ︸
rηx

dV (17)

and∫
Ω

wcn+1 dV =

∫
Ω

wcn + w∆tMc ∇ · (∇(fnα,c(1−Hn) + fnβ,cH
n)) dV (18)

=

∫
Ω

w cn︸︷︷︸
rc

+∇w (−∆tMc) [ (fnα,cc(1−Hn) + fnβ,ccH
n)∇c+ ((fnβ,c − fnα,c)Hn

,η∇ηn)]︸ ︷︷ ︸
rcx

dV

(19)

The above values of rφx, rη, rηx, rc and rcx are used to define the residuals in the following equations

file: applications/anisotropyFacet/equations.h
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5 Anisotropy

The above formulation is generic to any γ(n). In this application, we use an anisotropy of the form

γ(n) = γ0

(
1−

∑
i=1

αi(mi · n)wiΘ(mi · n)

)
, (20)

where m is a unit vector corresponding to a crystallographic orientation, γ0 is a scaling factor for interfacial

energy, αi and wi are scalar parameters specific to each orientation, and Θ(·) is the Heaviside function. The

derivatives with respect to components of the normal are

∂γ(n)

∂nj
= −γ0

∑
i=1

wiαimij(mi · n)wi−1Θ(mi · n), (21)

Calculation of γ(n) and ∂γ(n)/∂nj is performed in an application-specific function located in applica-

tions/anisotropyFacet/facet anisotropy.h.

This anisotropy was developed by M. Salvalaglio et al. (doi: 10.1021/acs.cgd.5b00165), and is extensively

documented in their paper. Briefly, we note that αi determines the interfacial energy at the orientation mi,

and wi determines how localized the change interfacial energy is around mi. The Heaviside function Θ(mi ·n)

, which returns zero if mi ·n < 0 and one otherwise, ensures that orientations are considered independently;

i.e. there is no change in γ(n) around −m1 unless that corresponds to another listed orientation mi. In its

intended configuration, with 0 < αi < 1 and high wi (e.g. wi = 50), this anisotropy results in nearly flat

facets at the orientations mi.
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