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ABSTRACT

Monitoring changes of precipitation phase from space is important for un-

derstanding the mass balance of Earth’s cryosphere in a changing climate.

This paper examines a Bayesian nearest neighbor approach for prognostic

detection of precipitation and its phase using passive microwave observations

from the Global Precipitation Measurement (GPM) satellite. The method uses

the weighted Euclidean distance metric to search through an a priori database

populated with coincident GPM radiometer and radar observations as well

as ancillary snow-cover data. The algorithm performance is evaluated using

data from GPM official precipitation products, ground-based radars, and high-

fidelity simulations from the Weather Research and Forecasting model. Using

the presented approach, we demonstrate that the hit probability of terrestrial

precipitation detection can reach to 0.80, while the probability of false alarm

remains below 0.11. The algorithm demonstrates higher skill in detecting

snowfall than rainfall, on average by 10 percent. In particular, the probability

of precipitation detection and its solid phase increases by 11 and 8 percent,

over dry snow cover, when compared to other surface types. The main reason

is found to be related to the ability of the algorithm in capturing the signal

of increased liquid water content in snowy clouds over radiometrically cold

snow-covered surfaces.
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1. Introduction34

More than two billion people rely on glacier and snowmelt for their water supply (Mankin et al.35

2015). Snowfall accounts for approximately 30 to 90 percent of the global precipitation over mid-36

to high-latitudes (Levizzani et al. 2011) and is the main input to the accumulation processes of37

snowpack and glaciers (Radić et al. 2014). In recent decades, snowpack reservoirs have declined38

and are projected to further decline in the 21st century (Karl et al. 1993; Mote et al. 2005; Pederson39

et al. 2011). Thus, global monitoring of snowfall from space is key for improved understanding40

and prediction of ongoing changes in the cryosphere and the implications for sustainable manage-41

ment of water and food resources — especially in mountainous areas of the world.42

In the past three decades, significant progress has been made in microwave precipitation re-43

trieval as part of the Tropical Rainfall Measuring Mission (TRMM) satellite in 1997 (Kummerow44

et al. 1998). The launch of the Global Precipitation Measurement (GPM) core satellite (Kidd and45

Huffman 2011; Hou et al. 2014) has provided a unique opportunity for improved understanding46

of mid-latitude precipitation and its phase change beyond what the TRMM satellite could offer47

(Skofronick-Jackson et al. 2017).48

The snowfall microwave scattering signal can be captured at frequencies above 80 GHz as these49

high frequencies are more sensitive to ice scattering compared to lower frequencies, which largely50

respond to variations of surface emissivity (Kulie et al. 2010; Skofronick-Jackson and Johnson51

2011; Gong and Wu 2017; You et al. 2017). Among high-frequency channels, Bennartz and Bauer52

(2003) found that frequencies around and above 150 GHz provide a strong polarization signal for53

snowfall detection (Gong and Wu 2017; You et al. 2017; Panegrossi et al. 2017).54

Remote sensing of snowfall is among the most challenging tasks in precipitation retrieval algo-55

rithms (Bennartz and Bauer 2003; Skofronick-Jackson et al. 2004; Noh et al. 2009; Kongoli et al.56
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2015). Detection of snowfall is challenging because it involves complex and dynamic interactions57

between the snowfall scattering signal and the surface. First, compared to rainfall, the snowfall58

backscattering is much weaker (Grody 1991; Kim et al. 2008; Kulie et al. 2010) and depends on59

more complex microphysical characteristics snowfall such as shape and density of snowflakes (Liu60

2008; Petty et al. 2010; Skofronick-Jackson and Johnson 2011). These characteristics are difficult61

to accurately parameterize as of today. Second the already weak snowfall scattering signal tends62

to be masked by the increased atmospheric emissivity and liquid water content in precipitating63

conditions (Liu and Seo 2013; Wang et al. 2013; Panegrossi et al. 2017). Third, changes in surface64

emissivity due to snow accumulation on the ground can significantly alter the snowfall microwave65

signal. Dry snow cover scatters the upwelling surface radiation at frequencies above 20 GHz66

(Ulaby and Stiles 1980; Hallikainen et al. 1987) similar to the snowfall (Grody 2008). As a result,67

the snowfall microwave signature gradually weakens as snow accumulates on the ground (Ebtehaj68

and Kummerow 2017). The snow-cover scattering evolves with time as a function of snow-cover69

metamorphism. For example, a small amount of liquid water content (e.g., 2%) significantly re-70

duces the snow-cover scattering and increases its absorptivity (Stiles and Ulaby 1980; Hallikainen71

et al. 1986, 1987). Hence, snow cover has a time-varying effect on snowfall upwelling signal.72

Physical and empirical approaches have been developed for microwave retrievals of snowfall.73

Skofronick-Jackson et al. (2004) presented a physical method to retrieve snowfall during a blizzard74

over the eastern United States using high-frequency observations from the Advanced Microwave75

Sounding Unit (AMSU-B) instrument. Kim et al. (2008) simulated atmospheric profiles of a76

blizzard storm with the mesoscale MM5 model and a delta-Eddington type radiative transfer (RT)77

model to produce a storm-scale database for snowfall retrieval using AMSU-B observations. Noh78

et al. (2009) used a large number of snowfall profiles from airborne, surface and satellite radars, as79

well as an atmospheric RT model (Liu 1998) to generate a regional database for snowfall retrievals80
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using the AMSU-B data. The study used the NESDIS Microwave Land Surface Emissivity Model81

(Weng et al. 2001) to provide surface emissivity as an input to the RT model. The largest retrieval82

error were found to be over snow-covered surfaces.83

Empirical passive microwave snowfall retrieval algorithms largely rely on ancillary data of pre-84

cipitation radar and air temperature profile. A family of these algorithms relies on thresholding85

the brightness temperature at different channels (e.g., Staelin and Chen 2000; Chen and Staelin86

2003; Kongoli et al. 2003). For example, Kongoli et al. (2015) developed a statistical approach87

that partitions high-frequency brightness temperatures (≥ 89 GHz) into two distinct warm and88

cold weather regimes by thresholding the brightness temperature at 53 GHz.89

Another class of empirical approaches relies on Bayesian techniques. These techniques use90

a database or a look-up table that relates brightness temperatures of snowing clouds to the radar91

snowfall observations along with the atmospheric temperature profile. As an example, Liu and Seo92

(2013) used matched observations from the CloudSat Profiling Radar (CPR), the AMSU-B, and93

the NOAA’S Microwave Humidity Sounder (MHS). More recently, Sims and Liu (2015) used the94

CloudSat radar and multiple ground-based reanalysis data, including near-surface air temperature,95

atmospheric moisture, low-level vertical temperature lapse rate, surface skin temperature, surface96

pressure, and land cover types to diagnose precipitation phase partitioning. This algorithm is97

deployed in the GPM operational precipitation retrievals (Kummerow et al. 2015). It is worth98

noting that most of these algorithms use reanalysis wet-bulb temperature that exhibits the strongest99

correlation with the precipitation phase (Matsuo et al. 1981; Motoyama 1990; Lundquist et al.100

2008; Kienzle 2008; Ye et al. 2013). However, the reanalysis data are often available at coarse101

spatial scales with significant uncertainty, which hamper the applicability for accurate detection of102

snowfall (Harpold et al. 2017).103
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In this paper, we examine a prognostic Bayesian k-nearest neighbor (KNN) algorithm that104

strictly relies on observed passive microwave brightness temperatures and does not use any on-105

line reanalysis data of temperature and moisture profiles. This approach is based on a weighted106

distance metric applied on an a priori database to detect overland precipitation phase. The a priori107

database is populated with combined radar-radiometer observations from the GPM satellite. This108

database is then stratified using data from the Moderate Resolution Imaging Spectroradiometer109

(MODIS) sensor to account for effects of the background snow-cover emission. We demonstrate110

that the algorithm shows improved skill in detection of snowfall over snow cover and can predict111

the likelihood of precipitation phase changes in the atmospheric boundary layer, which is not well112

observed by the GPM radar.113

In summary, the presented algorithm isolates a few physically relevant candidate vectors of114

brightness temperatures in the database via a weighted Euclidean distance. Using these isolated115

candidates, the method detects the precipitation and its phase, based on a probabilistic decision116

rule. To test the performance of the proposed approach, the database is populated by merging the117

outputs of both passive (Sims and Liu 2015) and active (Iguchi et al. 2010) GPM products using all118

overland observations from June 2015 to May 2016. We compare the results with the ground-based119

Multi-Radar Multi-Sensor (MRMS) data over the Conterminous United States (CONUS) (Zhang120

et al. 2011, 2016). The outputs of a high-fidelity mesoscale simulation model are also used for121

further evaluation of the results over high altitudes, during the Olympic Mountains Experiment in122

2015 (OLYMPEx, Houze et al. 2017).123

The paper is structured as follows: Section 2 briefly describes the database and the phase detec-124

tion method used on the operational GPM radar and radiometer products. Section 3 elaborates on125

the effects of snow cover on passive microwave signal of snowfall at different frequency channels126

by analyzing a large dataset of GPM observations. Section 4 explains the proposed KNN algo-127
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rithm followed by the results presented in Section 5. Concluding remarks and future directions of128

the research are discussed in Section 6.129

2. Database Description130

The dual-frequency precipitation radar (DPR) aboard the GPM core satellite detects precipita-131

tion reflectivity at Ka- (35 GHz) and Ku-band (13.6 GHz). The GPM Microwave Imager (GMI)132

captures the upwelling emission/scattering signals of the surface and the atmosphere at 13 fre-133

quency channels ranging from 10 to 183 GHz. On the one hand, observations by the DPR and the134

GMI high-frequency channels (> 80 GHz) provide information about the microwave signature of135

precipitation and more specifically about snowfall ice scattering. On the other hand, observations136

by the low-frequency channels (> 80 GHz) add information about the land surface characteristics137

that leads to improved detection skill by the presented algorithm. This study uses level-II near-138

surface precipitation phase retrieval from DPR (active) product (2A-DPR-V04, Normal Scan),139

GMI (passive) product (2A-GPROF-V04) and the level 1B calibrated GMI brightness tempera-140

tures.141

In DPR level-II, the precipitation phase is determined by the dual-frequency retrieval approach142

that uses the differential attenuation between the Ku- and the Ka-band reflectivity values (Iguchi143

et al. 2010, 2012). The differential attenuation method ingests ancillary atmospheric profile data144

such as air temperature, pressure, and the microphysical parameterization of the snow and rain145

particle size distribution. The DPR surface retrieval is inferred from the near-surface reflectivity146

observations in the clutter-free region. Above relatively flat surfaces, the altitude of this region147

varies from 1 to 2 km from nadir to the edge of the DPR swath. The depth of this region is often148

increased over complex terrains. As a result, any precipitation within the ground clutter region149
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cannot be detected by the radar. Moreover, DPR has limited capability to detect light precipitation150

with a rate below ∼ 0.2 mmh−1 (Hou et al. 2014; Kubota et al. 2014).151

Unlike the DPR that provides range-resolved information about the precipitation backscatter-152

ing, the GMI observes an integration of precipitation scattering in a continuum that extends from153

the land surface to the top of the atmosphere. As previously explained, the current operational154

algorithm for passive detection of precipitation phase relies on thresholding of the near-surface155

wet-bulb temperature (Sims and Liu 2015). The wet-bulb temperature is processed offline from156

reanalysis of ancillary data, which often suffer from different sources of uncertainty, especially157

due to its coarse resolution over topographic features and structurally complex land surfaces (Li158

et al. 2008).159

For implementing and testing the proposed algorithm, we create a reference product (REF) for160

precipitation occurrence and phase change. This REF product is based solely on the occurrence161

information from the DPR data. For determining the precipitation phase, we use the inner-swath162

phase information from both GPM active and passive products. None of these products provides163

direct phase estimation; however, each has unique information based on the atmospheric and sur-164

face conditions. Specifically, the REF product determines the phase by applying a logical operator165

to both active and passive products. The radar phase retrieval is reported as solid, liquid, and166

mixed, while the phase probability in GPROF is from zero (solid) to one (liquid). We therefore167

first, discretize the GPROF phase probability into solid (phase probability less than 0.5) and liquid168

(phase probability greater than 0.5) to match the radar phase. Second, we assign the phase of REF169

precipitation as solid or liquid when both active and passive phases are solid or liquid. Otherwise,170

the phase is labeled as mixed. Therefore, the mixed phase in the REF product refers to those cases171

where the precipitation phases from the passive and active products do not agree and thus should172

not be literally interpreted. By combining the active and passive phase information through this173
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logical rule, we implicitly address the limitations of DPR in identifying precipitation phase change174

in the ground clutter region which overlaps with the boundary layer.175

It is important to note that the so-called mixed category depends on the threshold (0.5), used for176

discretization of the passive phase. Understanding the impacts of this threshold on the retrieval177

requires a thorough investigation outside the scope of this study. It is worth noting that choosing178

this threshold results in 12% of mixed phase data in the REF product, in which 10% corresponds179

to liquid passive phase and solid active phase (scenario 1) and 2% otherwise (scenario 2). The first180

scenario might be related to those conditions where the melting layer is in the clutter region. The181

second scenario may be related to a temperature inversion near the surface that causes a refreezing182

of precipitation.183

The MODIS daily snow-cover fraction (MOD10A1, Hall et al. 2002) and land surface skin184

temperature (MOD11A1, Wan 2014) are added to the database. The data are used from the MODIS185

sensor on board the Terra satellite. The MODIS snow cover and surface temperature data are186

available at a resolution of 500 and 1000 meters, respectively. We assume that the total daytime187

snow-cover fraction does not change significantly between consecutive overpasses of the GPM188

and Terra satellites within one day. Note that this assumption could give rise to some degree of189

uncertainty when the data are matched with nighttime precipitation. We consider a 5 km DPR pixel190

as a snow-covered surface when more than 50% of the enclosed high-resolution snow fraction data191

indicates the presence of snow cover on the ground. It is also assumed that the temperature does192

not vary significantly within a 5 km DPR pixel and is considered to be the average of the cloud-193

free MODIS temperature data. As the liquid water content of global snowpack is not available, we194

define dry (wet) snow when the skin and air temperature are both below (above) 0 ◦C (Baggi and195

Schweizer 2009).196
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To account for atmospheric radiometric signals, we also added the integrated liquid and ice wa-197

ter content of the clouds, as well as the integrated water vapor content of the atmospheric column198

from the second version of the Modern-Era Retrospective analysis for Research and Applications199

(MERRA-2-M2I1NXASM, Gelaro et al. 2017). The MERRA-2 data are hourly single-level diag-200

nostic products at 0.625°×0.5°, which are derived from the version 5 of the NASA Goddard Earth201

Observing System (GEOS-5) and the Atmospheric Data assimilation system (ADAS).202

To form the database with a uniform spatial sampling density, the GMI brightness temperatures203

and the MERRA-2 reanalysis data are mapped onto the DPR grids and scanning time using the204

spatial nearest neighbor interpolation and temporal linear interpolation techniques. The high-205

resolution MODIS snow-cover data are mapped onto and then averaged over the nearest DPR206

grids. We collect and process two consecutive years of data, from June 2014 to May 2016, which207

lead to a database with more than 5×109 matched data pairs. The data from the first year (June208

2014 to May 2015) are applied to build the database and the data from the second year (June 2015209

to May 2016) are used to test the proposed algorithm.210

3. The effect of snow cover on terrestrial snowfall signal211

Precipitation spectral signatures and their dependence on snow-cover scattering are studied by212

analyzing the entire dataset (June 2014 to May 2016) for three surface types (ground without snow213

cover, wet snow, and dry snow) and for both liquid and solid phases of precipitation. Each land-214

atmospheric class is further divided into 5 bins of precipitation intensity r with equal logarithmic215

width, log2(ri+1/ri) = 1, centered at 0.5, 1, 2, 4 and 8 mmh−1. We first quantify the effects of216

snow cover on the precipitation signal over each surface type by calculating the mean values of217

the brightness temperatures for different precipitation phases and intensities at frequency bands218

10–19, 36–89, 166, 183±3, and 183±7 GHz (Fig. 1). Then, we demonstrate that the snowfall219

10



signal exhibits a weaker scattering signal than rainfall and reveal that there exists a non-unique220

relationship between the brightness temperatures and snowfall rate over snow-covered surfaces.221

Lastly, we highlight why precipitation phase detection could be less uncertain over dry than wet222

snow cover using the presented approach.223

The first three columns in Fig. 1 a–i focus on the signatures of rainfall over land surfaces with224

no snow cover, wet snow cover, and dry snow cover, where both active and passive products225

indicate liquid phase. The signatures over the ground with no snow cover are mainly affected226

by the upwelling surface emission, the upwelling emission by cloud liquid water path, as well as227

scattering by the cloud ice particles and large raindrops. As it is well understood, due to strong228

background emission at frequencies 10–36 GHz, the overland precipitation microwave signal is229

difficult to be separated from the surface contributed signal in these channels. For example, due to230

the rainfall emission, the mean brightness temperature at 10h GHz only increases by less than 5 K231

as the intensity increases from 0.5 to 8 mmh−1 (Fig. 1 a).232

On average, we observe that over all three land surface types, the brightness temperatures mono-233

tonically decrease for frequencies above 80 GHz as the rainfall intensity increases. However, the234

significance of scattering decreases over snow-covered surfaces (Fig. 1 d-i). For example, at 89235

and 166 GHz, the average decrease of brightness temperature per 1 mmh−1 increase in rainfall236

intensity is about 3.0 and 3.6 K (Fig. 1 d, g), while these rates are around 1.2 and 2.3 K over the237

dry snow cover (Fig. 1 h, i). As expected, the 183± 3 GHz is the least sensitive channel to the238

changes of rainfall rate. This channel becomes almost insensitive to the rainfall intensity when239

the snow accumulates on the ground and exhibits less than 0.2 K of cooling effect per unit rainfall240

(Fig. 1 i).241

The last three columns in Fig. 1 j–r present brightness temperatures of snowfall over the three242

explained land surface types, where both active and passive products indicate solid phase. Similar243
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to the overland rainfall, the emission and the scattering signals become more significant from low244

to high-frequency channels. Over the surfaces with no snow cover, when the snowfall intensity in-245

creases from 0.5 to 8 mmh−1, the brightness temperatures at frequencies≤ 36 GHz increase∼ 6 K246

(Fig. 1 j). This warming could be due to increased cloud liquid water path (from 75 to 101 gm−2,247

Fig. 2 a, d), water vapor path (from 9.5 to 13.1 kgm−2, Fig. 2 c, f), and surface temperature (from248

273 to 274.2 K, Fig. 2 g, i).249

Due to the snowfall scattering, the average brightness temperature at 166 GHz frequency channel250

(Fig. 1 l, o, r) decreases about 14 to 20 K, which corresponds to a cooling rate of 1.75 to 2.50 K251

per unit snowfall rate. This observation reaffirms the importance of 166 GHz for snowfall retrieval252

compared to the 89 GHz channel (see Bennartz and Bauer 2003; Shi et al. 2010; Skofronick-253

Jackson et al. 2013; You et al. 2017). When the precipitation intensity increases from 0.5 to254

8 mmh−1, the average decrease in brightness temperatures at 166 (89) GHz is about 18 to 30 (10255

to 22) K for rainfall and 10 to 20 (2 to 9) K for snowfall — over all examined land surface types.256

Therefore, the scattering signal weakens when the precipitation falls in the solid form; however,257

this weakening effect is less significant at 166 GHz than 89 GHz. In particular, over the ground258

with no snow cover, the signal becomes weaker approximately by 30% and 57% at 166 and 89259

GHz, respectively, while these rates are 44 and 80% over the dry snow cover.260

Observations demonstrate that the snowfall scattering signal decreases at frequencies ≥ 89 GHz261

when snow begins to accumulate on the ground. An interesting observation is the non-monotonic262

response of the observed brightness temperatures to the snowfall rate over snow-covered surfaces.263

For example, over the dry snow, the brightness temperatures at ≥ 89 GHz increase when the264

snowfall intensity varies from 2 to 4 mmh−1, showing an irregular transition from a scattering to265

an emission regime (Fig. 1 q, r). Although less pronounced, a similar pattern is observed over the266

wet snow cover (Fig. 1 n,o).267
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The possible reasons for this anomaly could be related to an emission signal from either the268

atmosphere or the land surface. The atmospheric-related reasons can be due to the enhanced269

emission from the cloud liquid water and/or the water vapor path, both of them often increase with270

increasing snowfall intensity (Liu and Seo 2013; You et al. 2017; Ebtehaj and Kummerow 2017).271

The land surface-related causes largely correspond to the increased surface temperature and/or272

changes in the snow-cover physical properties. To find the most prominent contributing factor,273

we analyzed the variations of liquid, ice, and vapor water path derived from MERRA-2 data, the274

surface temperature derived from MODIS, and the mean snowfall intensity at different latitudes275

(Fig. 2 a-f).276

Over the ground with no snow cover, as the average precipitation intensity increases, the liquid277

and ice water path increase during rainfall and even more significantly during snowfall. Specifi-278

cally, the liquid water path increases from 14 to 26% (Fig. 2 a, d) and the ice water path increases279

about 23 and 37% (Fig. 2 b, e) for raining and snowing events, respectively. Over dry snow cover,280

there is no evidence of any additional changes neither in liquid nor in ice water path that could281

cause the observed irregularity. Fig. 2 f shows that the water vapor path increases about 2.5 kgm−2
282

between snowfall intensities 2 and 8 mmh−1 over the dry snow cover, which cannot be the main283

reason for the observed anomaly. The reason is that the sensitivity of the 166 GHz channel to284

variation of water vapor decreases significantly for snowfall intensities > 0.8 mmh−1 (You et al.285

2017). Therefore, we speculate that the anomaly could be largely due to a surface effect.286

The MODIS surface temperature data (Wan 2014) do not show any significant dependency on287

the rate of snowfall (Fig. 2 i). Therefore, we hypothesize that the detected emission could be due to288

either an unknown retrieval uncertainty or more likely, to the climatology of the snowfall and snow289

cover dynamics. The database shows that light but prolonged snowfall intensities (< 2 mmh−1)290

occur at latitudes above > 55° N over dry and thicker snow cover (Fig. 2 j). However, high in-291
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tensity but less frequent snowfall is more likely to occur over lower latitudes with a thinner snow292

cover climatology. In other words, the high snowfall rates mostly represent the climatology of293

lower latitudes with thinner depth of snow cover, less volume scattering, and thus stronger surface294

emission than the thicker snow cover of higher latitudes.295

The above observations from Figs 1 and 2 lead us to hypothesize that the distance between296

vectors of brightness temperature encodes a similarity metric that can be used to discriminate the297

precipitation from the background signal. A larger distance indicates larger radiometric dissimi-298

larity that could be used for improved detection of the precipitation from the background signal.299

Using the database, we calculate the average distance between the vectors of brightness tempera-300

tures for the clear-sky (no precipitation) and precipitating atmosphere over the three land surface301

types (Fig. 3). In this figure, the shaded areas in light blue (orange) represent the detected emission302

(scattering) signal. The key observation is that when the snow-cover scattering increases, the pre-303

cipitation signal transitions from a scattering to an emission regime. The wet snow cover weakens304

the precipitation scattering as it is less emissive than the ground with no snow cover. However, the305

less emissive dry snow reveals the precipitation emission signal.306

For the liquid phase, we can see that the rainfall scattering over the ground with no snow cover307

is manifested by a large distance between the high-frequency channels ≥ 89 GHz, while the dis-308

tance over lower frequency channels is insignificant (Fig. 3 a). This distance shrinks over the wet309

snow cover (Fig. 3 b), where the dominant precipitation signal is still due to its scattering over310

high-frequency channels. This shrinkage is largely explained because wet snow is not a strong311

scatterer and thus reduces slightly the surface emission and the high-frequency scattering of rain-312

fall. However, when the surface emission is significantly reduced over the dry snow (Fig. 3 c), the313

emission of rainfall can be detected as a warming signal across almost all frequency channels.314
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For the solid phase, the distance is relatively large between the background and precipitation315

signals when there is no snow on the ground (Fig. 3 d). This distance captures a shift across all316

frequency channels and a reduced polarization signal above 37 GHz. The shift is largely due to317

the differences between the surface temperature of clear-sky versus a snowing atmosphere, while318

the reduced polarization is chiefly due to diffused scattering of the snowflakes. Similar to the319

liquid precipitation, this distance shrinks when the ground is covered with wet snow, where the320

shift between the background temperature almost vanishes as the surface temperature increases.321

We can see that when the snowfall is occurring over dry snow, an emission signal is observed,322

chiefly in response to the increased liquid and water vapor paths (see Liu and Seo 2013; You et al.323

2015, 2016; Ebtehaj and Kummerow 2017). The MERRA-2 data indicate increases of ∼ 58 gm−2
324

and 4.8 kgm−2 in liquid and vapor water paths, respectively, when snowfall occurs. This emission325

signal indirectly indicates the likelihood of precipitation by increasing the brightness temperatures326

rather than a direct physical signature of precipitation. Because of this emission signal, the vec-327

tor of snowfall brightness temperatures becomes dissimilar to the surface emission, which could328

lead to improved snowfall retrievals over dry snow cover — if a proper distance metric is used to329

quantify the dissimilarity.330

4. A Nested Nearest Neighbor Algorithm for Precipitation Phase Detection331

The nearest neighbor matching has been successfully utilized for passive microwave retrieval332

of rainfall using the TRMM data (Ebtehaj et al. 2015, 2016) and for microwave mapping of flood333

inundation using the Special Sensor Microwave Imager/Sounder observations (Takbiri et al. 2017).334

In this section, we introduce a prognostic algorithm that relies on a nested k-nearest neighbor335

matching that finds the best representation of a query brightness temperature in the database to336

detect precipitation occurrence and phase. The criterion for matching relies on the hypothesis that337
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similar vectors of brightness temperatures represent similar atmospheric profiles. In other words,338

an observed pixel-level vector of brightness temperature for a precipitating atmosphere is more339

similar to a collection of precipitating brightness temperatures in the database than those that refer340

to a non-precipitating atmosphere. Here, we define the similarity metric by a weighted Euclidean341

distance between the query vector of observed brightness temperatures and those stored in the a342

priori database, described in Section 2.343

To set the notation, hereafter, the vector of brightness temperatures is denoted by ~T b and the344

ancillary data containing information on the precipitation occurrence, phase, and snow cover, are345

represented by the vector ~r. The database is pruned to contain balanced information over two346

different land-surface types {L}2
s=1 and four independent atmospheric conditions {A}4

a=1. The347

land surface types are defined only based on the presence (s = 1) and absence (s = 2) of snow348

cover, while the atmospheric conditions refer to the clear sky (a = 1), liquid (a = 2), solid (a = 3),349

and mixed (a = 4) precipitating atmosphere.350

To reduce the algorithmic complexity, we do not differentiate between the dry and wet snow351

cover in the database. Each land class consists of pairs of
{(

~T bm,~rm

)}M

m=1
, where M = 2×107

352

are evenly distributed between clear and precipitating sky. Those pairs in the precipitating sky353

are also evenly distributed between raining (A2), mixed (A3), and snowing (A4) atmosphere. It354

is important to note that the pairs are randomly selected from their parent class to avoid any bias355

toward a specific land or atmospheric class.356

In summary, for a given land surface type and a query vector of brightness temperatures ~y,357

the algorithm relies on a 3-tuple {(ka,Wa, pa)}3
a=1, where ka is the number of nearest neighbors,358

Wa is the atmospheric weight matrix over each land surface type used in the weighted Euclidean359

distance dm =
(
~y− ~T bm

)T
Wa

(
~y− ~T bm

)
, and pa denotes a detection probability measure. The360

weight matrix accounts for the relative importance of the channel combinations for detection of361
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precipitation and its phases (Ebtehaj and Kummerow 2017). Specifically, given the land surface362

types Ls, after finding the k-nearest neighbors
{(

~T bi,~ri

)}k

i=1
of each query vector ~y, a nested363

decision-making process is made to detect precipitation and its phase based on the probability364

measure pa.365

In the first step, the algorithm uses (k1,W1, p1) to search for the k1-nearest neighbors of366 {
~T bi

}k1

i=1
and the corresponding ancillary information in the database. Then, a binary decision367

is made to label the vector ~y as a precipitating observation, when the number of precipitating368

neighbors np is greater than p1× k1. For precipitating~y, the algorithm identifies the precipitation369

phase by running a new k-nearest neighbor search using (k2,W2, p2) through those precipitating370

neighbors
{(

~T b j,~r j

)}np

j=1
that are found in the first step, where k2 < p1× k1. Then, as explained371

before, a binary decision is made to label~y as liquid precipitation, if the number of raining neigh-372

bors nl = max(nl, ns, nm) is greater than p2× k2, where nm and ns are the number of mixed and373

solid precipitation elements among the k2-nearest brightness temperatures
{
~T bi

}k2

i=1
. If those con-374

ditions are not satisfied, the algorithm continues similarly to find if the phase of~y is solid or mixed.375

An algorithmic flowchart is presented in Fig. 4.376

To determine the optimal values of the input parameters ka and pa, we compute the receiver377

operating characteristic curves (ROC, Fig. 5), which characterize the tradeoff between the hit and378

false alarm rates. The probability of hit is defined as the fraction of occurred events that were379

correctly detected, while the false alarm rate is a fraction of events that did not occur but were380

incorrectly detected by the algorithm. Let a represent the number of correctly detected events, c the381

number of missed events, b the number of false detection, and d the number of correct rejection.382

Then, the probabilities of hit and false alarm are defined as
a

a+ c
and

b
b+d

, respectively. The383

optimal value of ka is chosen based on the maximum area under the ROC curves (Hanley and384
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McNeil 1982), while the best detection probability pa is chosen where the curvature of the ROC385

is maximum.386

5. Results and Validation387

To test the performance of the proposed approach, the terrestrial precipitation and its phase are388

retrieved over the inner-swath of the GMI overpasses from June 2015 to May 2016. As the phase389

outputs of the algorithm are discrete values for solid (0), mixed (0.5), and liquid (1), the temporal390

mean values associated with these phases could reveal the overall sensitivity of the algorithm to391

the seasonal variations of surface temperature and emissivity. To that end, the phase indices are392

averaged at orbital levels over the summer and winter for the nested k-nearest neighbor algorithm393

(KNN) and the standard active and passive GPM products (Fig. 6). To quantify statistical agree-394

ments between the results of the algorithm and those of the REF maps, we calculate the annual395

probability of detection, false alarm, and the Heidke skill score (Doswell et al. 1990) for the pre-396

sented results in Figs. 7,8 and 9. We also compare the algorithm outputs with the precipitation397

phase products of the Multi-Radar/Multi-Sensor System (MRMS) on a seasonal basis (Figs. 10398

and 11). Finally, some results are presented at a storm-scale to demonstrate the detection capabil-399

ities of the algorithm for a few precipitation events that are coincidentally captured by the DPR,400

high-resolution ground-based radars (Figs. 12 and 13), and simulated by the Weather Research401

and Forecasting (WRF) model (Fig. 14) during the Olympic Mountain Experiment (OLYMPEx,402

Houze et al. 2017).403

a. Global Retrievals404

The seasonal average of the quasi-global maps of precipitation phase are presented in Fig. 6,405

for the inner-swath data products by the DPR, GPROF, KNN, and REF. The results are shown as406
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a probability continuum of phase transition from the liquid (0) to solid (1), at the grid resolution407

0.1-degree. These results are mapped where the precipitation is detected only by the DPR for408

two seasons. The seasons are defined as summer (June-October 2015 and May 2016) and winter409

(November 2015 to April 2016) of the Northern Hemisphere.410

Overall, since the phase of the passive product is dictated by the reanalysis data, the results411

mostly follow the climatology patterns of near-surface wet-bulb temperature and are smoother than412

those of the active product (Fig. 6 a-d). The smoothness of the GPROF retrievals could also be413

due to its ability in retrieving the light precipitation with intensities below the minimum detectable414

rate by the DPR (< 0.2 mmh−1), as the GPROF also uses precipitation data from MRMS ground-415

based radar in its a priori database to increase the retrieval sensitivity to snowfall. Comparison of416

the official passive and active products remains outside the scope of this research; however, there417

seem to be notable differences in the spatial patterns of precipitation phases in these products.418

The difference in the source of ancillary data could be a reason for the observed discrepancies,419

which largely exist over mountainous terrains such as the Andes, Tibetan highlands, Rockies,420

Scandinavian mountains, Alps, and Zagros Mountains (Fig. 6 e, f) — where precipitation is mostly421

triggered by topographic features.422

The observed differences are not surprising because of complications in both active and pas-423

sive retrievals due to reduced ice scattering in shallow orographic lifting, heterogeneity of surface424

roughness, and radiometric complexity of high -elevation snow and ice cover (Tian and Peters-425

Lidard 2010). The phase discrepancies also seem to be larger when it comes to identifying precip-426

itation phase in the summer. For example, over the Tibetan highlands, the active products classify427

most of the summer precipitation as snowfall while the passive product results in more liquid428

precipitation, especially over the Hengduan Mountains in southeast China.429
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Fig. 6 i, j shows the results of the KNN algorithm in summer and winter and compare them with430

the REF map (Fig. 6 k, l). Overall, we observe a good agreement between the KNN outputs and431

the REF target precipitation product. The differences are more pronounced in the summer than the432

winter and mostly accumulated over the mountainous and dense vegetation regions (Fig. 6 k, l).433

For example, we observe that, in the summer, the detection probability of solid and mixed phases434

are negatively biased (∼ −12%) over the Rockies and the Andes. However, in winter, this prob-435

ability is positively biased over small parts of the Scandinavian mountains in northern Europe436

(∼+15%). Some of these mountainous biases are mainly attributed to the false detection of pre-437

cipitation occurrence rather than its phase (Fig. 7 b). Additionally, over the tropical forests, the438

algorithm falsely detects some mixed precipitation phases. Over dense vegetative surfaces the mi-439

crowave polarization signal becomes very weak (Prigent et al. 1997) due to incoherent vegetation440

scattering. The lack of a pronounced polarization signal could be the main reason for the reduced441

discriminatory power of the KNN approach that relies on the Euclidean distance as a similarity442

metric.443

Visual inspection of the global maps shows a good spatial and seasonal agreement between the444

KNN and REF. The proximity of these two products at the global scale is quantified by three445

measures including the Spearman's correlation (ρ), the Root Mean Squared Error (RMSE), and446

the Kullback-Leibler divergence (KL) in Fig. 1. The KL divergence KL(P ‖ Q) = ∑
n
i=1

P(i)
Q(i)

is a447

non-symmetric and non-negative measure that captures the proximity of two probability distribu-448

tions P and Q and is zero when they are identical. To compute the KL-divergence, between the449

probability histograms of the REF (P) and KNN outputs (Q), we discretize P and Q with n = 20450

probability intervals. The RMSE and KL values are normalized between 0 and 1 for interpretation451

convenience. As is evident, the correlation between the KNN and REF products is around 0.89452

to 0.91 in winter and summer, indicating that the algorithm is not excessively sensitive to the sea-453
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sonal changes in land surface radiometric properties. The normalized RMSE also remains below454

14% in both seasons. We see that the KL values slightly increase from winter (0.06) to summer455

(0.10), which indicates that, on average, the KNN method may exhibit improved detection skills456

when the extent of the global snow cover is larger in winter than summer.457

To further reveal the error structure of the instantaneous pixel-level retrievals, we used three458

statistical measures including the probability of hit, probability of false alarm, and the Heidke459

skill score HSS =
2(ad−bc)

(a+ c)(c+d)+(a+b)(b+d)
(Doswell et al. 1990), which ranges from a no460

skill (−∞) to a perfect skill (1). Recall that a is the number of correctly detected events, c is461

the number of missed events, b is the number of false detection, and d is the number of correct462

rejection. To have an adequate number of samples, these quality measures are calculated using the463

entire validation period from June 2015 to May 2016 (Table 2 and Figs 7 and 8).464

The annual maps of the probability of hit, false alarm, and HSS score are used to evaluate the465

detection skill of the KNN approach against the DPR as a reference (Fig. 7). The probability of466

hit over the snow-covered regions is relatively high. The reason is that the presence of snow on467

the ground reduces the surface emission, which could lead to better detection of the precipitation468

emission signal (Fig. 3) — similar to radiometrically cold ocean surfaces. The low detection rates469

are mostly over the areas where the DPR has a low sampling rate. Thus, lack of skills in these470

regions could be partly due to lack of samples in the database. A high probability of false alarm471

(∼ 0.2) is seen over some mountainous regions such as the Tibetan highlands and the Western472

Rockies. The false detection, mostly in liquid phase, gives rise to negative biases in detecting473

frozen and mixed precipitation (Fig. 6 l). High (∼ 0.80), medium (∼ 0.66) and low values (∼ 0.50)474

of HSS score are observed over the snow cover, tropical forests, and under-sampled deserts such475

as Sahara, respectively (Fig. 7 c).476
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The conditional probability of hit and false alarm are calculated for liquid, mixed, and solid477

phases (Fig. 8), with respect to the REF product. For separating the errors of the precipitation478

and phase detection, the probabilities are obtained assuming that the precipitation is correctly479

detected by the KNN algorithm. Similar to the precipitation detection, the algorithm displays480

improved phase detection capabilities over snow-covered surfaces (Fig. 8). The probability of hit481

for the liquid, mixed, and the solid phase is mostly greater than 0.85 and reaches 0.95 over the482

high-altitudes of North America. However, we observe a relatively lower detection rate of around483

0.74 for liquid precipitation over the tropical and subtropical regions such as the rainforest of484

Amazonian and Central Africa. The results show that the low probability of detection for the liquid485

phase is mostly because the algorithm detects some false mixed phase precipitation (Fig. 8 d).486

We speculate that this error could be partly attributed to the reduced skill of the algorithm over487

vegetated surfaces. The reduced detection skill of the algorithm could also be partly due to warm488

rain occurrences over the heterogeneous land surface of tropical and subtropical regions where489

cloud ice scattering is not significant.490

To understand the reasons for improved retrievals over snow-covered surfaces, the averaged491

values of the probability of hit and false alarm are stratified based on precipitation occurrence (D1)492

at liquid (D2), mixed (D3) and the solid (D4) phase over different land surface types {L}3
s=1,493

where s = 1 to 3 denotes the ground, wet, and dry snow cover (Table 2). The probability of494

precipitation detection increases by almost 11% from the ground to the dry snow cover, and 3%495

from wet to dry snow. An increase of 8 to 11% is also observed in the probability of hit in496

detection of solid and liquid phase over dry snow, where the largest detection rate of 94% is497

obtained for the snowfall. The results show that the probability of false alarm also increases in498

detection of precipitation occurrence over snow cover, whereas it decreases when it comes to499

the detection of its phase. Because, once precipitation is detected, due to significant differences500
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between the signatures of rain and snowfall, the probability of false alarm is markedly reduced.501

Table 2 quantifies the dependency of the probability of hit and false alarm on the annual percentage502

of the dry snow cover. For precipitation detection, the probability of hit increases by about 10%503

as the annual percentage of dry snow increases from zero to more than 70%, while the probability504

of false alarm increases between 2–4%. As is evident, for precipitation phase detection, both505

probabilities show improvements of around 4%.506

b. Comparison with the ground-based radar507

1) COMPARISON WITH MULTI-RADAR/MULTI-SENSOR SYSTEM508

To further evaluate the performance of the KNN algorithm, we compare its outputs against a509

precipitation product derived from the Multi-Radar/Multi-Sensor System (MRMS) (Zhang et al.510

2011, 2016). MRMS mosaics three-dimensional volume scan observations from 146 S-band dual-511

polarization Doppler Weather Surveillance Radar-1988 (WSR-88D) and 31 C-band single polar-512

ization Canadian radars. The product optimally integrates the radar observations with simula-513

tions of atmospheric models as well as hourly gauge data to produce seamless precipitation rate514

and phase estimates over the CONUS, at spatial resolution of 1 km at every 2 min. The MRMS515

products are further quality-controlled and gauge-adjusted at fine scale following the procedure516

described in Kirstetter et al. (2012) to derive a consistent and high quality surface precipitation.517

To determine the precipitation phase, MRMS uses thresholds on the wet and dry bulb temper-518

atures. Specifically, the precipitation is labeled as snowfall when the radar reflectivity exceeds519

5 dBZ, the surface temperature is below 2 ◦C, and the surface wet bulb temperature is below 0 ◦C520

(Zhang et al. 2016). Thus the MRMS rain-snow delineation is subject to similar uncertainties as521

in the passive GPM data (Chen et al. 2016). However, the uncertainties in detecting precipitation522

are significantly lower than the satellite data because of the higher sensitivity and resolution of523
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the ground-based radar observations, especially over landscapes with no significant orographic524

features (Kirstetter et al. 2012). To compare with the outputs of the KNN algorithm, a reference525

surface precipitation is derived by mapping the high-resolution MRMS data onto, and then aver-526

aging over, the nearest DPR grids (see Kirstetter et al. 2012, 2014).527

Fig. 10 shows that the spatial variations of the probability of phase change in the KNN and528

MRMS are consistent in the winter and summer seasons. The calculated values of KL-divergence529

between KNN and MRMS are 0.27 and 0.15 in winter and summer, respectively. The values of530

other calculated similarity metrics (i.e., ρ and RMSE) are also deteriorated from summer to winter531

(Table 3). These results indicate that even though the KNN shows improved wintertime detection532

of precipitation compared to those in summertime when compared with the REF product (Table 3),533

the intrinsic error between the satellite and ground-based data is still much larger than the satel-534

lite retrieval error, especially in the winter. The zonal mean of the phase transition probabilities535

(Fig. 11) indicates more similarities at lower latitudes (< 40° N), where the uncertainty of pre-536

cipitation phase change is lower or remains close to zero. At higher latitudes, KNN generates a537

higher (lower) probability of snowfall occurrence relative to the MRMS in winter (summer). In538

particular, larger departures occur at latitudes higher than 37° N in winter and 43° N in summer,539

where the ground is usually covered with snow.540

Fig. 12 shows four different satellite overpasses that capture large storms with distinguishable541

spatial phase change. Overall, the KNN approach is skillful in capturing the occurrence and phase542

of the near-surface precipitation. As is evident, in case of a single-phase precipitation event (e.g.543

orbit #12155), the KNN can accurately detect the extent of the storm, especially when a large part544

of the storm is in liquid form. However, when the several phases coexist within the storm (e.g.545

orbits #10412, #10796 and #12149), discrepancies arise between the satellite active/passive prod-546

ucts and the MRMS data. The produced mixed phase by the KNN retrieval reflects the uncertainty547
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between the satellite active/passive retrievals where a freezing point is likely to occur in the DPR548

ground clutter zone. For example, the storm on the northern shores of Lake Huron (orbits #12149)549

is well detected in terms of its spatial extent. The phase detection in the GPM passive product550

(GPROF) and the MRMS products is consistent since both products rely significantly on the wet-551

bulb temperature data. However, the DPR product differs significantly from other products and552

produces more liquid phase over the southern edge of the storm. As is evident, the KNN retrievals553

capture this discrepancy through a mixed phase detection.554

It is surprising that in orbits #10412 and #12149 (Fig. 12), the DPR reports the phase as liquid555

where the GPROF classifies the phase largely as solid since the discrepancy is often in the other556

direction. Based on the atmospheric temperature profile derived from environmental ancillary data557

(2A-DPRENV) used in the active retrieval algorithm, we conclude that the there is a temperature558

inversion when the storm is happening (see Fig. 13). In this case, liquid precipitation can refreeze559

near the surface and may not be captured by the DPR.560

2) COMPARISON WITH THE WRF SIMULATIONS DURING THE OLYMPEX561

The MRMS data lacks coverage over mountainous regions, thus we need a venue with rich562

ground-based observations for further evaluation of the presented approach. There is a wealth563

of orographic precipitation data during the GPM Olympic Mountains Experiment (OLYMPEx,564

Houze et al. 2017) from November 1 to December 23, 2015. The Olympic Mountains are lo-565

cated in the northwestern corner of the Washington State, United States (Fig. 14) with a dominant566

orographic precipitation regime. This regime is a result of the abrupt uplift of moisture-laden567

southwest airflow coming from the mid-latitude baroclinic storm systems. A few high-elevation568

snow and precipitation gauges were used during the OLYMPEx field campaign. However, the569

coarse temporal resolution of the DPR (i.e., 117 partial overpasses), relative to the 56-day du-570
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ration of OLYMPEx hamper their use for our purpose. Therefore, we choose the outputs of a571

high-resolution (1.33 km) hourly WRF simulation by the Northwest Modeling Consortium over572

the Olympic Mountains (Mass et al. 2003).573

Currier et al. (2017) used the microphysical scheme of WRF to estimate precipitation phase and574

showed that the results are relatively unbiased when compared with the OLYMPEx ground-based575

observations. The data is available from November 2015 to May 2016 and contains almost 117576

full or partial overlaps with DPR overpasses. First, the DPR retrievals are spatially resampled to577

match the 1.33 km WRF outputs. Then, the hourly outputs of the WRF are interpolated to match578

the scanning time of the DPR. To convert the interpolated WRF outputs to discrete precipitation579

phase, we follow a simple rule. If the ratio of reported snowfall to rainfall intensity is higher580

(lower) than 0.66 (0.33), then the precipitation is considered as solid (liquid) phase; otherwise, it581

is labeled as mixed.582

Fig. 14 illustrates the precipitation phase for the DPR, GPROF, KNN, and the WRF for three583

GPM orbits (#9722, #09773, #10019). We observe that at high-elevation regions, the KNN de-584

tects mixed phase over the areas that exhibit phase discrepancies between the GPROF and DPR.585

We see that these KNN results are in a good agreement with the WRF simulations. However, it is586

important to note that the precipitation phase partitioning in the WRF outputs is based on cloud mi-587

crophysical parameters in the atmospheric boundary layer, and thus its mixed-phase precipitation588

is physically different than the defined mixed-phase category in KNN retrievals.589

We calculate and compare the average phase outputs of the DPR, GPROF, KNN, and WRF data590

for all 117 coincident DPR overpasses. We fond that compared with the average phase probability591

of WRF, the KNN precipitation phase is positively biased by about 28% (i.e., KNN captures more592

solid phase than WRF, Fig. 14). However, this bias is about 31% at elevations above 800 meters,593

while reduced to about 24% for lower elevations. Additionally, the results show that over areas594
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with elevations higher than 800 meters, the KNN phase bias is significantly smaller compared to595

both DPR (positive bias ∼ 48%) and GPROF (negative bias ∼ 56%). At elevations below 800596

meters, the KNN is less biased than the positively biased DPR (∼ 41%); however, about 9% more597

biased than GPROF with a negative bias ∼ 19%. Overall, these results indicate that even though598

the KNN phase detection is consistent with the satellite products, there are notable discrepancies599

with the WRF simulations over the mountainous regions, which need further investigation.600

6. Summary and Discussion601

We proposed a Bayesian algorithm for detection of precipitation occurrence and phase from602

satellite observations, with particular emphasis on snowfall detection over snow cover. The algo-603

rithm relies on a nested k-nearest neighbor (KNN) search and probabilistic vote rules for detection604

of precipitation occurrence and its phase. The a priori database in the algorithm contains col-605

located GMI brightness temperatures (10.65 to 183 GHz) and DPR precipitation data that were606

stratified based on snow-cover retrievals from the MODIS sensor on board the Terra satellite. The607

precipitation phase data from the GPM passive and active products were combined to provide a608

reference database for testing the skill of the algorithm.609

The results demonstrated that the weighted Euclidean distance can be used as a similarity metric610

for precipitation phase detection in a Bayesian setting, with improved results over snow-covered611

surfaces. We demonstrated that the KNN is able to identify precipitation phase with minimal612

dependency on ancillary data, such as the near-surface air temperature and moisture. The results613

showed that the global probability of hit for detection of solid precipitation over dry snow cover614

could reach up to ∼ 94%. However, the detection skill of the algorithm is decreased over regions615

with dense vegetation due to reduced polarization signal. A larger phase discrepancy was found616
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when the KNN results were compared with the ground-based precipitation phase, which remains617

to be addressed in future research.618

It is important to emphasize that we have used V04 GPM official products. We expect to see less619

discrepancies between the GPM retrievals and the ground-based phase products in the following620

versions, because the latest version of the GPROF phase detection algorithm benefits from the621

longer GPM Radar/Radiometer joint records and the new DPR algorithm relies on an improved622

parameterization of ice microphysics.623

Linking the algorithm with physical or observational databases that contain additional informa-624

tion on snow-cover physical properties (e.g., snow thickness, density, and liquid water content)625

and vegetation density can be a promising line of research. Furthermore, exploring the ways to626

constrain the output of the algorithm to the snowfall retrievals by the CloudSat radar may also627

help to improve the accuracy of snowfall detection. A physically realistic definition of mixed-628

phase precipitation based on cloud microphysics may reduce the uncertainties in phase retrievals.629

Finally, future research is also required to expand and evaluate the proposed algorithm with direct630

comparison of its results with ground-based gauge observations.631
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TABLE 1. Quality metrics obtained by comparing the annual probability of phase transition between the KNN

results and the reference product (REF). Shown statistics are the normalized Root Mean Squared Difference

(RMSD), Spearman's correlation (ρ), and the Kullback-Leibler divergence (KL).

877

878

879

Metrics ρ RMSE KL(∆p = 0.05)

Winter (November-April) 0.91 0.12 0.06

Summer (May-October) 0.89 0.14 0.10
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TABLE 2. The annual probability of hit and false alarm for the KNN results over different land surface types

{L}3
s=1 and detection classes {D}4

i=1. Here, s = 1 to 3 represents the ground, wet, and dry snow-covered

surfaces, i = 1 denotes the detection of precipitation occurrence, and i = 2 to 4 represents the detection of liquid,

mixed, and solid phase, respectively. The results over the dry snow cover (L3) are further stratified based on the

annual percentage of the snow.

880

881

882

883

884

Probability of hit

Land surface Annual percentage of dry snow cover (L3)

L1 L2 L3 0−0.10 0.10−0.25 0.25−0.45 0.45−0.70 0.70−1.00

D1 0.75 0.78 0.86 0.77 0.84 0.86 0.84 0.87
D2 0.82 0.83 0.90 0.85 0.89 0.90 0.91 0.92
D3 0.86 0.89 0.92 0.88 0.90 0.93 0.92 0.92
D4 0.86 0.86 0.94 0.88 0.93 0.94 0.96 0.95

Probability of false alarm

Land surface Annual percentage of dry snow cover (L3)

L1 L2 L3 0−0.10 0.10−0.25 0.25−0.45 0.45−0.70 0.70−1.00

D1 0.06 0.09 0.11 0.09 0.08 0.13 0.09 0.11
D2 0.10 0.05 0.04 0.07 0.05 0.06 0.04 0.04
D3 0.09 0.08 0.05 0.08 0.05 0.07 0.06 0.05
D4 0.08 0.05 0.04 0.08 0.05 0.05 0.04 0.04
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TABLE 3. Quality metrics obtained by comparing the annual probability of phase transition between the

KNN retrievals and MRMS observations. Shown statistics are the normalized Root Mean Squared Difference

(RMSD), Spearman's correlation (ρ), and the Kullback-Leibler divergence (KL).

885

886

887

Metrics ρ RMSE KL(∆p = 0.05)

Winter (November-April) 0.72 0.29 0.27

Summer (May-October) 0.78 0.21 0.15
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FIG. 1. Variation of mean brightness temperatures (June 2014 to May 2016) in response to changes in precip-

itation intensity for different land-atmosphere classes including the liquid (a-i) and solid (j-r) precipitation phase

over the ground (no snow), wet and dry snow cover. The bins are five logarithmically (base 2) spaced intervals

with the width of 1 mmh−1 in the log-space.
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FIG. 2. Average variations of the cloud liquid water path (LWP) (a,/,d); the cloud ice water path (IWP) (b,/,e);

the water vapor path (WVP) (c,/,f); the skin temperature (Ts) (g,/,i); and latitudes (h,j) against the precipitation

intensity. The ice and liquid water paths are extracted from the MERRA-2 data (M2I1NXASM, Gelaro et al.

2017) and the surface temperature data are from MODIS (Wan 2014, MOD11A1) during June 2014 until May

2016. The intensity bins are the same as Fig. 1.
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FIG. 3. Average distance between vectors of mean brightness temperatures in the database from June 2014

to May 2016 for a clear-sky (r = 0) and a near-surface precipitating atmosphere (r > 0) with liquid (a-c) and

solid phase (d-f) overland precipitation with no snow cover, wet snow cover, and dry snow cover. The blue and

orange shaded areas indicate the cooling (scattering) and warming (emission) signals of precipitation. The mean

root squared distance between the no precipitating (clear-sky) and precipitating atmosphere is also presented for

each land-atmosphere class.
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FIG. 4. Algorithm flowchart of the proposed weighted k-nearest neighbor (KNN) algorithm for detection of

precipitation occurrence and phase.
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FIG. 5. Trade-off curves between the probability of hit (pH) and false alarm (pF ) calculated with different

numbers of k-nearest neighbors for detection of the precipitation occurrence and phase over no-snow covered

surfaces (top row: a–c) and snow-covered surfaces (bottom row: d–f). The optimal values of k and the detection

probabilities p are given in each subplot.
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FIG. 6. Seasonal probability of the precipitation phase change. The average phase of the DPR (a, b), GPROF

(c, d), REF (merged) (g, h) and the KNN algorithm (i, j) as well as the differences between the DPR and GPROF

(e, f) and the REF and KNN products (k, l). The differences are shown where both products detect the precipita-

tion occurrence.
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FIG. 7. The mean annual map of the probability of hit (a), probability of false alarm (b), and Heidke score (c)

obtained by comparing the pixel-level results of the KNN algorithm with the REF product for the detection of

precipitation occurrence. The map of snow-cover fraction (d) is also obtained from the MODIS data (MOD10A1

Hall et al. 2002) coincident with GPM inner-swath overpasses from June 2015 to May 2016.
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FIG. 8. The mean annual map of the probability of hit and false alarm by the KNN algorithm for the detection

of the liquid phase (a, b), mixed phase (c, d) and solid phase (e, f). The results are obtained for all GPM inner-

swath overpasses from June 2015 to May 2016.
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FIG. 9. Zonal mean values of the probability of precipitation phase change from liquid (p = 0) to solid (p = 1)

by the KNN, DPR, GPROF, and REF products in (a) winter (November-April) and (b) summer (May-October).

Zonal mean values of (c) probability of hit and (d) false alarm for the detection of the precipitation occurrence

and its phase change by comparing the KNN results with the REF product.
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FIG. 10. Mean seasonal maps of the probability of precipitation phase change from liquid (p = 0) to solid

(p = 1) for KNN in winter (a) and summer (b), and for the MRMS in winter (c) and summer (d), from June 2015

to May 2016
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FIG. 11. The zonal mean of the probability of precipitation phase change from liquid (p = 0) to solid (p = 1)

by the KNN and MRMS products in (a) winter (November-April) and (b) summer (May-October) — from June

2015 to May 2016.
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FIG. 12. Orbital-level precipitation phase detection from the KNN, DPR, GPROF, and MRMS for a few

GPM overpasses including #10412 on 2015/12/28 (top row), #10796 on 2016/01/22 (second row), #12149 on

2016/04/18 (third row), and #12155 on 2016/04/18 (bottom row).

989

990

991

58



FIG. 13. Inversion of the air temperature at orbit #10412 on 2015/12/28 (top row) and orbit #12149 on

2016/04/18 (second row). The data (2A-DPRENV) are presented at four ranges from 0 (surface) to 1.5 km.
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FIG. 14. The digital elevation map (DEM) of the Olympic Mountains (top panel), and the precipitation phase

by the DPR, GPROF, WRF, and KNN for orbit numbers #9722 (2015/11/14, second row), #9773 (2015/11/17,

third row), and #10019 (2015/12/03, fourth row). The bottom panel is the average probability of phase for 117

GPM inner-swath overpasses from November 1 to December 23, 2015. The last column shows the 2-meter air

temperature from the WRF simulations.
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