
LSPACE VS NP IS AS HARD AS P VS NP

FRANK VEGA

Abstract. The P versus NP problem is a major unsolved problem in com-
puter science. This consists in knowing the answer of the following question: Is

P equal to NP? Another major complexity classes are LSPACE, PSPACE and

EXP. Whether LSPACE = P is a fundamental question that it is as important
as it is unresolved. We show if P = NP, then LSPACE = NP. Consequently,

if LSPACE is not equal to NP, then P is not equal to NP. According to Lance
Fortnow, it seems that LSPACE versus NP is easier to be proven. However,

with this proof we show this problem is as hard as P versus NP. Moreover, we

prove the complexity class P is not equal to PSPACE as a direct consequence
of this result. Furthermore, we demonstrate if PSPACE is not equal to EXP,

then P is not equal to NP.

1. Introduction

In complexity theory, a function problem is a computational problem where a
single output is expected for every input, but the output is more complex than that
of a decision problem [6].

A functional problem F is defined as a binary relation (x, y) ∈ R over strings of
an arbitrary alphabet Σ:

R ⊂ Σ∗ × Σ∗.

A Turing machine M solves F if for every input x such that there exists a y
satisfying (x, y) ∈ R, M produces one such y, that is M(x) = y [6].

The verification problem for a functional problem F based on a binary relation
R is the problem of deciding the elements of language

{x; y : (x, y) ∈ R}.
We say that R is polynomially decidable if the verification problem for which is

defined its functional problem can be decided by a deterministic Turing machine in
polynomial time within the length of x [5]. R is polynomially balanced if (x, y) ∈ R
implies |y| ≤ |x|k for some positive constant k ≥ 1 where | . . . | is the string length
function [5].

Let L ⊆ Σ∗ be a language. L ∈ NP if and only if there is a polynomially
decidable and polynomially balanced relation RL, such that

L = {x : (x, y) ∈ RL for some y}.
If the language L ∈ NP can be decided in polynomial time by a deterministic

Turing machine, then L ∈ P [5].
The function problem associated with L, denoted FL, is the following computa-

tional problem:

2000 Mathematics Subject Classification. Primary 68Q15, Secondary 68Q17.
Key words and phrases. Function Problem, Verification Problem, Turing Machine, Logarithmic

Space, Polynomial Time.

1

2 FRANK VEGA

Given x, find a string y such that (x, y) ∈ RL if such a string exists; if no such
string exists, return “no” when there is a string y with (x, y) ∈ RL if and only if
x ∈ L [5].

The class of all function problems associated as above with languages in NP is
called FNP [5]. FP is the class resulting if we only consider the function problems
in FNP that can be solved in polynomial time [5].

In complexity theory, LSPACE (also known as L) is the complexity class con-
taining the decision problems that can be decided by a deterministic Turing machine
in logarithmic space [1]. Formally, the Turing machine for LSPACE has two spe-
cial tapes and the work tapes, one of which encodes the input and can only be read,
the second one of which encodes the output and can only be write, whereas the
other work tapes have logarithmic size but can be read as well as written [1].

Definition 1.1. FPL is the class of all function problems in FNP whose veri-
fication problems can be decided in logarithmic space through a string function G
computable in logarithmic space. That is, for a binary relation RL, for which is
defined a functional problem in FL ∈ FNP , the language

{x; y : (x,G(y)) ∈ RL}
can be decided by a deterministic Turing machine in logarithmic space within the
length of x where G is a string function computable in logarithmic space: We say
the function problem FL is in FPL through the string function G.

We show FP ⊆ FPL, but FPL FNP under the assumption of the statement
LSPACE 6= P . In this way, we obtain FP 6= FNP when LSPACE 6= P . If
FP 6= FNP then P 6= NP [5]. To sum up, LSPACE 6= P ⇒ P 6= NP and
by contraposition P = NP ⇒ LSPACE = NP is proven. In complexity theory,
PSPACE is the class of problems that can be decided in polynomial space [5]. As
a consequence of this result, we show P 6= PSPACE. The complexity class EXP

contains those problems which can be decided in running time 2O(nk) for a positive
constant k [5]. This result also implies EXP 6= PSPACE ⇒ P 6= NP .

2. Results

Theorem 2.1. FP ⊆ FPL.

Proof. We define a CNF Boolean formula using the following terms: A literal in a
Boolean formula is an occurrence of a variable or its negation and a Boolean formula
is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses,
each of which is the OR of one or more literals [2]. An instance of WEIGHTED
CNF SATISFIABILITY, or WSAT for short, is a Boolean formula in CNF with
a positive integer weight on each clause [7]. A feasible solution is an assignment
(of 0 or 1) to all the variables [7]. The measure of a feasible solution is the sum
of the weights of the satisfied clauses [7]. The neighborhood of a feasible solution
contains all solutions obtained by flipping the value of one variable [7]. This is a
maximization problem since an optimal solution is the one which has a maximum
sum of weights of the satisfied clauses in relation to the neighborhood solutions [7].

An instance of WEIGHTED kCNF SATISFIABILITY, or kWSAT for short, is
an instance of WSAT in which every disjunctive clause contains at most k literals.
Solutions, measures, and neighborhoods are defined for kWSAT in the same way as
WSAT [7]. WSAT is in FPL through the identity string function [4]. Certainly,

LSPACE VS NP IS AS HARD AS P VS NP 3

the identity function can be computable in logarithmic space. Indeed, the verifica-
tion problem of WSAT is in LSPACE [4]. This implies the problem kWSAT is
in FPL through the identity string function as well [4]. In the unweighted versions
of kWSAT and WSAT each clause has exactly as a weight the positive integer 1
[7].

We say that a function problem A reduces to a function problem B if the following
holds: There are string functions Q and S, both computable in logarithmic space,
such that for any strings x and z the following holds: If x is an instance of A, then
Q(x) is an instance of B [5]. Furthermore, if z is a correct output of Q(x), then S(z)
is a correct output of x [5]. Q produces an instance Q(x) of the function problem
B such that we can construct an output S(z) for x from any correct output z of
Q(x) [5]. We say that a function problem A is complete for a class FC of function
problems if it is in FC, and all the problems in that class reduce to A [5].

The unweighted version of 2WSAT is in FP–complete [7], [3]. Hence, there is a
FP–complete in FPL through the identity string function [7], [4], [3]. Furthermore,
since every single truth assignment of a formula in 2CNF is bounded by the formula
itself, then the verification problem only depends on the space of the instances of the
unweighted version of 2WSAT (ignoring the truth assignment string length), that
is in the logarithmic space over the Boolean formulas in 2CNF . Since both string
functions in the function problem reductions are computable in logarithmic space,
thus if there is some FP–complete problem which is in FPL through the identity
string function, then all the problems in FP belong to FPL. Indeed, every problem
in FP can be reduced in logarithmic space to the unweighted version of 2WSAT
by the function problem reductions and the unweighted version 2WSAT is in FPL
through the identity string function [7], [4], [3].

Certainly, for every instance x of some function problem FL ∈ FP , we can reduce
it to an instance Q(x) of 2WSAT using some string function Q that is computable
in logarithmic space. If z is the correct output for Q(x) in 2WSAT , then there
is a Turing machine M which decides M(Q(x), z) in logarithmic space because
(Q(x), G(z)) = (Q(x), z) and (Q(x), z) ∈ R2WSAT because of the string function G
is the identity function and R2WSAT is the binary relation for which is based on
the function problem 2WSAT . M can be simulated by another Turing machine M ′

such that M ′(x, z) can be decided in logarithmic space within the length of x. We
just need to reduce in logarithmic space the input x; z in M ′ to Q(x); z and simulate
M on input Q(x); z. This is feasible since Q is computable in logarithmic space
and the composition reduction is closed under logarithmic space [5]. However, we
know (x, S(z)) ∈ RFL by definition of the function problem reduction where RFL

is the binary relation for which is based on the function problem FL. Therefore, we
can affirm FL is in FPL through the string function S = G which is computable
in logarithmic space. In conclusion, we obtain FP ⊆ FPL. �

Theorem 2.2. If LSPACE 6= P , then FPL FNP .

Proof. Given a Boolean circuit C, the problem CIRCUIT–SAT consists in deciding
whether there is some input such that C accepts [5]. The function problem as-
sociated with CIRCUIT–SAT, denoted FCIRCUIT–SAT, is in FNP–complete [5].
The verification problem of FCIRCUIT–SAT is precisely the P–complete problem
CIRCUIT–VALUE [5]. However we know that any problem in P–complete can-
not be decided in logarithmic space by a deterministic Turing machine under the
assumption of LSPACE 6= P [5]. Therefore, the identity string function cannot

4 FRANK VEGA

be used in this case for the Definition 1.1. Moreover, this is not possible through
any string function G computable in logarithmic space for the Definition 1.1. This
is because the resulting language for the verification problem will be equivalent
to the problem CIRCUIT–VALUE under the logarithmic computable function G.
Certainly, the language associated to the function problem will be the same, that
is the problem CIRCUIT–SAT. The only changes will be in the form of the cer-
tificate for the elements of CIRCUIT–SAT, therefore the resulting language for the
verification problem will be a P–complete problem as well. Indeed, the function-
ality of the new certificate will be the same, that is the evaluation of a Boolean
circuit for an input value which can be obtained transforming the new certificate in
a truth assignment through the logarithmic computable function G. Consequently,
we obtain if LSPACE 6= P , then FPL FNP since under the assumption of
LSPACE 6= P , the function problem FCIRCUIT–SAT is not in FPL through any
string function G computable in logarithmic space. �

Theorem 2.3. If LSPACE 6= P , then FP 6= FNP .

Proof. Due to the Theorems 2.1, and 2.2, we obtain FP ⊆ FPL FNP . As
result, we have FP 6= FNP . �

Theorem 2.4. If LSPACE 6= P , then P 6= NP . Consequently, when P = NP
then LSPACE = NP .

Proof. If FP 6= FNP , then P 6= NP [5]. The proof is completed as a consequence
of the Theorem 2.3. �

Theorem 2.5. P 6= PSPACE.

Proof. As result of Theorem 2.4, if P = PSPACE then LSPACE = PSPACE.
However, we know that LSPACE = PSPACE is not possible due to the Hierarchy
Theorem [5]. Thus, P = PSPACE is not possible either. �

Theorem 2.6. If EXP 6= PSPACE, then P 6= NP .

Proof. It is a known result if EXP 6= PSPACE, then LSPACE 6= P [5]. Hence,
this is a direct consequence of Theorem 2.4. �

References

1. Sanjeev Arora and Boaz Barak, Computational complexity: a modern approach, Cambridge

University Press, 2009.
2. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein, Introduction to

algorithms, MIT press, 2009.

3. Raymond Greenlaw, H James Hoover, and Walter L Ruzzo, Limits to Parallel Computation:
P-completeness Theory, Oxford University Press, 1995.

4. Mark W Krentel, On finding locally optimal solutions, [1989] Proceedings. Structure in Com-
plexity Theory Fourth Annual Conference, IEEE, 1989, pp. 132–137.

5. Christos H Papadimitriou, Computational complexity, John Wiley and Sons Ltd., 2003.
6. Elaine Rich, Automata, computability and complexity: theory and applications, Pearson Pren-

tice Hall Upper Saddle River, 2008.
7. Alejandro A Schäffer and Mihalis Yannakakis, Simple Local Search Problems That are Hard to

Solve, SIAM journal on Computing 20 (1991), no. 1, 56–87.

Joysonic, Belgrade, Serbia
E-mail address: vega.frank@gmail.com

