

This project has received funding from the European
Union's Horizon 2020 research and innovation
programme under grant agreement No 780602

Building the Legal Knowledge Graph for Smart Compliance
Services in Multilingual Europe

D1.3 Technical architecture design

PROJECT ACRONYM Lynx

PROJECT TITLE Building the Legal Knowledge Graph for Smart Compliance Services
 in Multilingual Europe

GRANT AGREEMENT H2020-780602

FUNDING SCHEME ICT-14-2017 - Innovation Action (IA)

STARTING DATE (DURATION) 01/12/2017 (36 months)

PROJECT WEBSITE http://lynx-project.eu

COORDINATOR Elena Montiel-Ponsoda (UPM)

RESPONSIBLE AUTHORS Filippo Maganza, Kennedy Junior Anagbo (ALP)

CONTRIBUTORS Socorro Bernardos Galindo (UPM)

REVIEWERS Julian Moreno-Schneider, Stefanie Hegele (DFKI), Ilan Kenerman (KD)

VERSION | STATUS V1.0 |Final

NATURE Report

DISSEMINATION LEVEL Public

DOCUMENT DOI https://zenodo.org/communities/lynx/10.5281/zenodo.2580245

DATE 28/02/2019

http://lynx-project.eu/

1

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

VERSION MODIFICATION(S) DATE AUTHOR(S)

0.1 First draft 09/11/2018 Filippo Maganza, Kennedy Junior
Anagbo

0.2 Document structure 14/11/2018 Filippo Maganza, Kennedy Junior
Anagbo

0.3 Added Introduction 20/11/2018 Filippo Maganza, Kennedy Junior
Anagbo

0.5 Added Chapter 2 30/11/2018 Filippo Maganza, Kennedy Junior
Anagbo

0.6 Added Chapter 3 15/12/2018 Filippo Maganza, Kennedy Junior
Anagbo

0.8 Added Chapter 4 04/01/2019 Filippo Maganza, Kennedy Junior
Anagbo

0.9 Added Chapter 5, 6 and
Annex 1,2 15/01/2019 Filippo Maganza, Kennedy Junior

Anagbo

1.0 Integration of reviewers’
comments 16/02/2019 Filippo Maganza, Kennedy Junior

Anagbo

2

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

ACRONYMS LIST

API Application Programming Interface

BB Building Block

CRUD Create Read Update Delete

DAG Directed Acyclic Graph

DevOps Development Operations

ESB Enterprise Service Bus

HMAC Hash-based Message Authentication Code

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure as a Service

JSON JavaScript Object Notation+

JWT JSON Web Token

LKG Legal Knowledge Graph

MSA Microservices Architecture

NIF NLP Interchange Format

NLP Natural Language Processing

PaaS Platform as a Service

PDF Portable Document Format

QoS Quality of Service

REST Representational State Transfer

RSA Rivest–Shamir–Adleman (Algorithm)

SaaS Software as a Service

SHA256 Secure Hash Algorithm

SOA Service-Oriented Architecture

TCP Transport Control Protocol

TR Technical Requirement

UI User Interface

URL Unique Resource Locator

XML Extensible Markup Language

3

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

EXECUTIVE SUMMARY
The Lynx project as a compliance service-oriented platform that seeks to address compliance and
regulatory related needs of its clients and users, comprises many services ranging from the fields of
Information Extraction and Linking, Knowledge Management and Sematic Web; for which there is the
need for a high level technical architecture design that integrates these services in order to address the
objectives of the project.

This document, therefore, provides a detailed description of the technical architectural design solution
for the Lynx platform. Architecture design in any software development project as in the case of Lynx
serves as a blueprint that drives the smooth design and implementation of the software system. Once
implemented, fundamental structural choices are costly to change.

In this deliverable, standard architectural patterns such as the Monolithic architecture pattern, SOA and
MSA are described narrowing down on the choice of the architectural patterns that suites the
architectural design needs of the Lynx platform with reference to the functional and technical
requirements of the Lynx platform.

For the Lynx platform, we adopted the MSA pattern which supports loose coupling between services; a
feature that allows for easy separation of work and which makes this pattern most adaptable to the Lynx
platform requirements.

The document also provides detailed description of the logical and physical architectures.

The logical architecture describes the following:

• Access control system
• Microservices coordination system
• Communication system
• Foundational microservices
• How the software microservices are wired together to form a larger software system

The physical architecture describes the type of infrastructures, the platform and the deployment
architecture of the software application and how to deliver the deployable system.

4

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

TABLE OF CONTENTS
EXECUTIVE SUMMARY……… 3

1 INTRODUCTION ... 8

1.1 PURPOSE AND STRUCTURE OF THIS DOCUMENT ... 8

2 ASSUMPTIONS ON THE DESIGN ARCHITECTURE .. 9

3 ARCHITECTURAL DESIGN PATTERNS ... 10

3.1 MONOLITHIC ARCHITECTURAL DESIGN PATTERN .. 10

3.2 SERVICE-ORIENTED ARCHITECTURAL DESIGN PATTERN .. 10

3.3 MICROSERVICE ARCHITECTURAL DESIGN PATTERN ... 10

3.4 COMPARISON OF MSA WITH TRADITIONAL SOA ... 11

3.5 COMPARISON OF SERVICE-ORIENTED ARCHITECTURES WITH MONOLITHIC ARCHITECTURE 12

3.6 ARCHITECTURAL PATTERN FOR THE LYNX PLATFORM ... 12

4 LOGICAL ARCHITECTURE DESCRIPTION .. 13

4.1 ACCESS CONTROL SYSTEMS DESIGN ... 13

 JSON Web Tokens (JWTs) .. 13

 OAuth 2.0 protocol .. 13

 Authentication ... 15

 Authorization ... 15

 Access control .. 15

4.2 MICROSERVICES COORDINATION SYSTEM DESIGN .. 15

4.3 SERVICE INTERCOMMUNICATION SYSTEM DESIGN ... 17

 WebHook ... 17

 Polling .. 18

4.4 FOUNDATIONAL MICROSERVICES ... 19

 API manager (API) .. 19

 Workflow Manager (WM) ... 20

 OAuth 2.0 Authorization server and Identity manager (AUTH) .. 20

 LKG Manager (LKGM) .. 20

5

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

4.5 LOGICAL ARCHITECTURE VIEW ... 21

5 PHYSICAL ARCHITECTURE DESCRIPTION ... 22

5.1 CLOUD COMPUTING ... 22

5.2 DOCKER ... 23

5.3 KUBERNETES ... 23

5.4 OPENSHIFT .. 24

5.5 DEPLOYMENT ARCHITECTURE DESCRIPTION .. 25

6 CONCLUSIONS AND FUTURE WORK ... 27

7 REFERENCES .. 28

ANNEX 1: ADDITIONAL FUNCTIONAL REQUIREMENTS ... 29

ANNEX 2: API SPECIFICATION STANDARD ... 30

6

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

TABLE OF FIGURES
Figure 1 An application designed using MSA... 11

Figure 2 UML sequence diagram of the OAuth2 client credentials grant type with JWT tokens 14

Figure 3 Orchestration and choreography, two possible control approaches in service-oriented
architectures .. 16

Figure 4 Asynchronous communication using webhook mechanism over the HTTP protocol................... 18

Figure 5 Asynchronous communication using short polling mechanism over the HTTP protocol 19

Figure 6 UML component diagram of the Lynx logical architecture ... 21

Figure 7 Kubernetes architecture .. 24

Figure 8 OpenShift architecture .. 25

Figure 9 Lynx deployment architecture ... 26

7

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

LIST OF TABLES
Table 1 Differences between MSA and SOA. .. 11

Table 2 Access control levels for the Lynx platform .. 15

8

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

1 INTRODUCTION
Technical architecture design refers to the high-level structures of a system and the discipline of creating
such structures and systems. The IEEE standard 1471 [1] defines technical architecture (software
architecture) as the fundamental organization of a system embodied in its components, their
relationships to each other and to the environment and the principles guiding its design and evolution.

Technical architecture design functions as a blueprint for the system and the project under development.
Once implemented, fundamental structural choices are costly to change. The documentation of technical
architecture design helps to facilitate communication among stakeholders, captures early decisions about
the high-level design, allows reuse of the design components among projects and serves as a basis for
work-breakdown structure.

Lynx is envisioned as a platform capable of assisting customers in searching between relevant legal
compliance information documents as detailed in the “Pilots requirements analysis” of D4.1; this objective
entails several technical challenges that must be considered in the platform architecture design as
described in the technical requirement analysis report D1.2.

These technical requirements coupled with the functional requirements analysis report D1.1, and D4.1
will drive the design and implementation of the architecture of Lynx.

1.1 PURPOSE AND STRUCTURE OF THIS DOCUMENT

This document provides a detailed high-level description of the technical architecture of the Lynx
platform. This solution aims to address all requirements described in D1.1, D1.2 and D4.1 of the Lynx
project.

Descriptions of the major components that will make up the design solution, the dependencies between
them, and how they will work together are also provided in this document. The document also captures
all design considerations and architecture level technical design decisions.

This document serves as the central point of reference regarding the technical architecture design of the
Lynx platform.

It is worth noting that, this is a living document and therefore the technical architects will update this
document as the project progresses until the system is promoted into production.

The rest of this document is organized as follows:

Section 2 details out important assumptions in the architectural design of the Lynx platform.

Section 3 describes the possible architectural patterns considered for the architectural design of the Lynx
platform and the choice of an adaptable architectural pattern for the platform.

Section 4 presents some adopted patterns and industry standards, describes the foundational
microservices (structural components) of the platform and presents the logical architecture of Lynx.

Section 5 describes the physical architecture of the platform focusing on some software deployment
technologies with the deployment architecture description closing the section.

Section 6 concludes the deliverable and presents future work.

9

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

2 ASSUMPTIONS ON THE DESIGN ARCHITECTURE
Design decisions are usually influenced by a lot of information from both the problem to be addressed
and best practices from the field, often imposed as standards as well as the experience of the designers
and implementers. All these data help to drive some preferences for the design and eventually steer the
assumptions to consider in the design process.

The following assumptions were made relating to the design of the Lynx architecture:

• The technical requirements that demand for a flexible and modular architecture take precedence
over the performance requirements.

• The functional requirements of the Lynx platform specified in D1.1 “Functional Requirements
Analysis Report” and in D4.1 “Pilots Requirements Analysis Report” are complemented with the
functional requirements described in the ANNEX of this document.

• The performance requirements specified in D1.2 “Technical requirements analysis report” may
change in the future.

10

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

3 ARCHITECTURAL DESIGN PATTERNS
An architecture pattern expresses a generalised approach to the structural organization or schema for
software systems. It provides a set of predefined subsystems, specifies their responsibilities, and includes
rules and guidelines for organizing the relationships between them [2].

In this section, we present a general overview of the patterns considered for the Lynx platform; then we
compare them by explaining their advantages and disadvantages and finally discuss the choice of the
pattern for the Lynx platform.

3.1 MONOLITHIC ARCHITECTURAL DESIGN PATTERN

A monolithic application describes a software application in which all the functionally distinguishable
aspects (e.g. data input and output, data processing, error handling, and the user interface) are
interwoven into a single program from a single platform [3]. The application is packed and deployed as a
monolith.

3.2 SERVICE-ORIENTED ARCHITECTURAL DESIGN PATTERN

The service-oriented architecture (SOA) is a style of software design where services are provided to the
other components by application components through a communication protocol over a network [4].

An SOA application is built by assembling a collection of self-contained service components. Each service
represents a business activity with a specified outcome and may consist of other underlying services.

3.3 MICROSERVICE ARCHITECTURAL DESIGN PATTERN

The microservice architecture (MSA) is a variant of SOA in which the application is structured as a
collection of loosely coupled services which implement business capabilities.

Two important concepts of MSA are the “bounded context” and the Single Responsibility Principle. The
former refers to the coupling of a service component and its data as a single unit with minimal
dependencies while the latter explains that, “each software module should have one and only one reason
to change” [5].

The diagram in Figure 1 shows an application constructed as a series of microservices where each
microservice (e.g. Service B1 and Service B2) has a clear team owner (Team B), and each team has a clear,
non-overlapping set of responsibilities; a unique distinguishing feature of the microservice architectural
design pattern.

11

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

Figure 1 An application designed using MSA

3.4 COMPARISON OF MSA WITH TRADITIONAL SOA

Despite the reliance of both MSA and SOA on services as their main components, there exist some
distinctive variations in their service characteristics and functioning. Therefore, in this section, we present
some major differences between MSA and SOA as explained in Table 1.

Comparison context SOA MSA

Service intercommunication

Promotes the propagation of
multiple heterogeneous
protocols through its
intercommunication
middleware component called
Enterprise Service Bus (ESB).

Promotes the use of simple and
lightweight protocols like REST
and SOAP using API gateway.

Service granularity

Services usually include much
more business functionality and
they are often implemented as
complete subsystems.

Service components are
generally single purpose and
execute a specific task according
to the Single Responsibility
Principle.

Service reusability
Enhances component sharing.
Thus, services and their
functionality can be reused.

Minimize component sharing
through “bounded context”.

Decoupling of services
The “share as much as possible”
approach implies strong
coupling of services.

Enhances decoupling of services
through “bounded context”.

Data storage Data storage is shared across
multiple services.

Each service is provisioned to
have a dedicated and an
independent storage.

Table 1 Differences between MSA and SOA.

12

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

3.5 COMPARISON OF SERVICE-ORIENTED ARCHITECTURES WITH MONOLITHIC ARCHITECTURE

In this section, we give some significant advantages of service-based architectures (like SOA or MSA) over
monolithic design structures:

• Better testability: small, independent services are easier to test, and debug as compared to
massive chunks of code in monolithic architecture.

• Service interoperability: service-oriented architectures facilitate the development of a complex
product by integrating different products from different vendors independent of the platform and
technology.

• Improved scalability: multiple instances of a single service can run on different servers at the same
time; this increases scalability because the whole application is divided into smaller units of single
services that can scale independently. Furthermore, horizontally scaling monolithic applications
can often be a challenge when there is an increasing data volume but much easier with service-
based architectures.

• Improved fault isolation: larger applications can remain mostly unaffected by the failure of a
single module in service-oriented architectures compared to monoliths where the entire
application is affected.

• Continuous deployment: it is easier to achieve continuous deployment with service-oriented
architectures since each service can be independently deployed without other services with its
changes automatically propagated into production.

• Increased flexibility: difficulty in adopting new and advanced technologies with regards to
monolithic design structures regardless of how easy the initial stages may seem compared to
service-based architectures since changes in frameworks and tools affect an entire application.

Despite the numerous advantages of service-based architectures over a monolithic application, it has
some drawbacks such as:

• Overhead: in service-oriented architectures, every time a service interacts with another service, a
transmission of data over a network occurs with a complete validation of every input parameter.
This increases the response time and machine load, and thereby reduces the overall performance.

• Complex asynchronous communication: there may exist a high amount of asynchronous calls
between services.

3.6 ARCHITECTURAL PATTERN FOR THE LYNX PLATFORM

Considering the requirements of the Lynx project coupled with D1.1, D1.2 and D4.1 (in particular TR1,
TR3, TR7, TR10 and TR28 of D1.2), the main architectural pattern adaptable to the technical architectural
design of the Lynx platform is MSA.

Nevertheless, there is one Lynx requirement that does not comply well with the MSA pattern: the platform
shall provide “a Legal Knowledge Graph for smart compliance services” (from the original proposal
document with the topic “ICT-14-2016-2017”). This requirement calls for the reusing and sharing of data
and metadata of the LKG across multiple services; a requirement adequately supported by the SOA
pattern.

Consequently, we shall adopt MSA as the architectural pattern in the technical architecture design of
the Lynx platform except for the requirement stated before that does not conform well to the MSA
pattern and therefore uses the SOA pattern.

13

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

4 LOGICAL ARCHITECTURE DESCRIPTION
The logical architecture of the system focuses on the interfaces of its software components and how
they are wired together to form a larger software system. The aim is to provide developers with a clear
architecture perspective on the entire system without constraining the architecture to a particular
technology or environment.

In deliverable D1.2 “Technical requirements analysis report”, we presented the components of the Lynx
platform as building blocks (BBs) dividing them into two categories namely: foundational and peripheral
BBs; but since BBs are loosely coupled architecture components with only one main responsibility and a
well-defined interface, a definition that is synonymous to microservices, we henceforth substitute the
name BB with the name “microservice” reflecting a choice of the architectural design pattern (see
section 3.5).

Consequently, all the foundational BBs shall be referred to as foundational microservices while the
peripheral BBs shall be called peripheral microservices throughout this document.

4.1 ACCESS CONTROL SYSTEMS DESIGN

In this section, we introduce the JSON Web Tokens standard and the OAuth2 framework as they are
necessary prerequisites to the understanding of the concepts we shall discuss later in this section;
particularly, the detailed description of the Lynx access control designs.

 JSON Web Tokens (JWTs)

JSON Web Token (JWT) is an open standard (RFC 7519) [6] that defines a compact and self-contained way
for securely transmitting information between parties as a JSON object.

Tokens can be encrypted and/or signed; signed tokens can be used to verify the integrity of the claims
contained within it, while encrypted tokens hide those claims from other parties. Json Web Tokens can
be signed using asymmetric or symmetric keys.

A JWT comprises three parts separated by a dot (.) as follows:

• Header: the header typically consists of two parts: the type of the token, which is JWT, and the
signing algorithm being used, such as HMAC-SHA256 or RSA.

• Payload: this part contains the claims. Claims are statements about an entity (typically, the user)
and additional data.

• Signature: the signature is used to verify the message wasn't changed along the way, it ensures
that the token is valid.

Therefore, a complete JWT is represented as Header.Payload.Signature

For the Lynx architecture design, we are using the signed JWTs; each time a request is sent to a server,
the server can determine:

• The validity of the token based on the signature and also the expiration time.
• The identity of the client and its authorities.

 OAuth 2.0 protocol

From the early stages of the design of the Lynx platform, we decided to adopt the OAuth 2.0 protocol to
model our authorization flows. OAuth 2.0 is an industry-standard protocol for authorization that focuses
on client developer simplicity while providing specific authorization flows for different types of
applications [7].

14

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

The OAuth 2.0 defines four roles for owners, clients and servers as follows:

• Client application: this is an application that can make protected resource requests on behalf of
the resource owner.

• Resource owner: this entity owns the resource and therefore can grant access to a protected
resource or a service. Usually, the resource owner is a person or an application.

• Resource server: this is the server hosting the protected resource. The resource server has to
implement the access control policies for the hosted resources.

• Authorization server: this server supplies access tokens to the client after successfully
authenticating the resource owner.

The OAuth 2.0 framework also defines a group of grant types that can be used to get an access token. The
grant types that will be used in the Lynx platform are:

• Client credentials: “the client credentials grant is used when applications request an access token
to access their own resources, not on behalf of a user” [8] (i.e. the client application is the resource
owner). It is important to notice that in the Lynx project context, all the client applications from
the pilot use cases will own the service resources associated to their corresponding pilot use case.

• Password grant: the password grant type is used by first-party clients to exchange a user's
credentials for an access token. This authorization flow will be used to enable password logins
from the Lynx client application that will be accessible from all Lynx users.

Clients can use the granted access tokens to access protected resources. The complete specification of
the OAuth 2.0 framework is currently available at [9]. Figure 2 shows the control flows for the client
credentials grant type with the adoption of JWT.

Figure 2 UML sequence diagram of the OAuth2 client credentials grant type with JWT tokens

15

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

 Authentication

The term authentication describes the process of validating an entity’s credentials to verify its identity.
The Lynx platform provides authentication mechanism capable of verifying the clients’ applications and
users’ identities that are based on the OAuth 2 framework.

 Authorization

An authorization process defines policies that determines the resource(s) an entity is permitted to access
after a successful authentication of the entity (client application or user in the Lynx context). The Lynx
platform defines some permission levels (authorities) for its client applications and users based on the
OAuth 2 framework.

 Access control

Under the microservice architecture, an application is split into multiple microservice processes, and each
microservice implements the business logic of one module in the original single application. Therefore,
there is the need to protect the resources of each microservice by granting authorization to the users with
the right authorities.

It is worth noting that, all the Lynx microservices will be resource servers and so they will be responsible
for protecting their hosted resources (services or data); therefore, access control to resources in the Lynx
platform can be conceptualized and divided into four security levels:

• At the level of the API Gateway.
• At the level of the Workflow Manager.
• At the level of the Peripheral Microservices.
• At the level of the LKG Manager.

An API key can also be used to protect the resources of external Microservices. Table 2 shows the different
security levels that we have envisioned for the Lynx platform, their access control granularity and their
required information.

Security Level Access Control Granularity Required information

API Gateway Workflow Original Client JWT

Workflow Manager Workflow Original Client JWT

Peripheral Microservices Task Original Client JWT + API Key
(only for external Microservices)

LKG Manager Document, Annotation Original Client JWT + API Key
(possibly)

Table 2 Access control levels for the Lynx platform

4.2 MICROSERVICES COORDINATION SYSTEM DESIGN

One of the main requirements of the Lynx platform is to process business processes composed of many
atomic service tasks. Examples of these business processes are the curation workflows associated with
each use case that are described in D4.2.

There are two different approaches to controlling business processes in microservice architecture:

16

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

• Orchestration: a centralized approach in which a “central brain” orchestrates the other
microservices driving by itself the execution of the business processes.

• Choreography: a distributed approach in which the microservices observe an event environment
and act reacting to events autonomously; therefore, advancing the state of execution of the
business process.

Figure 3 offers a graphical interpretation of the difference between orchestration and choreography.

Microservices architecture normally uses choreography to drive the purpose of low coupling (an
important factor to achieving high scalability); nevertheless, for the Lynx control system design, we opted
for orchestration. The main reasons are:

• Monitoring of the state of execution is easier with orchestration.
• Modelling business process with events is difficult (it is necessary to have a tool that can translate

a business process model into an event model)

In addition, we envisioned the possible “upgrading” of the system to a choreography-based control
system in the future.

Figure 3 Orchestration and choreography, two possible control approaches in service-oriented architectures

17

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

4.3 SERVICE INTERCOMMUNICATION SYSTEM DESIGN

Since the Lynx architecture shall comply with the REST architectural pattern (as specified in TR4 of D1.2),
we are constrained to using the HTTP protocol for the design of the communication system.

For the Lynx platform, we envisioned two types of communication:

• Synchronous: the client sends a request opening a connection with the server and awaits the
result, once the result is returned, the connection is closed.

• Asynchronous: in our context (inter-service communication), asynchronous communication is a
means whereby a client makes a request to a server, opening a connection, then it closes it and
keeps on executing without blocking the connection. The result is delivered to the client later upon
completion.

Two possible benefits of asynchronous communication are:

• An increase in performance is possible since the client is not blocked just for awaiting a response
for the required information; within the same timeframe, it is able to deliver more.

• Optimization of network utilization is attainable since a connection between the client and server
is terminated immediately a request is sent freeing up network resources for other purposes.

To enable asynchronous communication, we envisioned the two following requirements:

• An asynchronous delivery mechanism over the HTTP protocol (required by REST), like WebHook
or Polling that will be explained in this section.

• The program that made the request has to be capable of continuing the execution even if the
response is not ready.

While the first requirement is sufficient to optimize the network utilization, the second is necessary to
increase the performance of the system.

 WebHook

A Webhook is a type of asynchronous delivery mechanism where data are sent between two service
applications over the HTTP protocol; the flow is as follows:

1. The requesting service provides a callback URL to the endpoint where the data or information will
be consumed.

2. The endpoint will post any new occurring event to the specified callback URL.

One strong requirement to fulfill for the adoption of WebHook is that, the client must host an HTTP server
with an endpoint to handle the callback when it occurs.

As shown in Figure 4, serviceA makes a request to serviceB and provides a callback URL which is used by
serviceB to send back the response after the task has been completed and the data has been elaborated.

18

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

Figure 4 Asynchronous communication using webhook mechanism over the HTTP protocol

 Polling

Polling is a technique where a service application makes a request to an endpoint for a task execution,
data or information consumption and continuously in a pre-determined frequency polls the status
endpoint of the server service application for the result.

There are two types of polling: the classical (short) polling and the long polling. For the purpose of this
document, we shall describe only the classical polling. As shown in the diagram in Figure 5, serviceA makes
a request to serviceB for a task execution and terminates the connection; but periodically polls the status
endpoint of serviceB for the status of the task.

19

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

Figure 5 Asynchronous communication using short polling mechanism over the HTTP protocol

4.4 FOUNDATIONAL MICROSERVICES

The foundational microservices are the direct consequence of the previous systems design (see section 3
and 4).

Foundational microservices form the skeleton of the system and their interfaces are unlikely to change
and therefore give a logical or conceptual architectural view. As a result, the behavior and interfaces of
these components are architecture relevant and will be discussed in this document.

Peripheral microservices, on the other hand, depend strictly on the design of the foundational
microservices for their operation and functioning; thus, they do not influence the architectural design and
therefore will not be described in this document.

This section presents a description of the Lynx foundational microservices focusing on their main
responsibilities.

 API manager (API)

A common problem of service-oriented architectures is the mismatch in granularity between the APIs of
the individual services and the data required by the clients.

A standard way to solving this problem is by the adoption of an API gateway pattern. The purpose of this
pattern is to provide an additional layer of abstraction between the client applications and the
microservices.

20

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

The main responsibility of the API gateway is to perform routing of the incoming (external) requests to
the correct microservices and possibly enforcing throttling and security policies.

The Lynx API manager implements the API gateway pattern and inherits its main responsibility (section
4.1.1 of this document); moreover, it will also be responsible for:

• The very first level of access control (see Section 4.2).
• The throttling of the incoming requests in order to mitigate overwhelming the platform with too

many requests within a specified time interval and against possible Denial of Service attacks.

With an API manager, the platform is guaranteed to provide well-defined and secure public APIs to its
client applications and users.

 Workflow Manager (WM)

The workflow manager block is a very crucial component of the Lynx architecture since it is responsible
for the effective orchestration of the microservices for the execution of workflows.

In the Lynx project scope, workflows are combinations of both parallel and sequential tasks and are
specified using Directed Acyclic Graphs. The initial workflows for the pilot use cases are specified in D4.2.

It has been established that, the document interchange format will be NIF 2.1 with an asynchronous
communication between the WM and the microservices.

 OAuth 2.0 Authorization server and Identity manager (AUTH)

The AUTH microservice has two main responsibilities:

1. Managing of the users and client applications identities and the associated information.
2. Supporting the authorization server functionalities for the OAuth 2.0 protocol (see section 4.1.3).

For the first point, we included in the interface a set of CRUD (Create, Read, Update and Delete) operations
both for the User and the Client Application data models.

With regards to the second point, the OAuth 2.0 authorization flows that will be initially supported by the
Lynx platform are client credentials and password.

 LKG Manager (LKGM)

The LKG Manager forms a central part of the Lynx platform in terms of the general platform functioning
capabilities; this is where the LKG is stored and maintained. Its basic functionalities include the storing of
documents and their annotations (in the form of RDF); with special emphasis on keeping the
synchronization among them, providing read and write access, and update of documents and annotations.

The LKG Manager can be queried in terms of annotations (e.g. “which documents contain mentions of
this entity”), and in terms of documents (e.g. “what are the contents / annotations of document X”). The
former are implemented via a SPARQL query to the underlying triplestore while the latter as a
combination of similar queries and queries to a document indexer. All access to the LKG Manager is done
via a REST interface which is still under specification with its current documentation here. The interface
includes a set of CRUD APIs to manage the following specifications within the Lynx platform: documents
and collections.

• A document is a piece of information in plain text, RDF or JSON format which may contain content
and annotations. Technically, annotations are metadata as they give additional information about
an existing piece of data; a document is stored in the LKG as a set of triples.

https://gitlab.com/superlynx/OpenAPI_Specs/blob/master/yamls/ds.yaml

21

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

• A collection represents a group of documents with an associated label. A document can belong to
many collections and deleting a collection does not delete the documents therein.

There are some important parameters worth mentioning during the design of the CRUD APIs:

• The document parameter- it is either an RDF following the model description online here or a
JSON model.

• The format parameter: this parameter has possible values of RDF, TXT and JSON.

4.5 LOGICAL ARCHITECTURE VIEW

A view of the Lynx logical architecture is shown in Figure 6: the UML component diagram describes the
dependencies between the Lynx microservices and their REST interfaces; the dependencies highlighted in
grey are necessary to perform asynchronous communication between microservices using the webhook
mechanism described in 4.3.1.

Figure 6 UML component diagram of the Lynx logical architecture

https://www.w3.org/TR/WD-rdf-syntax-971002/#model

22

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

5 PHYSICAL ARCHITECTURE DESCRIPTION
The physical architectural description of a software system describes amongst other things the
installation, configuration, and deployment of the software application and how to deliver the deployable
system.

The choice of a proper infrastructure for the deployment is closely related to the deployment architecture
design; and considers primarily the technical requirements of the system such as availability, reliability,
fault-tolerance, performance, and scalability. In addition, we established from D1.2 that the Lynx
deployment architecture shall support different infrastructures within different environments.

In this section, and for the purpose of this document, we describe some concepts and integration
technologies relevant to the deployment architecture of the Lynx platform: the cloud computing
infrastructure and the OpenShift container platform.

Eventually we provide a comprehensive description of the deployment architecture.

5.1 CLOUD COMPUTING

Cloud computing is shared pools of configurable computer system resources and higher-level services that
can be rapidly provisioned on-demand to users with minimal management effort, often over the internet.
Cloud computing depends on resource sharing to achieve coherence [10].

Cloud computing exhibits different key characteristics worth mentioning such as:

• It relies on distributed systems
• It increases users’ flexibility with re-provisioning, adding, or expanding technological

infrastructure resources
• It provides several forms of transparency, amongst them are:

o Network transparency: it is a situation where a service allows users to access a resource
without the user needing to know, and usually not being aware of, whether the resource
is located on a local machine or on a remote machine. It promotes device and location
independence.

o Replication and scaling transparency: replication transparency enables multiple instances
of resources to be used without knowledge of the replicas by users or application
programmers whiles scaling transparency allows the system and applications to expand in
scale without change to the system structure or the application algorithm.

o Failure transparency: this enables the concealment of faults, allowing users and application
programs to complete their tasks despite the failure of hardware or software components.

There are different deployment models offered by cloud computing to address different organizational
needs. The popular and most patronized models are:

• Public cloud: this type of deployment model is used to render services over a network that is open
for public use and may be free.

• Private cloud: this is a cloud infrastructure dedicated and operated substantially for individual
organizations; where the hardware, storage and network are dedicated to a single client or
company.

• Virtual private cloud: this is an on-demand configurable pool of shared computing resources
allocated within a public cloud environment; it is a multi-tenant environment where companies
achieve networking isolation while keeping costs down by buying hardware slices with other
tenants and creating private subnets.

23

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

• Hybrid cloud: this is a cloud computing environment that uses a mix of on-premises, private cloud
and third-party, public cloud services with orchestration between the two platforms.

Each of the above deployment models comes with their unique advantages, a direct result of the business
and requirements needs to be addressed.

Cloud computing provides these service models:

• Platform as a Service (PaaS): a cloud application platform that automates the hosting,
configuration, deployment, and administration of application stacks in an elastic cloud
environment.

• Infrastructure as Service (IaaS): a form of cloud computing that provides virtualized computing
resources over the internet by exposing high-level APIs used to dereference various low-level
network infrastructure like scaling, security, backup etc.

• Software as a Service (SaaS): it is a software distribution model in which a third-party provider
hosts application and makes them available to customers over the internet.

5.2 DOCKER

Docker is a computer software program (open platform) for developing, shipping and running software
applications. It provides the ability to package and run an application in a loosely isolated environment
called a container [11].

Some important objects in Docker are the image and container objects:

• Docker image: it is a read-only template with all the requirements (code, system tools, system
libraries and settings) for running a Docker container as well as metadata describing its needs and
capability.

• Docker container: it is a runnable instance of an image.

Running multiple Docker containers across multiple machines is inevitable when using microservices and
this entails a lot of work for example:

• Starting the right containers at the right time.
• Figuring out how these containers interact.
• Handling of storage considerations.
• Dealing with failed containers or hardware.

Doing the above manually would be a nightmare; therefore, there is the need for automation of these
services and therefore we introduce Kubernetes in the next section which is an open source container
orchestration platform integrated into the OpenShift container platform.

5.3 KUBERNETES

Kubernetes is an open-source container-orchestration system built on top of Docker for automating
deployment, scaling and management of containerized applications.

It is a microservice friendly platform that provides a container-centric management environment. It
orchestrates computing, networking, and storage infrastructure on behalf of user workloads [12].

In the OpenShift architecture, explained below, Kubernetes provides the cluster management and
orchestrates containers on multiple hosts. Two important objects of Kubernetes that OpenShift leverages
on are:

• Pod: it is one or more containers in the OpenShift container platform that are deployed together
on one host; and the smallest compute unit that can be defined, deployed, and managed.

24

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

• Service: serves as an internal load balancer which identifies a set of replicated pods in order to
proxy the connections it receives to them.

Figure 7 represents a diagrammatic illustration of the Kubernetes architecture showing important objects
and their interactions. It shows one master node connected to two worker nodes with the description of
the components found at [13].

Figure 7 Kubernetes architecture

5.4 OPENSHIFT

OpenShift is a PaaS family of containerization software developed by Red Hat and built on top of
Kubernetes. It is an application platform that allows automation of build, deployment and management
of applications thus making developers pay attention to the writing of codes [14].

OpenShift, in addition to providing the same functionality of Kubernetes, comes with several advantages,
amongst them are:

• It provides an easy way to deploy containers across various frameworks, languages, or databases.
• It also provides image build strategies like S2I (Source-to-Image).
• It supports continuous deployment; an important feature that helps to propagate automatically

into production changes made in development without any manual intervention.

The diagram in Figure 8 shows the OpenShift architecture taken from the official Red Hat OpenShift
website [15], where all the official documentation including description of the necessary components and
their functions can be found.

25

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

Figure 8 OpenShift architecture

5.5 DEPLOYMENT ARCHITECTURE DESCRIPTION

The deployment architecture of the Lynx platform is built on top of the OpenShift platform in order to
leverage its functionalities in the quest to minimizing up-front IT infrastructure costs and allow us to get
the application up faster and with different infrastructures using cloud computing (public cloud and on-
premise).

The application can run in different environments which are:

• Development: in this environment, all the hardware, software and/or computing resources, and
programming tools required to get the application built and running is provided. It also serves as
an interface for testing, deployment, integration, troubleshooting and maintenance services.

• Production: the production environment is the setting where the software application and other
products are put into operation for their intended uses by the client applications and their unique
end users; making the software application available as a SaaS model.

• On-premise: the on-premise environment which will be used particularly by OpenLaws is an
environment where the software application is installed and operated from the premises of a
client.

The development environment is currently powered by eww ITandTel
(https://www.eww.at/business/itandtel/) located in Austria through the IaaS model.

https://www.eww.at/business/itandtel/

26

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

It is worth noting that, two microservices namely: Dictionary Access and Machine Translation will be
deployed outside any environment described above; they will remain on the infrastructure of KD and Tilde
respectively.

Figure 9 presents a simple view of the Lynx deployment architecture: its design is mainly focused on
flexibility with regards to the infrastructure.

Figure 9 Lynx deployment architecture

27

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

6 CONCLUSIONS AND FUTURE WORK
In this deliverable, we analyzed and discussed some architectural design patterns frequently used in
software systems such as Monolithic architecture pattern, SOA and MSA.

For the Lynx platform, we adopted the MSA pattern which supports loose coupling between services; a
feature that allows for easy separation of work and which makes this pattern most adaptable to the Lynx
platform requirements.

We presented a detailed study on some adopted patterns and industry standards after which we turn our
focus to describing the logical architecture of the platform; this involved the description of the
foundational microservices and a view of the architecture that focused on the dependencies between
microservices and their interfaces.

The physical architecture is also presented where we provided a deployment architecture view of the
platform. The OpenShift platform upon which the deployment architecture of the Lynx platform is built
supports the minimization of up-front IT infrastructure costs, supports continuous deployment, allows the
getting up of applications faster and with different infrastructures using cloud computing.

The realization of the first prototype of the platform shall take place in T3.5 “Services/platform
integration”.

28

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

7 REFERENCES

[1] WIKIPEDIA, “IEEE 1471,” [Online]. Available: https://en.wikipedia.org/wiki/IEEE_1471. [Accessed
26 February 2019].

[2] R. M. H. R. P. S. M. S. Frank Buschmann, Pattern-Oriented Software Architecture, Chichester: John
Wiley & Sons, 1996.

[3] WIKIPEDIA, “Monolithic system,” [Online]. Available:
https://en.wikipedia.org/wiki/Monolithic_system. [Accessed 26 February 2019].

[4] Wikipedia: The Free Encyclopedia, “Service-oriented architecture,” 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Service-oriented_architecture.

[5] R. C. Martin, ““The Single Responsibility Principle”,” [Online]. Available:
http://blog.8thlight.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html.

[6] Auth0, “Introduction to JSON Web Tokens,” [Online]. Available: https://jwt.io/introduction/.
[Accessed 31 01 2019].

[7] OAuth 2.0, [Online]. Available: https://oauth.net/2/. [Accessed January 2019].

[8] OAuth 2.0, “Client Credentials,” [Online]. Available: https://www.oauth.com/oauth2-
servers/access-tokens/client-credentials/.

[9] I. E. T. F. (IETF), “The OAuth 2.0 Authorization Framework,” [Online]. Available:
https://tools.ietf.org/html/rfc6749. [Accessed 2 January 2019].

[10] WIKIPEDIA, “Cloud computing,” [Online]. Available:
https://en.wikipedia.org/wiki/Cloud_computing. [Accessed 03 January 2019].

[11] WIKIPEDIA, “Docker(software),” [Online]. Available:
https://en.wikipedia.org/wiki/Docker_(software). [Accessed 2nd January 2019].

[12] WIKIPEDIA, “Kubernetes,” 31st December 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Kubernetes. [Accessed 2nd January 2019].

[13] WIKIPEDIA, “Kubernetes Components,” [Online]. Available:
https://kubernetes.io/docs/concepts/overview/components/. [Accessed 27 February 2019].

[14] R. Hat, “openshift,” [Online]. Available: https://www.openshift.com. [Accessed 2nd January 2019].

[15] I. Red Hat, “Architecture Overview,” [Online]. Available:
https://docs.openshift.com/online/architecture/index.html. [Accessed 3 January 2019].

29

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

ANNEX 1: ADDITIONAL FUNCTIONAL REQUIREMENTS
In this section, we provide some functional requirements to compliment those stated in the functional
requirements analysis report D1.1 that the Lynx platform shall fulfill in the quest to developing a well-
suited platform that provides up-to-date legal compliance information to its clients.

Functional requirements can be considered as behavioural requirements and may involve calculations,
technical details, data manipulation and processing, and other specific functionalities that define what a
system is supposed to accomplish.

Administrators of any service platform as in the case of lynx are entitled to perform certain operations for
which the functional requirements of the platform should be able to adequately address. Taking into
consideration the business requirements and the pilots requirements analysis report D4.1, it is evident
that there is an absolute need to gather and specify some functional requirements for the Lynx platform
that shall drive the processing of some back-office operations.

Consequently, we specify some functional requirements that the Lynx platform shall fulfill specifically for
the back-office interface as detailed in

ID Interfaces Requirement Short
Name Requirement Description Priority

FR1 Back-office,
REST APIs

CRUD operations for
users and client
applications

The administrators of Lynx shall be able to
perform CRUD operations for users and client
applications through an administrative back
office interface and through the Lynx REST
APIs.

must

FR2 Back-office,
REST APIs

CRUD operations for
the LKG

The administrators of Lynx shall be able to
perform CRUD operations for documents,
collections and annotations through an
administrative back office interface and
through the Lynx REST APIs.

must

FR3
Free Search
UI, REST
APIs

Simple search of
documents

All Lynx users (also not registered) shall be
able to search public documents in the LKG
through a user interface and through the Lynx
REST APIs.

must

30

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

D1.3 | Technical architecture design report

ANNEX 2: API SPECIFICATION STANDARD
In developing software related systems, several parameters and components must conform to certain
acceptable standards and specifications that aid readability, compatibility and integrability with other
systems using the same standards and specifications. This is important because it enables a worldwide
acceptability and conformity of products and services.

Furthermore, the distributed, multi-disciplinary, multi-team nature of the Lynx project requires a well-
established, and strong emphasis on the enforcement of standards and shared semantics in order to
guarantee the smooth transition, exchange of information and reliable processing of data.

The Lynx system as a service platform exposes a lot of REST APIs for consumption by application clients
and users and therefore the need for a specification method that is acceptable and widely used to describe
these endpoints.

We, therefore, adopted the OpenAPI 3 specification as the description format for specifying our APIs
for consumption.

The complete OpenAPI 3 Specification of the Lynx services can be found on the Lynx website: http://lynx-
project.eu/api/doc/.

http://lynx-project.eu/api/doc/
http://lynx-project.eu/api/doc/

	1 INTRODUCTION
	1.1 PURPOSE AND STRUCTURE OF THIS DOCUMENT

	2 ASSUMPTIONS ON THE DESIGN ARCHITECTURE
	3 ARCHITECTURAL DESIGN PATTERNS
	3.1 Monolithic Architectural design pattern
	3.2 Service-Oriented Architectural design pattern
	3.3 Microservice Architectural design pattern
	3.4 Comparison of MSA with traditional SOA
	3.5 Comparison of service-oriented architectures with monolithic architecture
	3.6 Architectural pattern for the Lynx platform

	4 LOGICAL ARCHITECTURE DESCRIPTION
	4.1 Access Control Systems Design
	4.1.1 JSON Web Tokens (JWTs)
	4.1.2 OAuth 2.0 protocol
	4.1.3 Authentication
	4.1.4 Authorization
	4.1.5 Access control

	4.2 Microservices Coordination System Design
	4.3 Service Intercommunication System Design
	4.3.1 WebHook
	4.3.2 Polling

	4.4 Foundational Microservices
	4.4.1 API manager (API)
	4.4.2 Workflow Manager (WM)
	4.4.3 OAuth 2.0 Authorization server and Identity manager (AUTH)
	4.4.4 LKG Manager (LKGM)

	4.5 Logical Architecture View

	5 PHYSICAL ARCHITECTURE DESCRIPTION
	5.1 Cloud Computing
	5.2 Docker
	5.3 Kubernetes
	5.4 OpenShift
	5.5 Deployment Architecture Description

	6 CONCLUSIONS AND FUTURE WORK
	7 References
	ANNEX 1: ADDITIONAL FUNCTIONAL REQUIREMENTS
	ANNEX 2: API SPECIFICATION STANDARD

