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We present a machine learning approach to automatically generate expressive (ornamented) jazz perfor-
mances from un-expressive music scores. Features extracted from the scores and the corresponding audio
recordings performed by a professional guitarist were used to train computational models for predict-
ing melody ornamentation. As a first step, several machine learning techniques were explored to induce
regression models for timing, onset, and dynamics (i.e. note duration and energy) transformations, and an
ornamentation model for classifying notes as ornamented or non-ornamented. In a second step, the most
suitable ornament for predicted ornamented notes was selected based on note context similarity. Finally,
concatenative synthesis was used to automatically synthesize expressive performances of new pieces
using the induced models. Supplemental online material for this article containing musical examples of
the automatically generated ornamented pieces can be accessed at doi:10.1080/17459737.2016.1207814
and https://soundcloud.com/machine-learning-and-jazz. In the Online Supplement we present an exam-
ple of the musical piece Yesterdays by Jerome Kern, which was modeled using our methodology for
expressive music performance in jazz guitar.

Keywords: machine learning; expressive music performance; ornamentation modeling; jazz guitar;
concatenative synthesis

1. Introduction

Performance actions (PAs) can be defined as musical resources used by musicians to add expres-
sion when performing a musical piece, which consist of variations in timing, pitch, and energy.
In the same context, ornamentation can be considered as an expressive musical resource used to
embellish and add expression to a melody. In the past, music expression has been mostly studied
in the context of classical music, e.g. Puiggros et al. (2006), in particular classical piano music,
e.g. Widmer and Tobudic (2003). Contrary to classical music scores, performance annotations
(e.g. ornaments and articulations ) are seldom indicated in popular music (e.g. jazz music) scores,
and it is up to the performer to include them based on his/her musical background. Therefore, in
popular music it may not always be possible to characterize ornaments with the archetypical clas-
sical music conventions (e.g. trills and appoggiaturas). Several approaches have been proposed to
generate expressive performances in jazz saxophone music, e.g. Arcos, De Mantaras, and Serra
(1998), Ramirez and Hazan (2006), and Grachten (2006). Ramirez and Hazan (2006) describe a
method to predict ornamentation (among other performance actions). Grachten (2006) detects
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ornaments of multiple notes to render expressive-aware tempo transformations. Other meth-
ods are able to recognize and characterize ornamentation in popular music, e.g. Gémez et al.
(2011) and Perez et al. (2008). However, due to the complexity of free ornamentation, most
of these approaches study ornamentation in constrained settings, for instance by restricting the
study to one-note or notated trills ornamentations, e.g. Puiggros et al. (2006). Based on our
previous studies in expressive performance modeling in jazz music (Giraldo 2012; Giraldo
and Ramirez 2014, 2015a, 2015b, 2015¢, 2015d), this article presents a system for automati-
cally predicting and synthesizing expressive jazz guitar music performances with unrestricted
ornamentation.

The aim of this work is twofold: (1) to train computational models of music expression using
recordings of a professional jazz guitar player, and (2) to synthesize expressive ornamented
performances from inexpressive scores. The general framework of the system is depicted in
Figure 1. In order to train a jazz guitar ornamentation model, we recorded a set of 27 jazz stan-
dards performed by a professional jazz guitarist. We extracted symbolic features from the scores
using information on each note, information on the neighboring notes, and information related
to the musical context. The performed pieces were automatically transcribed by applying note
segmentation based on pitch and energy information. After performing score-to-performance
alignment, using dynamic time warping (DTW), we calculated performance actions by measur-
ing the deviations between performed notes and their respective parent notes in the score. For
model evaluation, the data set was split using a leave-one-piece-out approach in which each
piece was in turn used as test set, using the remaining pieces as training set. The expressive
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Figure 1. General framework for jazz guitar ornament modeling.
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actions considered in this article were duration, onset, energy, and ornamentation transforma-
tions. Concatenative synthesis was used to synthesize new ornamented jazz melodies using
samples of adapted notes/ornaments from the segmented audio recordings.

The rest of the article is organized as follows. Section 2 surveys related work. Section 3
describes data acquisition. Section 4 presents our machine learning approach to ornament
prediction. Section 5 describes the audio synthesis method. Section 6 reports on the results, and
finally, Section 7 presents some conclusions and future work.

2. Related work

Expressive music performance studies the micro variations a performer introduces (voluntary
or involuntary) when performing a musical piece to add expression. Several studies investigat-
ing this phenomenon have been conducted, e.g. Gabrielsson (1999, 2003) and Palmer (1997).
Computational approaches to studying expressive music performance have been proposed in
which data are extracted from real performances and used to formalize expressive models for
different aspects of performance — for an overview see Goebl et al. (2008). Computational sys-
tems for expressive music performance (CEMP) are often targeted at automatically generating
human-like performances by introducing variations in timing, energy, and articulation (Kirke
and Miranda 2013).

Two main approaches have been used to model expression computationally. On one hand,
expert-based systems obtain their rules manually from music experts. A relevant example is the
work of the KTH group (Bresin and Friberg 2000; Friberg, Bresin, and Sundberg 2006; Friberg
2006). Their Director Musices system incorporates rules for tempo, dynamic, and articulation
transformations. Other examples of manually generated expressive systems are the Hierarchical
Parabola Model (Todd 1989, 1992, 1995) and the work of Johnson (1991), who developed a rule-
based expert system to determine expressive tempo and articulation for Bach’s fugues from The
Well-Tempered Clavier. The rules were obtained from two expert performers. On the other hand,
machine-learning-based systems obtain their expressive models from real music performance
data by measuring the deviations of a human performance with respect to a neutral or robotic
performance, using computational learning tools. For example, neural networks were used by
Bresin (1998) to model piano performances, and by Camurri, Dillon, and Saron (2000) to model
emotional flute performances. Rule-based learning algorithms were used by Widmer (2003) to
cluster piano performance rules. Other piano expressive performance systems worth mention-
ing are the ESP piano system by Grindlay (2005), which utilizes Hidden Markov Models, and
the generative performance system of Miranda, Kirke, and Zhang (2010), which uses genetic
algorithms to construct tempo and dynamic curves.

Most of the proposed expressive music systems are targeted at classical piano music. More
recently, there have been several approaches to computationally modeling expressive perfor-
mance in popular music by applying machine learning techniques. Arcos, De Mantaras, and Serra
(1998) report on SaxEx, a performance system capable of generating expressive solo saxophone
performances in jazz, based on case-based reasoning. Ramirez and Hazan (2006) compare dif-
ferent machine learning techniques to obtain jazz saxophone performance models capable of
both automatically synthesizing expressive performances and explaining expressive transfor-
mations. Grachten (2006) applies dynamic programming using an extended version of edit
distance and case-based reasoning to detect multiple note ornaments and render expressive-
aware tempo transformations for jazz saxophone music. In previous work (Giraldo 2012;
Giraldo and Ramirez 2015a, 2015b, 2015c), ornament characterization in jazz guitar perfor-
mances is accomplished using machine learning techniques to train models for note ornament
prediction.



110 S. Giraldo and R. Ramirez
3. Data acquisition

In this study, the data set consisted of 27 jazz standard audio recordings (resulting in a total of
1368 notes) recorded by a professional jazz guitarist, and their corresponding music scores. Each
note in the score of the recorded pieces was characterized by a set of 30 descriptors. The music
scores and audio recordings were analyzed as explained in Sections 3.1 and 3.2, respectively.

3.1. Score analysis

Music scores were obtained from commercially available compilations of jazz scores (The Real
Book Series). Selected scores were rewritten using an open source software for music notation,
and saved into MusicXML format. The MusicXML format allows not only information about
the notes (pitch, onset, and duration) to be stored, but also other relevant information for note
description such as chords, key, and tempo (among others).

3.1.1. Feature extraction

Feature extraction was performed following an approach similar to that of Giraldo (2012), in
which each note is characterized by its nominal, neighboring, and contextual properties.

e Nominal descriptors refer to the intrinsic properties of score notes (e.g. pitch, duration, and
onset). Duration and onsets were described both in beats and seconds, as the duration in sec-
onds depends on the tempo of the piece. For example the choice of ornamenting two different
notes from different pieces with quarter note duration (beats) may differ if the pieces are
played at slow and fast tempos. The energy descriptor refers to the loudness of the note, which
in MIDI format is measured as velocity (how fast a piano key was pressed).

e Given a particular note, its neighboring descriptors refer to the properties of its neighbor-
ing notes, e.g. previous/next interval, previous/next duration ratio, previous/next inter-onset
interval. In this work, only one previous and one following note were considered. Inter-onset
distance (Giraldo and Ramirez 2015b) refers to the onset difference between two consecutive
notes.

e Contextual descriptors refer to the musical context in which the note occurs, e.g. tempo, chord,
and key. The phrase descriptor (Giraldo and Ramirez 2015b) refers to the note position within
a phrase: initial, middle, or end. Phrase descriptors were obtained using the melodic segmen-
tation approach of Cambouropoulos (1997), which indicates the probability of each note being
at a phrase boundary. Probability values were used to decide if the note was a boundary note,
annotated as either initial (i) or ending (e). Non-boundary notes were annotated as middle
(m). The phrase descriptor was introduced based on the hypothesis that boundary notes (i.e.
initial or ending phrase notes) are more prone to be ornamented than middle notes. Note to
key and note to chord descriptors are intended to capture harmonic analysis information, as
they refer to the interval of a particular note with respect to the key and to the chord root,
respectively. Key and mode refer to the key signature of the song (e.g. key: C, mode: major).
Mode is a binary descriptor (major or minor), whereas key is represented numerically in the
circle of fifths (e.g. Bb = —1, C=0, F =1, etc.). However, for some calculations (e.g. note
to key in Table 3) a linear representation of the notes (e.g. C =0, Ci/Db =1, D=2, etc.) is
used for key. Also, it is worth noticing that the key descriptor may have 13 possible values
as the extreme values (—6 and 6) corresponding to enharmonic tonalities (Gb and Ff ). The
descriptor Is chord note was calculated using the chord type description of Table 1 in which
each of the notes of the chord is shown using the aforementioned linear note representation. If
a note corresponds to any of the notes included in the chord type description it is labeled yes.
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Table 1. Chord description list.

Chord type Intervals

major

m (minor)

2 (sus2)

sus (4)

Maj7

6th

m7

m6

mMaj7

m7b5

dim

Tth
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b5

Tsus

Maj9 0247

m9 0237

6/9 0247

mo6/9 0237
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Other relevant descriptors used for this work include categorization based on the implication—
realization (I-R) model of Narmour (1992). Grachten (2006) parses the melodies and obtains for
each note the label of the I-R structure to which it belongs. The concept of closure was based
on metrical position and duration. The basic Narmour structures (P, D, R, and ID) and their

derivatives (VR, IR, VP, and IP) are represented in Figure 2.

The metrical strength concept refers to the rhythmic position of the note inside the bar (Cooper
and Meyer 1960). Four levels of metrical strength were used to label notes in three common time

signatures, depending on the beat at which the note occurs, as shown in Table 2.

The complete list of the 30 descriptors used for this study and its definition is summarized in

Table 3.
o] [®]
0 . o
X = = = = e *
(R ——————— = e

Figure 2. Basic Narmour structures P, D, R, and ID, and their derivatives VR, IR, VP, and IP.
Table 2. Metrical strength at beat occurrence, for different time signatures.
Time signature Very strong Strong Weak Very weak
4/4 Beat 1 Beat 3 Beats 2 and 4 Other
3/4 Beat 1 None Beats 2 and 3 Other
6/8 Beat 1 Beat 2.5 Beats 1.5, 2, 3, and 3.5 Other
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per bar according to the time signature.

Features extracted from music scores — in the fifth row, in the column headed ‘Formula,” ‘bpb’ means beats

Descriptor Abbreviation Units Formula Range
Nominal Duration ds, Seconds dso [0, +00]
Duration db, Beats dbg [0, +00]
Onset onsy, Seconds 05 [0, +o00]
Onset onb,, Beats obg [0, +o00]
Onset in bar obmy, Beats obo%bpb [0, +bpb]
Pitch Pn Semitones Po [1,127]
Chroma chy, Semitones Po%l12 [0, 11]
Energy Vi MIDI vel Vo [1,127]
Neighbor Prev. duration pdsy Seconds ds_y [0, +o00]
Prev. duration pdb, Beats db_ [0, +00]
Next duration nds, Seconds dsy [0, +o00]
Next duration ndb,, Beats db, [0, +o00]
Prev. interval pinty Semitones P—1—DPo [—60, 60]
Next interval ninty, Semitones P1— Do [—60, 60]
Prev. inter-onset dist. piod, Seconds 089 — 05— [0, +00]
Next. inter-onset dist. piod, Seconds 081 — 08g [0, +o00]
Narmour narl, Label nar(p_1, po, P1) {P, D, R, ID, (P), (R), (ID),
nar2, nar(p—2, p—1, pPo) VR, IR, VP, IP, (VR), (IR),
(VP), (IP),
nar3, nar(po, p1, p2) dyadic,” monadic, none}
Context  Measure my, Bars mg [0, +o00]
Tempo t, Bpm to [30,260]
Key kn Semitones ko [—6,6]
Mode mody, Label mody {major, minor}
Note to key n2k, Semitones chy — ko (linear) [0,11]
Chord root chry, Semitones chry [0,11]
{+,6,7, 7811, 745, 749, 7alt,
Chord type chty, Label chigy 7b5, 7b9, Maj7, dim, dim7,
m, m6, m7, m7b5, major}
Note to chord n2chy, Semitones chog — chry [0,11]
Is chord note ichn, Boolean  isChNote(chry, chty, chg) {true, false}
Metrical strength mtr; Label metStrg {Very strong, Strong,
Weak, Very weak}
Phrase phy, Label phraseq {initial, middle, final}

3.2. Audio analysis

The audio of the performed pieces was recorded from the raw signal of an electric guitar. The
guitarist was instructed not to strum chords or play more than one note at a time. The guitarist
recorded the pieces while playing along with prerecorded commercial accompaniment backing
tracks (Kennedy and Kernfeld 2002). We opted to use audio backing tracks performed by pro-
fessional musicians, as opposed to synthesized MIDI backing tracks, in order to provide a more
natural and ecologically valid performance environment. However, using audio backing tracks
required a preprocessing beat tracking task. Each piece’s section was recorded once (i.e. no rep-
etitions or solos were recorded), For instance, for a piece consisting of sections AABB, only
sections A and B were considered.

3.2.1. Melodic transcription

The monophonic audio signal recorded from the guitar was parsed to automatically obtain a MIDI
type transcription of the notes performed by the guitarist, based on the previous work of Bantula,
Giraldo, and Ramirez (2014). This representation includes the pitch, onset, duration, and energy
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of each note. For doing this, the audio signal was segmented based on the pitch and energy
profiles obtained with the YIN algorithm (De Cheveigné and Kawahara 2002). Each segment rep-
resents a note with its corresponding information on pitch, onset, and offset (therefore duration).
To minimize transcription errors, the resulting segments (notes) were filtered using heuristic rules
based on human perceptual thresholds for minimum note duration and minimum note gaps. Also,
rules to detect octave errors or unusual note intervals were used. To obtain temporal information
on the recordings, beat tracking (Zapata et al. 2012) was used, as there was uncertainty concern-
ing the use of a metronome in the recordings of the accompaniment backing tracks. After manual
correction of beat tracking, the onset and duration information on each note was adjusted to the
beat grid detected for each piece.

3.3. Score to performance alignment

Score to performance alignment was performed to correlate each performed note with its respec-
tive parent note in the score as depicted in Figure 3. This procedure was carried out following
the approach of Giraldo and Ramirez (2015d), in which DTW techniques were used to match
performance and score note sequences. A similarity cost function was designed based on pitch,
duration, onset, and phrase onset/offset deviations.

Figure 3. Score to performance alignment. Fragment of Yesterdays (J. Kern) as performed by Wes Montgomery.

Phrase onset and offset deviation were introduced to force the algorithm to map all the notes of
a particular short ornament phrase (/ick) to one parent note in the score. We assumed that a group
of notes conforming a lick are played legato. Therefore, the performed sequence is segmented in
phrases in which the time gap between consecutive notes is less than 50 ms. This threshold was
chosen based on human time perception studies (Woodrow 1951).

Each note from the score and the corresponding performed sequence is represented by a five
position cost vector as

cs = (p(i),ds(i), ons(i), ons(i), ofs(i)) (D)
and
cp = (p(), ds(j), ons(j), phons()> Phoss (7)), (2)

respectively, where cs is the score cost vector and cp is the performance cost vector. Index i
refers to a note position in the score sequence, and j refers to a note position at the performed
sequence. The onset of the first note of the lick phrase in which the jth note of the performance
sequence occurs is represented by ph,,,(j). Similarly ph,(j) refers to the offset of the last note
of the lick phrase in which the jth note of the performance sequence occurs.

The total cost is calculated using the Euclidean distance as follows:

5

cost(i,j) = | Y (esn); — cp(n);)? . 3)

n=1
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Notice that in equation (3) phrase onset and offset deviations are calculated when n equals
four and five.

Finally, we apply DTW: a similarity matrix H,x,) is defined in which m is the length of the
performed sequence of notes and # is the length of the sequence of score notes. Each cell of the
matrix H is calculated as follows:

H;; = cost +min(H;_y j,H; j—1,H;_1 j_1) 4

where min is a function that returns the minimum value of the preceding cells (up, left, and up-
left diagonal). The matrix H is indexed by the note position of the score sequence and the note
position of the performance sequence.

A backtrack path is obtained by finding the lowest cost calculated in the similarity matrix.
Starting from the last score/performance note cell, the cell with the minimum cost at positions
H_1y, H j-1), and H;_; j_1) is stored in a backtrack path array. The process iterates until indexes
arrive to the first position of the matrix, assigning each note in the performance to a parent note
in the score.

Figure 4 presents an example of the resulting similarity matrix obtained for one of the recorded
songs. The x-axis corresponds to the sequence of notes of the score and the y-axis corresponds to
the sequence of performed notes. The cost of correspondence between all possible pairs of notes
is depicted darker for the highest cost (less similar) and lighter for the lowest cost (most similar).

400
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o

300
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N
o
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o

150
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N
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100
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5 10 15 20 25 30
score notes

Figure 4. Similarity matrix of performed notes and score notes. Dots indicate alignment path between score and
performance notes.
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The dots on the graph show the backtrack path (or optimal path) found for alignment. Diagonal
lines represent notes which were not ornamented, as the correspondence from the performance
notes to the parent score notes is one to one. On the contrary, vertical lines represent ornaments,
as two or more performed notes correspond to one parent note in the score.

Because there are no concrete rules to map performance notes to parent score notes, our align-
ment algorithm was evaluated by comparing its output with the level of agreement between
five human experts who were asked to align performance and score note sequences manually.
Accuracy of the system was estimated by quantifying how much each note pair produced by
the algorithm agreed with the human experts, using penalty factors for high, medium, and low
agreement. The results of the evaluation showed that the performance of our approach was com-
parable with that of the human annotators. Details of these evaluations can be found in Giraldo
and Ramirez (2015d).

3.4. Performance actions

After alignment, score notes which were mapped to only one performance note were labeled
as non-ornamented, whereas score notes mapped to several performance notes (or which were
omitted in the performance) were mapped as ornamented. Performance actions were calculated

Table 4. Expressive performance actions calculation.

PA Abbreviation Units Formula Range
Ornamentation Orny, Boolean ornament(N,) {yes, no}
Duration ratio Dr, Percentage d—b’ * 100 [0, 4+00]
i
Onset deviation Od, Beats obj — ob; [0, 4+00]
e
Energy ratio Er, Percentage % * 100 [0, +00]

Table 5. Example of ornament annotation for the music excerpt of Figure 3.

Score note Performance note Pitch deviation Onset deviation Duration ratio
index (i) index (j) (semitones) (beats) (beat fraction)
1 1 —1 —-1/2 1/16

1 2 0 0 2/3

2 3 -3 —1/2 172

2 4 0 0 172

4 6 0 —-1/2 1/16

4 7 0 172 1/16

4 8 —1 3/2 1/16

4 9 0 2 1/16

5 10 -3 —-1/2 172

5 11 0 0 1

6 12 1 —-1/2 1/8

6 13 0 0 1/8

6 14 -2 172 1/8

6 15 0 1 1/8

6 16 0 3/2 1/8
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for each score note, as defined in Table 4, by measuring the deviations in onset, energy, and dura-
tion. Again, indexes 7 and j refer to the note position at the score and the performance sequence,
respectively.

3.5. Database construction

The data collected was organized, storing each note descriptors along with its corresponding
performance action. The pitch, duration, onset, and energy deviations of each ornament note
with respect to the score parent note were annotated as shown in Table 5.

4. Expressive performance modeling

Several machine learning algorithms — i.e. artificial neural networks (ANNS), decision trees
(DTs), support vector machines (SVMs), and k-nearest neighbor (k-NN) — were applied to pre-
dict the ornaments introduced by the musician when performing a musical piece. The accuracy of
the resulting classifiers was compared with the baseline classifier, i.e. the classifier which always
selects the most common class. Timing, onset, and energy performance actions were modeled by
applying several regression machine learning methods (i.e. ANNs, regression trees (RTs), SVMs,
and k-NN).

Based on their accuracy, we chose the best performance model and feature set to predict
the different performance actions. Each piece (used as test set) was in turn predicted based on
the models obtained with the remaining pieces (used as training set) and synthesized using a
concatenative synthesis approach.

4.1. Algorithm comparison

In this study we compared four classification algorithms for ornament prediction and four regres-
sion algorithms for duration ratio, onset deviation, and energy ratio. We used the implementation
of the machine learning algorithms provided by the WEKA library (Hall et al. 2009). We applied
k-NN with k=1, SVM with linear kernel, ANN consisting of a fully-connected multi-layer
neural network with one hidden layer, and DT/RT with post pruning.

A paired T-test with a significance value of 0.05 was performed for each algorithm for the
ornamentation classification task, over all the data set with 10 runs of 10-fold cross validation
scheme. Experiments results are presented in Table 8 and will be commented in Section 6.

4.2. Feature selection

Both filter and wrapper feature selection methods were applied. Filter methods use a proxy mea-
sure (e.g. information gain) to score features, whereas wrappers make use of predictive models
to score feature subsets. Features were filtered and ranked by information gain values, and a
wrapper with greedy search and decision trees accuracy evaluation was used to select optimal
feature subsets. We used the implementation of these methods provided by WEKA library (Hall
et al. 2009). Selected features are shown in Table 6, and will be commented upon in Section 6.

Learning curves on the number of features, as well as on the number of instances, were
obtained to measure the learning rate of each of the algorithms. The selection of the model was
based on the evaluation obtained with these performance measures.
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Table 6. Features selected using the Filter and Wrapper (with J48 classifier) methods.

Info-Gain + Ranker

Wrapper + Greedy

Duration (sec)
Duration (beat)
Phrase

Prev. duration (sec)
Onset in bar
Metrical strength
Prev. duration (beat)
Next duration (beat)
Next duration (sec)
Narmour 1

Tempo

Chord type

Prev. interval

Next interval
Narmour 2
Narmour 3

Is chord note

Mode

keyMode

Duration beat

Prev. duration (sec)
Tempo

Phrase

Velocity

Onset beat
Duration (sec)
Prev. duration (beat)
Next duration (beat)
Narmour 3
Metrical strength
Onset in bar
Narmour 1

Prev. interval
Narmour 2

Is chord note
Onset (sec)

Key

Chord root

Next duration (sec)
Pitch

Note to key

Note to chord
Measure

Next interval
Chroma

Chord type

5. Synthesis

Predicted pieces were created in both MIDI and audio formats. A concatenative synthesis
approach was used to generate the audio pieces. This process consists of linking note audio sam-
ples from real performances to render a synthesis of a musical piece. The use of this approach
was possible because we had monophonic performance audio data from which onset and offset
information was extracted based on energy and pitch information as described in Section 3.2.1.
Therefore, it was possible to segment the audio signal into individual notes, and furthermore to

obtain complete audio segments of ornaments.

Similarly to the evaluation of the different machine learning algorithms, for synthesis we fol-
lowed a leave-one-piece-out scheme in which, on each fold, the notes of one piece were used as
test set, whereas the notes of the remaining 26 songs were used as training set.

predictions

Figure 5. Concatenative synthesis approach.

Test Score and
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5.1. Note concatenation

The note concatenation process is divided into three different stages as depicted in Figure 5.

e Sample retrieval For each note predicted to be ornamented, the k-NN algorithm, using a
Euclidean distance similarity function based on note description, was applied to find the most
suitable ornamentation in the database (see Section 3.5). This was done by searching for the
most suitable ornament in the songs in the training set (Section 4.2).

e Sample transformation For each note classified as ornamented, transformations in duration,
onset, energy, and pitch (in the case of ornaments) were performed based on the deviations
stored in the database, as seen in Figures 6(a) and 6(b). For audio sample transformation we
used the time and pitch scaling approaches of Serra (1997). Notes classified as not ornamented
were simply transformed as predicted by the duration, onset, and energy models.

e Sample concatenation Retrieved samples were concatenated based on final onset and dura-

tion information after transformation. The tempo of the score being predicted (in BPM), was
imposed on all the retrieved notes.
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S 2 =
= G4+ = =

3

& E4+  ———] [ 9

C4 | | | | | | | | |

0 2 4 6 8 10 12 14 16 18 20

Time in beats

(a) Piano roll of a score (All of me). Gray and white boxes represent notes predicted as not ornamented and
ornamented, respectively. The transformation for note 3 is explained in Figures (b) and (c).
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(b) Piano roll of the most similar note found. Top sequence represents the score in which the closest note

(note 23) was found (Satin Doll). Bottom sequence represents the performance of the score. Vertical lines
show note correspondence between score and performance.
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(¢) Piano roll of a partial predicted score (All of me). Note number 3 of Figure (a) has been replaced by
notes 27, 28, and 29 of Figure (b), obtaining notes 4, 5, and 6.

Figure 6. Sample retrieval and concatenation example.
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6. Results

6.1. Feature selection

The most relevant features found using the two selection methods described in Section 4.2 are
shown in Table 6. The average correctly classified instances percentage (C.C.1.%) obtained using
the features selected by the information gain filtering and the greedy search (decision trees)
wrapper methods were 78.12 and 78.60%, respectively (F-measures of 0.857 and 0.866, respec-
tively). Given that both measures are similar, i.e. not significantly different, the smallest subset
was chosen.

In Figure 7, the accuracy on increasing the number of features based on the information gain
ranking (explained in Section 4.2) is presented for each of the algorithms used (SVM, ANN,
DT). From the curves it can be seen that the subset with the first three features contains sufficient
information, as additional features do not add significant accuracy improvement. SVM exhibits
better accuracy on the cross validation scheme, and less over-fitting based on the difference
between cross validation (CV) and training set (TS) accuracy curves.
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Figure 7. Accuracies on increasing the number of attributes.
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6.2. Quantitative evaluation
6.2.1. Algorithm comparison results

For the (ornament) classification problem we compared each of the algorithms (SVM, DT, ANN,
and k-NN) with the baseline classifier (i.e. the majority class classifier) following the procedure
explained in Section 4.1. From Table 7 it can be seen that all the algorithms present a statistically
significant improvement, except k-NN. Given the accuracy results, we apply the ornamentation
prediction model induced by the DT algorithm to determine whether a note is to be ornamented
or not. We discarded the use of k-NN for this task due to its low accuracy, which led to larger
mis-classifications of ornamented and not ornamented notes.

For the regression problems (duration, onset, and energy prediction) we applied regression
trees, SVM, neural networks, and k-NN, and obtained the correlation coefficient values shown in
Table 8. Onset deviation has the highest correlation coefficient, close to 0.5.

Table 7. Correctly classified instances (CCls) (%) comparison with paired T-test for classification task.

Baseline classifier Instance base learner Design trees SVM Neural Network
Dataset (CCIs) ( %) (CCIs) ( %) (CCIs) ( %) (CCIs) ( %) (CCIs) ( %)
Ornament 72.74 70.58 78.68 00 77.64 00 76.60 0o

°/e Statistically significant improvement/degradation against ‘Baseline classifier.’
o/ Statistically significant improvement/degradation against ‘Instance base learner.’

Table 8. Pearson correlation coefficient (PCC) and explained variance (R*) for the regression task.

k-NN Reg. Trees Reg. SVM ANN PAnean
Dataset PCC R? PCC R? PCC R? PCC  R? PCC  R?
Duration ratio 020  0.04 025  0.06 0.17 003 019 004 020 0.04
Energy ratio 0.19  0.04 037 0.14 038 014 037 014 033 0.1
Onset deviation 041 0.17 0.51 026 043 018 044 019 045 020

Algorithmpean 0.25 0.08  0.38 0.15 033  0.12 0.33 0.12

For ornamentation classification using k-NN we explored several values for k (1 < k < 10).
However, all of the explored values for k resulted in inferior classification accuracies when
compared with decision trees and SVM. As in the case of k=1, both the decision trees and
SVM classifiers resulted in statistically significantly higher accuracies (based on the T-test) when
compared with the classifiers for 2 < k < 10.

6.3. Learning curves

The learning curves of accuracy improvement, for both cross validation and training sets, over
the number of instances are shown in (Figure 8). The learning curves were used to measure the
learning rate and estimate the level of overfitting. Data subsets of different sizes (in steps of 100
randomly selected instances) were considered and evaluated using 10-fold cross validation. In
general, for the three models, it can be seen that the accuracy on CV tends to have no significant
improvement above 600 instances.
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Overfitting can be correlated with the difference between the accuracies of CV and TS,
wherein a high difference means higher levels of overfitting. In this sense, in Figure 8(c), SVM
shows a high tendency for overfitting, but seems to improve slowly over the number of instances.
On the other hand, in Figures 8(a) and 8(b), ANN and DT seem to improve overfitting between
700 and 1100 instances. This could mean that adding more instances may slightly improve the
accuracy of both CV and TS for the three models, and may slightly improve overfitting for SVM,
but this may not be the case for ANN and DT.
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Figure 8. Accuracies on increasing the number of instances.

6.4. Obtained pieces

Figure 9 shows a MIDI piano roll of an example piece performed by a professional musician
and the predicted performance obtained by the system, using a decision trees classifier. It can be
noticed how the predicted piano roll follows a similar melodic structure as the one performed
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by the musician. For instance, for the score notes predicted correctly as ornamented (true posi-
tives), notes 1, 10, and 34 in Figure 9(a) (top sequence), the system finds ornaments of similar
duration, offset, and number of notes as the musician’s performance. Also, score notes 3 and 9
of Figure 9(b) (false positives), are ornamented similarly as score notes 18 and 26 (Figure 9(a)),
which are in a similar melodic context.
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(a) Score to musician performance correspondence.
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(b) Score to predicted performance correspondence.

Figure 9. Musician versus predicted performance. Top and bottom sequences represent score and performance piano
roll, respectively. Vertical lines indicate score to performance note correspondence. Gray and white boxes represent notes
predicted as not ornamented and ornamented, respectively.

6.5. Duration and energy ratio curves

Duration and energy deviation ratio measured in the musician performance and predicted by the
system for one example piece (All of me) are compared in Figures 10(a) and 10(b), respectively.
We obtained similar results for the other pieces in the data set. Similarity between the contour
of the curves indicates that the deviations predicted by the system are coherent with the ones
performed by the musician.
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(a) Duration ratio: performed vs. predicted.
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Figure 10. Performed versus predicted duration and energy ratio example for All of me. Gray and black lines represent
performed and predicted ratios, respectively, for each note in the score.

6.6. Musical samples

Musical examples of the automatically generated ornamented pieces can be found in the Online
Supplement (see the unnumbered section directly before the references list at the end of this
article). The rendered audio of the Yesterdays music piece generated by the system (as test piece)
has been included in this site.

7. Conclusions

In this article we have presented a machine learning approach for expressive performance (orna-
ment, duration, onset, and energy) prediction and synthesis in jazz guitar music. We used a
data set of 27 recordings performed by a professional jazz guitarist, and extracted a set of
descriptors from the music scores and a symbolic representation from the audio recordings.
In order to map performed notes to parent score notes we have automatically aligned perfor-
mance to score data. Based on this alignment we obtained performance actions, calculated as
deviations of the performance from the score. We created an ornaments database including the
information on the ornamented notes performed by the musician. We have compared four learn-
ing algorithms to create models for ornamentation, based on performance measures, using a
significance paired T-test. Feature selection techniques were employed to select the best fea-
ture subset for ornament modeling. For synthesis purposes, instance based learning was used
to retrieve the most suitable ornament from the ornamentation database. A concatenative syn-
thesis approach was used to generate expressive performances of new pieces — i.e. pieces not
in the training set — automatically. A subjective perceptual evaluation based on listening tests
is beyond the scope of this article. As future work, we plan to evaluate the performances
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generated by the system by computing the alignment distance between the system and the target
performance.
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