
Chapter 5

Multiword expressions in multilingual
applications within the Grammatical
Framework
Krasimir Angelov
University of Gothenburg

The main focus of Grammatical Framework (GF) is in multilingual applications
where the same type of content is produced and analyzed in several languages at
once. This is achieved by joining the grammars for all languages with a shared
interlingual representation. In designing the interlingua, multiword expressions
are an important factor that must be considered. Here, I adopt the broader defi-
nition where everything that translates non-compositionally accross languages is
considered an expression. In this chapter I present multiword expressions from a
cross-lingual perspective in relation to an interlingual grammar.

1 Introduction

Grammatical Framework (GF, Ranta 2011) is a programming language for devel-
oping multilingual applications. The typical applications are in natural language
generation, dialogue systems, machine translation or in question answering sys-
tems where it is feasible to assume a limited language domain. In these scenarios
it is possible to design a controlled language which can be completely covered
with a formal grammar. On the other hand, these applications are typically highly
multilingual. It is not uncommon to have a single grammar which supports si-
multaneously more than twenty languages. There are a number of challenges in
this kind of application.

First of all, in order to scale to a high number of languages, GF is designed to
work with an interlingua. Every grammar is divided into an abstract syntax and
one or more concrete syntaxes. The abstract syntax is a language-independent

Krasimir Angelov. 2019. Multiword expressions in multilingual applications within
the Grammatical Framework. In Yannick Parmentier & Jakub Waszczuk (eds.), Rep-
resentation and parsing of multiword expressions: Current trends, 127–146. Berlin: Lan-
guage Science Press. DOI:10.5281/zenodo.2579041

http://dx.doi.org/10.5281/zenodo.2579041


Krasimir Angelov

interlingual representation of the application domain, while each of the concrete
syntaxes renders an abstract syntax tree into a string in the corresponding nat-
ural language. In that setting, translation, for instance, is reduced to parsing the
input sentence into an abstract tree and then rendering of the same tree into
another concrete language.

Furthermore, developing even a small language fragment would normally re-
quire several low-level details, such as word order and gender/number agree-
ment, to be reimplemented from scratch for every language and for every appli-
cation. This would be highly ineffective if it was not aided by the development of
the Resource Grammars Library (RGL, Ranta 2009) in GF. RGL is a library of wide
coverage grammars for more than thirty languages developed by a community
of linguists and computer scientists. By reusing the library, new applications can
be built in short time by people who do not even have to be linguistically trained
and who may not be experts in the target languages.

Working on the level of the RGL is still too low-level though. The library is
trying to hide syntactic differences across languages but this is still not what
we ultimately want in an application. What is needed is a model which can ab-
stract over the language-independent semantics of the sentence. Phenomena like
constructions and multiword expressions translate non-compositionally across
languages, and thus are recurring obstacles that have to be resolved in every ap-
plication. For that purpose there is a different grammar for each application. Ap-
plication grammars, for example, are more semantically oriented. On the other
hand, resource grammars are syntactic. Another difference between these two
grammars is that resource grammars are highly lexicalized, but lexical entries
often become semantic functions in application grammars. This is a key design
decision which allows us to have an abstract language-independent representa-
tion. For example, such a representation lets us hide the language-specific mul-
tiword expressions in the modules for the concrete languages, without affecting
the abstract syntax.

This strategy has been proven efficient in limited domains, and most of this
chapterwill be about how language-specificmultiword expressions and construc-
tions are represented in GF.

We have recently started to scale up from limited-domain applications to wide
coverage parsing and translation. For this to be successful, it is important to have
a library of commonly used constructions across different languages. Although
this is still a moving target, I will report on the current efforts to build such a
library by either reusing existing resources, or by creating those using automatic
methods. This also shows that the strategy used for limited domains can scale to

128



5 Multi-word expressions within the Grammatical Framework

an open domain, when there is a wide-coverage resource of raw data that can be
ported to the platform.

Please note that moving from lexicalized syntactic grammars to unlexicalized
semantic grammars requires, for many languages, syntax to be represented in a
discontinuous way. Just to give a simple example, forming questions in English
requires that we move or add auxiliary verbs in front of the sentence, while the
rest of the verb phrase is left somewhere in the middle. Other languages might
not use auxiliaries at all or they might just form questions differently.This means
that the verb phrase in English must be modelled as a single phrase with two
discontinuous parts. The implications from this for the implementation of the
framework will be discussed as well.

2 The basic principles of GF

GF is designed as a multilingual framework from the ground up. A typical appli-
cation starts by identifying the relevant domain and then describing the desired
phrases within that domain in multiple languages. In order to accommodate and
link several diverse languages, the framework separates the grammar into two
distinct conceptual layers: abstract and concrete syntax.

The abstract syntax is a logical framework which acts as a language inde-
pendent interlingua. It defines a collection of types and functions which can be
used to build abstract syntax trees. Each abstract tree represents a phrase which
is realized by using one of the available concrete syntaxes. In this section, I
will informally introduce the abstract and the concrete syntax in GF by example.
For a more detailed introduction to GF we refer to Ranta (2011).

We start with the lexicon. On an abstract level, the lexicon consists of a simple
inventory of word senses. For example, we might have:

cat N
fun horse_N : N

Here the first line declares that there is a category N, whichwill denote the type of
all nouns.The second line defines a function with no arguments, a.k.a. a constant
of type N. These abstract constants serve as cross-lingual lemmas. By convention
we use names composed of an English lemma followed by a part of speech tag.
When these are not sufficient to disambiguate the meaning of the word, then we
can add more elements. For example, we could useWordNet’s sense numbers for
disambiguation:

129



Krasimir Angelov

fun arm_1_N : N (body part)
fun arm_3_N : N (weapon)

The lexicon starts to get interesting only whenwemove to the concrete syntax.
The concrete syntax for English looks something like:

lincat N = Number => Str
lin horse_N = table {Sg => ”horse” ; Pl => ”horses”}

Here the keyword lincat introduces the linearization category for nouns, i.e. for
the type N, and lin introduces the linearization of the function horse_N itself.

In programming language parlance, the abstract category N is like an abstract
data type, i.e. a mere name with a hidden implementation, while the lineariza-
tion category in the concrete syntax is its actual implementation. In GF, unlike
in other programming languages, a single type or a single function might have
several different implementations – one for every concrete syntax. In this case,
the implementation in English says that N is a table or an array of strings (Str)
indexed by a Number. The number itself is another data type defined as an enu-
meration with two possible values – singular (Sg) and plural (Pl):

param Number = Sg | Pl

The linearization of horse_N, on the other hand, gives the actual values in the
table. In English these would be the word forms horse and horses, and in French
cheval, chevaux. In French, however, we also need to know the gender of the
noun in order to take care of the word agreement in the syntax. Because of that
the corresponding definition in the concrete syntax for French is slightly more
complicated:

lincat N = {s : Number => Str ; g : Gender}
lin horse_N =

{s = table {Sg => ”cheval”; Pl => ”chevaux”};
g = Masc
}

param Gender = Masc | Fem

Here the linearization category for N is not a simple table of word forms but
a record with two fields – s and g. The field s is still an inflection table like in
English, but there is also the field g of type Genderwith two possible values, Masc
and Fem. The linearization for horse_N assigns to the field s the inflection table
for French and sets the field g to Masc.

130



5 Multi-word expressions within the Grammatical Framework

It is also possible to have recordswhich combine togethermore than one string
field. This is used for instance in English where phrasal verbs consist of a main
verb and a particle. Those verbs are modelled as records:

lincat V2 = {s : VForm => Str; part : Str; prep : Str}
lin swith_off_V2 = {s = table {VInf =>”switch”;

VPres=>”switches”;
...};

part = ”off”
prep = ””}

The field part keeps the particle while the s field is the inflection table of the
main verb. There is also a third field, prep, which stores the potential preposition
for transitive verbs. Since there is no preposition in this case, an empty string
is added. In prepositional verbs, however, this field will be non-empty. It is even
possible to have verbs with both a particle and a preposition.

It is possible to have multiple string fields in nouns as well. This happens for
instance in Chinese where a noun is characterized by its lemma and its classifier.
Both are string fields and they could be arbitrarily far apart in the final sentence.
For that reason they are stored as two different fields in the record:

lincat N = {s : Str; c : Str}
lin horse_N = {s = ”ma”; c = ”pi”}

The structure of the lexicon in all languages is conceptually very similar.There
might be more numbers and genders, or there might be grammatical cases, but
in general a lexical entry in GF is an inflection table indexed by one or more
parameters, and theremight be additional fields for features such as gender, word
class, classifier, or a particle.

The records shown above are rarely what the GF grammarian actually writes.
Instead it is possible to isolate common patterns into reusable operations which
allow us to have succinct definitions like:

lin horse_N = mkN ”horse” ;
lin switch_off_V2 = mkV2 (partV (mkV ”switch”) ”off”);

Here the smart paradigm (Détrez & Ranta 2012) operations mkN and mkV are re-
sponsible for predicting the inflection tables of nouns and verbs from the lemma.
When the inflection is not predictable from the lemma alone then it is possible
to specify extra arguments, i.e.:

lin mouse_N = mkN ”mouse” ”mice”;

131



Krasimir Angelov

In this case the second argument of mkN is the irregular plural form ofmouse. Aux-
iliary operations like partV and mkV2 are used to set the particle or the transitivity
of the verb.

Having set the basics of the lexicon we can move on to the syntax. In the
abstract syntax, the syntax is represented as a collection of n-ary functions. For
example, adjectival modification requires two functions, AdjCN and UseN:

cat AP; CN
fun AdjCN : AP -> CN -> CN
fun UseN : N -> CN

This yields to two syntactic categories: adjectival phrases (AP) and commonnouns
(CN).The simplest common noun consists of just a single noun (N) and is produced
by the function UseN. The function AdjCN lets us to modify the noun with one
or more adjectival phrases. How exactly the adjectival phrases are attached is
language specific.

In English, there is no gender and the adjective is always before the noun. The
linearizations for AdjCN and UseN are simply:

lincat AP = Str
lincat CN = Number => Str

lin UseN n = n
lin AdjCN ap cn = table {Sg => ap ++ cn ! Sg;

Pl => ap ++ cn ! Pl}

Note that when building common noun phrases it is still not known whether
the phrase should be used in singular or in plural. It will remain unknown until
a determiner is fixed and a complete noun phrase built. For that purpose, the
linearization category for CN is an inflection table indexed by number just like for
the N category. Since the linearizations for CN and N are the same, the linearization
rule for UseN is just the identity function. Since I have defined the linearization for
adjectives to be a plain string, the linearization for AdjCN simply concatenates the
adjective phrase in front of the common noun. Here the (++) operator indicates
concatenation of token sequences, and the exclamation mark (!) is used to fetch
the element from the table that corresponds to a given parameter.

Note that the two elements in the table of the last example are identical except
that they select different numbers. There is a handy shorthand notation for this
case:

lin AdjCN ap cn = \\n => ap ++ cn ! n

132



5 Multi-word expressions within the Grammatical Framework

Here the operator (\\) creates a table whose index is the variable n. After the
double arrow (=>) is the value itself, which is defined by using the variable n.
When I substitute n with Sg and Pl I get the same values as in the previous ex-
ample.

In French, the adjectival modification requires gender and number agreement.
In addition, the adjective is sometimes put before and sometimes after the noun.
This means that we need a more complex linearization type for AP:

lincat AP = {s : Gender => Number => Str;
isPrefix : Bool}

This type consists of an inflection table for the adjective and a Boolean parameter
which determineswhether the adjective should be placed before or after the noun.
The linearization rule for AdjCN now is:

lincat CN = {s : Number => Str; g : Gender}
lin AdjCN ap cn = {

s = \\n => let
aps = ap.s ! cn.g ! n;
cns = cn.s ! n

in case ap.isPrefix of {
True => aps ++ cns;
False => cns ++ aps

}
g = cn.g
}

Here, in the let expression I first compute the right forms of the adjective and of
the basic common noun. After that, I concatenate them in the right order depend-
ing on the parameter isPrefix. Note that cn.g is used in two different places.
First it gives the right gender to use for the adjective, and second it is used to
propagate the gender from the smaller common noun which is an argument of
AdjCN to the bigger phrase. The rest of the syntax is built in a similar fashion by
adding more and more syntactic combinators.

This section had the goal to demonstrate the essential features of GF and how
these make it possible to hide language-specific details. In the abstract syntax I
merely say that there are adjectives and nouns and that those can be combined
together. How exactly this happens is determined by the concrete syntax. In
this way, the abstract syntax can stay language-independent while all language-
specific features can still be handled. It could be rightfully argued that the level

133



Krasimir Angelov

of abstractness as it is presented so far is still not sufficiently high. For example,
I still assume that all languages have adjectives and nouns, which might be ques-
tioned for some languages. It did, however, work for the 30+ languages that are
already supported in the framework. The most important problem that I will ad-
dress in the next section, however, is that what is an adjective, noun, or verb in
one language might not belong to the same part of speech in another language.
This is a source of non-compositional constructions and multiword expressions
that need to be handled on a different level in the framework.

3 Constructions and multiword expressions in GF

I shall divide expressions in two non-overlapping classes since they are handled
differently in GF. The first class are expressions that have meaning only as a
whole and that cannot be understood by interpreting their parts compositionally.
Examples for those are by and large, after all, long time no see, instead of, because
of, etc. Such expressions are composed of smaller units which have in general
their own semantic and syntactic uses, but inside the expressions they are just
tokens constituting a larger unit. MWEs cannot be parsed by using meaningful
grammatical rules. For instance, in order to parse instead of compositionally, a
syntactic rule could be added, which combines an adverb and a preposition to
form another preposition:

fun foo : Adv -> Prep -> Prep

A rule like this would have no other use but to cover controversial syntactic
sequences which do not have any compositional meaning anyway. This makes
even less sense in a multilingual setting, since the internal structure of those ex-
pressions in English does not persist in other languages. In Swedish, for instance,
because of translates as på grund av, and in Bulgarian, instead of translates as
vmesto. In both cases the translation is another prepositional expression, but its
internal composition is very different. The solution is very simple: to ignore the
bogus internal composition of those expressions and to add them as multiword
units in the lexicon:

fun instead_of_Prep, because_of_Prep : Prep
lin instead_of_Prep = mkPrep ”instead of”
lin because_of_Prep = mkPrep ”because of”

The implication of this choice is that the parser in GF (Angelov 2011) has to
work, not on the level of words, but on a different, more semantic level. In the

134



5 Multi-word expressions within the Grammatical Framework

case of multiword expressions, this semantic level is a cross-words level, and, in
agglutinative languages, it is often a sub-word level (Angelov 2015). This com-
plication means, for instance, that unlike in most other statistical parsers, GF
parsing is not done on top of a part of speech tagged input. Instead, the parser
performs both parsing and tagging, where a single tag might span several tokens
or conversely only a part of a token.

A subclass of non-compositional expressions is the class of phrasal and prepo-
sitional verbs. Examples of those were shown in the previous section. The com-
plication in this case is that they are not only composed of multiple words but
the words are not even consecutive. Unlike in frameworks based on context-free
grammars, in GF this is a trivial matter. Discontinuous expressions are modelled
by simply using more than one string fields inside a record. On a low-level both
tables and records in GF are modelled as tuples of strings which reduces the for-
malism to a Parallel Multiple Context-Free Grammar (PMCFG, Seki et al. 1991)
which is beyond context-free grammars. When an expression is embedded in a
sentence, then the syntactic rules know where to put each of the constituents.
The assumption, however, is that all lexical units of the same type have the same
types of discontinuities. For instance, the linearization type for all two-argument
verbs in English is:

lincat V2 = {s : VForm => Str; part : Str; prep : Str}

However, only some verbs have particles and only some others have prepositions.
In a monolingual grammar it is possible to split the category into a category for
simple verbs and a category for phrasal/prepositional verbs but this does not
scale across languages. Phrasal verbs in English, for example, are often translated
to simple verbs in Slavic languages, where the information from the particle is
encoded as a prefix attached to the root. Conversely, simple verbs in English
might become prepositional verbs in other languages or vice versa.

The second class of expressions is those that have both a compositional and
a non-compositional meaning. It is often the case that the second is the most
frequent meaning but the former cannot be excluded either. Since GF is a multi-
lingual framework, the most natural way of identifying multiword expressions is
cross-lingual. If an expression has a non-compositional meaning then it is quite
likely that it will be expressed in a very different way in another language. This
is a very empirical criterion which makes it easier to detect multiword expres-
sions, but on the other hand, it fuses multiword expressions with constructions.
Basically anything with a non-compositional abstract syntax across languages
is considered a multiword expression. This kind of expressions is obviously a
problem in an interlingua-based system.

135



Krasimir Angelov

The solution is to identify and factorize expressions. Figure 1 shows the ab-
stract syntax trees for the sentences My name is John in English and the equiv-
alent Ich heiße John in German. The translation is non-compositional because
English has no equivalent for the German verb heißen. In a transfer-based trans-
lation system, I would have to explicitly manipulate the trees to get the one from
the other. In an interlingual system I can factorize.

We add in the abstract syntax a new function which takes as input all frag-
ments from the individual trees that stay invariable. In each of the concrete syn-
taxes we define that the function produces the corresponding language specific
trees where the invariable subtrees are just plugged in the right places. In the
particular case we would get:

Abstract:

fun have_name_Cl : NP -> PN -> Cl

English:

lin have_name_Cl p n = PredVP (DetCN (PossNP p) (UseN name_N))
(UseComp (CompNP (UsePN n)))

German:

lin have_name_Cl p n = PredVP p (CompV2 (mkV ”heissen”) (UsePN n))

PredVP

UseComp

CompNP

UsePN

john_PN

DetCN

UseN

name_N

DetQuant

NumSgPossNP

UsePron

i_Pron

PredVP

ComplV2

john_PNUsePNheissen_V2

UsePron

i_Pron

have_name_Cl

john_PNUsePron

i_Pron

a) My name is John b) Ich heiße John c) Factorization

Figure 1: An example for non-compositional abstract syntax

136



5 Multi-word expressions within the Grammatical Framework

The new function takes as arguments the subject (NP) and the proper name (PN)
and produces a clause (Cl). In the German example the subject is actually the pro-
noun ich with an abstract syntax UsePron i_Pron. In English, on the other hand,
the syntactic subject is my name but we are only interested in varying my so
the argument UsePron i_Pron is wrapped with PossNP which in English gener-
ates a possessive determiner from an NP, i.e. from I we get my. The determiner
is then applied to the noun name. The result is of category clause which is the
same as a sentence except that it has variable tense and word order. This makes
it possible to reuse it for building relative clauses, questions and sentences. We
can also inflect it in tense and polarity. This means that it is enough to factor-
ize the construction only once and then it automatically becomes available in
all possible forms. Once we have the new abstract function then we can use a
language-independent tree as shown on Figure 1c.

Note that in the linearization rules, unlike in the lexicon and in the syntax of
the grammar, tables and records were not used. Instead we are free to reuse the
already existing syntactic functions that are available in the grammar. In the pre-
vious section, how to define functions, such as AdjCN and UseN, was introduced.
These functions can be used not only for parsing/generating sentences but also
inside the definitions of new functions. This is exactly what is done here and
thus, a lot of low-level details can be avoided.

For lexical units we can either reuse existing lexical definitions like name_N or
define locally newones like mkV ”heissen”.This is handy since nouns like name_N
are more common across languages and thus we would probably want them in
the general lexicon anyway. On the other hand, verbs equivalent to heißen can
be found in only some languages.

The previous example can be explained as a construction which differs across
languages because of a lexical gap, i.e. the missing heißen verb in English. How-
ever, exactly the same solution can be also used for pure idioms. For example, a
prototypical multiword expression like kick the bucket in English can be defined
as a lexical verb phrase:

fun kick_the_bucket_VP : VP
lin kick_the_bucket_VP = ComplSlash (SlashV2a kick_V2)

(DetCN (DetQuant DefArt NumSg)
(UseN bucket_N))

A translation to another language could be realized either as a single verb equiv-
alent to die or as another idiom. In either case the translation should still func-
tion as a verb phrase. Note that the verb phrase above is not just a complicated

137



Krasimir Angelov

way to encode the string kick the bucket. When the expression in the example is
evaluated it is reduced to a complex data structure which, among other things,
contains all inflection forms of kick as well as all auxiliary verbs that must be
used for forming the different tenses in English.

The common feature between the last two examples is that in both cases we
have to move from lexical categories such as noun and verb to a higher-level
syntactic categories. For example instead of assuming the existence of a specific
verb we just assume that there is a specific verb phrase or a sentence that conveys
the same meaning. Similarly instead of nouns we use noun phrases and instead
of adjectives – adjective phrases. Basically we move upwards in the hierarchy of
syntactic categories until we reach a level where the differences across languages
are entirely contained within the selected category.

If the multiword expression contains variable parts then they become argu-
ments of the abstract syntax function. The order in which the arguments are
listed in the type of the function is completely irrelevant since in the concrete
syntax we are free to use the arguments in an arbitrary order regardless of the
order in which they are declared. It is just by convention that we usually choose
to use the order in which they are used in English. Note, however, that this free-
dom does not come for free. For instance, most statistical PMCFG parsers assume
that the arguments to a function are used in the order in which they are defined.
This assumption is always satisfiable if the grammar is monolingual but in a mul-
tilingual setting there is simply no natural order. Moreover, the grammar in a
typical statistical parser is learned from corpora and is generally not intended to
be interpreted, so any argument order is just as good. In contrast the typical GF
grammar is developed by a grammarian who might have his/her own aesthetic
preferences.

Using functions with arguments is just one of the ways to make a multiword
expression variable. Sometimes general modifiers are admitted in the middle of
an expression. Typical examples are light verb constructions such as I am back
which also admit modifications like I am already back. It is not difficult to model
the verb phrase copula+back:

lin am_back_VP = UseComp (CompAdv back_Adv)

What is not visible here, however, is that the computed verb phrase is discontin-
uous. The two important parts are an inflection table with all forms of the copula
and a second field which contains the argument of the copula, i.e. the adverb
back. Now if we modify the new lexical verb phrase:

AdVVP already_AdV am_back_VP

138



5 Multi-word expressions within the Grammatical Framework

then the Resource Grammar automatically knows that the adverb already should
be inserted between the copula and the argument. The insertion is possible only
because of the discontinuity of the verb phrase. Note also that the same adverbial
modification in another language may not require discontinuity. For example the
equivalent in Bulgarian for I am back consists of a single verb and then the adverb
is placed before the verb. None of this, however, is visible in the abstract syntax.

In general the ability of the framework to deal with discontinuous phrases is
heavily exploited in the resource grammar. It is one of themost powerful features
that allows us to hide language specific details and it helps in the implementation
of some constructions.

4 Libraries of constructions in GF

Constructions and multiword expressions are really abundant in any natural lan-
guage, and it is part of our mission to collect and organize GF resources for as
many languages as possible. The main realization of that mission, so far, is the
RGL. In the recent years we have also started to collect general lexical resources.
Ultimately we would like to have a Resource Lexicons Library with a multilin-
gual translation lexicon for many languages. Even that is not the end and we
should also consider collecting libraries of constructions. There were two pilot
projects in that direction: Gruzitis et al. (2015) and Enache et al. (2014).

In Gruzitis et al. (2015) the goal is to formalize the Swedish Constructicon
(Lyngfelt et al. 2012). The original constructicon is a semi-formal database which
covers common constructions in Swedish relevant for second language learners.
There is also an ongoing work to link the resource with the Berkeley Constructi-
con for English (Bäckström et al. 2014). The focus, however, is in language learn-
ing rather than parsing or translation. As such it was not the primary goal to
organize the constructicon as a formal grammar usable for automatic processing.
Instead each entry in the resource combines an informal textual description with
a syntactic pattern written in a semi-formal style. The syntactic patterns were
parsed and converted to GF rules which extend the Swedish Resource Grammar.

The original constructicon contains 374 entries of which the project focused
on the 105 constructions for verb phrases. Due to inconsistencies in the original
resource in the first round only 43 out of the 105 constructions were success-
fully converted. After several iterations of manual inspection and correction, the
number of successful constructions increased to 93. The remaining cases were
consistently annotated but are corner cases that are currently not supported by
the conversion algorithm. The necessary corrections and inconsistencies were

139



Krasimir Angelov

sent back to the developers of the constructicon and are fixed by now. The ex-
periment, however, clearly showed the advantage of using a formal system that
can guard against accidental errors that are imminent in a free text format.

At the end each of the constructions was converted to one or more GF func-
tions which in total resulted in 127 abstract functions. For 98 out of these 127
abstract functions, the corresponding concrete syntax was also successfully con-
structed automatically. A logical continuation of the project would be to also
convert the aligned entries from the Berkeley Constructicon and later to add
other languages.

Enache et al. (2014) started from amuch lower level and tried to find candidates
for multiword expressions from the Wikitravel phrase collection in English, Ger-
man, French and Swedish. The general idea is that, given a pair of parallel sen-
tences, the algorithm extracts all possible abstract syntax trees for each sentence
and if there is no common abstract tree for both sentences, then the pair must
contain a non-compositional expression.The candidates are thenmanually exam-
ined and the new constructions are added in a library of constructions.Themajor-
ity of constructions found in this way span over larger syntactic structures and
are thus above the level of a simple lexicon. For example out of 171 candidates 142
expressions were syntactic. They can be roughly classified as: greetings, weather
reports, time expressions, money, units of measurement and spatial deixis. The
remaining 29 expressions are lexical. For example locker in English translates as
låsbart skåp (‘lockable closet’) in Swedish.

Another experiment in Enache et al. (2014) is to learn a lexicon of compound
nouns between English andGerman.Themethod uses automatic word alignment
in a parallel corpus. The candidates for compounds are pairs of phrases where:
the English side must be parsable as a noun phrase with the GF grammar, the
German side must consist of a single word, and finally the overall probability for
the pair must be above a fixed threshold level. The compound nouns extracted
in this way were added to the lexicon of a statistical machine translation system
and the evaluation showed a noticeable improvement in the BLEU score.

5 Application grammars

The discussions so far were on the level of the Resource Grammars. The typi-
cal GF applications, however, never use the resource grammars directly. Instead
they are used as libraries to build application grammars. The main difference
is that while the abstract syntax of a resource grammar describes some kind of
abstracted syntactic level, the application grammar describes an abstracted do-
main semantics. Another way to see the difference is to think about the abstract

140



5 Multi-word expressions within the Grammatical Framework

syntax of the application grammar as an ontological language for describing the
application domain. The abstract syntax of the resource grammar, on the other
hand, is an ontology which describes the syntactic constructions that someone
would expect to find in a natural language.

While in the resource grammar we work with categories like noun phrase
and verb phrase, in the application grammar we switch to semantic categories
like person, agent, food, drink, etc. The abstract syntax functions, on the other
hand, are semantic predicates which take, for instance, an agent and a drink and
produce a statement like:

someone(person) drinks something(drink)

Themain role of these new semantic categories is to provide sortal restrictions on
the types of nouns that can be used for the different arguments of the predicates.
Otherwise the predicates are implemented in a fashion that is very similar to the
one for multiword expressions presented in Section 3. In particular most of the
predicates are de-lexicalized which gives us more freedom to keep the abstract
syntax language-independent while hiding all differences in the concrete syntax.

The sortal restrictions might be relevant for general multiword expressions
as well. For example part of the annotations in the Swedish Constructicon are
about semantic roles such as Actor, Theme, Result, etc. Those were ignored while
converting the resource to GF, but it is possible that some of these constructions
are valid only when the constraints are satisfied.

There are several advantages in working with application grammars. First,
they are typically much smaller than the resource grammars, which also makes
them computationally much more efficient. Second, since the application gram-
mars cover only a specific domain, they can guarantee translation with publish-
ing quality. However, when the resource grammars are used directly in trans-
lation then the quality is much worse. Most of the problems can be attributed
to multiword expressions which are simply not covered by the vanilla resources.
Having a comprehensive grammar of multiword expressions should improve the
quality a lot, but since building a general and comprehensive resource is very ex-
pensive, we currently do it on application by application basis.

The main disadvantage of the application grammars is that they lack robust-
ness. They can analyse input conforming to the grammar but fail completely if
there is even a minor violation. For that reason they are mostly used for con-
trolled languages (Angelov & Ranta 2010) where the users must use authoring
tools that help them to stay within the scope of the grammar. A screenshot of
one of those tools (Ranta et al. 2010) is shown on Figure 2. With this interface the

141



Krasimir Angelov

users are not allowed to enter free text but instead they compose a sentence by
choosing words from a list of options. The sentence is built incrementally and at
each step the list contains only words that are permitted as a possible next word
in the sentence.

Figure 2: An authoring interface for writing Controlled Languages

The controlled language authoring is useful only when the grammar is re-
strictive. If the same interface is used with the resource grammar, then since
there are very little restrictions, almost every word can appear almost every-
where.The analysis of a strange combination of words, however, could be equally
strange. The other disadvantage of that interface is that it is not possible to get
an overview of all constructions that are available in the grammar. In a sense,
that interface gives us the ant’s point of view which sees each word one by one.
What we sometimes want is the bird’s view which sees the grammar from the
top.

One such interfacewas developed inHedström et al. (2016).With that interface
the user is first presented with a list of all possible constructions. When a particu-
lar construction is chosen then he/she is guided to a customization interface like
the one on Figure 3. There the user sees an example of the construction rendered
in two languages. Below the example, there is a list of options that can be used

142



5 Multi-word expressions within the Grammatical Framework

to customize the construction. On the figure, the example is the construction is
have_name_Cl from Section 3 rendered in Swedish and Bulgarian. The possible
customizations are to turn the construction from a statement to a question or to
change the subject, i.e. Who are we talking about?.

Figure 3: A browsing interface for an application grammar

This particular interface is not restricted to controlled languages. It can be
configured to work with any grammar where the configuration describes which
phrases should be included in the browser. For example, if it is coupled with the
resource grammar, then it is not necessary to make the whole of the grammar
visible. Instead the browser can only include phrases that are relevant for a par-
ticular purpose. For example, the interface is currently used in an offline mobile
translation application (Angelov et al. 2014) which can translate free text. The
browsing interface, however, does not expose the entire grammar, and instead
it only covers common tourist phrases for which we can guarantee publishing
quality.

6 Wide coverage grammars

The resource grammars and the application grammars are the two main types of
grammars that we usually deal with in GF. Just in the last few years, however,
we have started scaling up the framework to an open domain. The milestone
that made that possible is the numerous improvements in the compiler and the
interpreter for bigger grammars, and in particular the improvements in the GF
parser (Angelov 2011).

143



Krasimir Angelov

There are two challenges that we have to deal with in the open domain. The
first is robustness and the second disambiguation. We get the robustness by us-
ing a wide coverage grammar which basically consists of the resource grammar
plus a large lexicon. On top of that we added minor extensions that deal with
ungrammatical input. The disambiguation relies on a statistical ranking trained
on the Penn Treebank (Angelov 2011).

As we mentioned earlier, translation via the vanilla resource grammar is far
from perfect. We compensate, however, by plugging a high-quality application
grammar for a particular domain. By combining the two we get decent quality
as long as we stay close to the target domain. For example, Ranta et al. (2015)
reports BLEU scores above 70% for technical descriptions of places and objects
related to accessibility by disabled people. Translations outside of the domain are
still possible thanks to the resource grammar.

Again, one of the major roles of the application module in the wide-coverage
translator is to provide proper translations for non-compositional expressions.
We expect that scaling further the quality of the generic translator will also crit-
ically depend on the availability of a wide-coverage resource of constructions.

7 Conclusion

In general we have no doubt that GF can cope with multiword expressions. Al-
most every application grammar in GF must deal with some of them. Moreover,
we often have to deal with constructions across languages. The key enabling de-
vice to allow variability in the constructions is the fact that the framework allows
for discontinuities. The interesting challenge that we see, however, is how to col-
lect a good inventory of constructions. Our current case by case solution does
not scale well for open-domain applications.

References

Angelov, Krasimir. 2011. The mechanics of the Grammatical Framework. Chalmers
University of Technology dissertation.

Angelov, Krasimir. 2015. Orthography engineering in Grammatical Framework.
In Proceedings of the Grammar Engineering Across Frameworks (GEAF) work-
shop, 53rd annual meeting of the ACL and 7th IJCNLP, 33–40. Beijing, China.

144



5 Multi-word expressions within the Grammatical Framework

Angelov, Krasimir, Björn Bringert & Aarne Ranta. 2014. Speech-enabled hybrid
multilingual translation for mobile devices. In Proceedings of the demonstra-
tions at the 14th conference of the European chapter of the Association for Com-
putational Linguistics, 41–44. Gothenburg, Sweden: Association for Computa-
tional Linguistics. http://aclweb.org/anthology/E14-2011.

Angelov, Krasimir & Aarne Ranta. 2010. Implementing controlled languages in
GF. In Proceedings of the workshop on Controlled Natural Language (CNL’09),
82–101. Marettimo Island, Italy: Springer-Verlag.

Bäckström, Linnéa, Benjamin Lyngfelt & Emma Sköldberg. 2014. Towards in-
terlingual constructicography: On correspondence between constructicon re-
sources for English and Swedish. Constructions and Frames 6. 9–33.

Détrez, Grégoire & Aarne Ranta. 2012. Smart paradigms and the predictability
and complexity of inflectional morphology. In Proceedings of the 13th confer-
ence of the European chapter of the Association for Computational Linguistics
(EACL 2012), 645–653. Avignon, France: Association for Computational Lin-
guistics. http://aclweb.org/anthology/E12-1066.

Enache, Ramona, Inari Listenmaa & Prasanth Kolachina. 2014. Handling non-
compositionality in multilingual CNLs. In Controlled Natural Language . CNL
2014 (Lecture Notes in Computer Science 8625), 147–154. Cham: Springer.

Gruzitis, Normunds, Dana Dannells, Benjamin Lyngfelt &Aarne Ranta. 2015. For-
malising the Swedish constructicon in Grammatical Framework. In Proceed-
ings of the Grammar Engineering Across Frameworks (GEAF) 2015 workshop, 49–
56. Beijing, China: Association for Computational Linguistics. http://aclweb.
org/anthology/W15-3307.

Hedström, Björn, Matilda Horppu & David Michaëlsson. 2016. Parlira: An inter-
active phrasebook for Android devices. Tech. rep. Chalmers University of Tech-
nology.

Lyngfelt, Benjamin, Lars Borin, Markus Forsberg, Julia Prentice, Rudolf Rydst-
edt, Emma Sköldberg & Sofia Tingsell. 2012. Adding a constructicon to the
Swedish resource network of Språkbanken. In Jeremy Jancsary (ed.), Proceed-
ings of KONVENS 2012, 452–461. ÖGAI. LexSem 2012 workshop.

Ranta, Aarne. 2009. The GF Resource Grammar Library. Linguistic Issues in Lan-
guage Technology.

Ranta, Aarne. 2011. Grammatical Framework: Programming with multilingual gra-
mmars. Stanford: CSLI Publications.

Ranta, Aarne, Krasimir Angelov &Thomas Hallgren. 2010. Tools for multilingual
grammar-based translation on the web. In Proceedings of the 48th annual meet-
ing of the Association for Computational Linguistics (ACL 2010) system demon-
strations, 66–71. Uppsala, Sweden.

145

http://aclweb.org/anthology/E14-2011
http://aclweb.org/anthology/E12-1066
http://aclweb.org/anthology/W15-3307
http://aclweb.org/anthology/W15-3307


Krasimir Angelov

Ranta, Aarne, Christina Unger & Daniel Vidal Hussey. 2015. Grammar engi-
neering for a customer: A case study with five languages. In Proceedings of
the Grammar Engineering Across Frameworks (GEAF) 2015 workshop, 1–8. Bei-
jing, China: Association for Computational Linguistics. http : / / aclweb .org /
anthology/W15-3301.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii & Tadao Kasami. 1991. On
multiple context-free grammars. Theoretical Computer Science 88(2). 191–229.

146

http://aclweb.org/anthology/W15-3301
http://aclweb.org/anthology/W15-3301

