
doi:10.5281/zenodo.2578277

Building an open source software ecosystem for cross-disciplinary

plasma research and education

Nicholas A. Murphy,1, 2, a) Dominik Stańczak,1, 3 Andrew J. Leonard,1, 4 Tulasi N.
Parashar,1, 5 Pawel M. Kozlowski,6 B. L. Alterman,7 D. Aaron Roberts,8 S. D. Christe,8

Martin Connors,9 Monica G. Bobra,10 James Paul Mason,8 Will Barnes,11 Ryan M.
McGranaghan,12 Asti Bhatt,13 Philip J. Erickson,14 Frank D. Lind,14 Ryan Volz,14 John
Swoboda,14 Nick Hatzigeorgiu,15 Andrew Inglis,8 Felipe Nathan deOliveira-Lopes,16 Jack
Ireland,8 John C. Coxon,17 Sophie A. Murray,18, 19 Japheth N. Yates,20 Mark C. M.
Cheung,21, 22 Jeff Klenzing,8 David Stansby,23 Han He,24 Yi-Min Huang,25 Chuanfei
Dong,25 Henry Winter,2 Juan-Camilo Buitrago-Casas,15 Manjit Kaur,26 Sterling Smith,27

Benjamin Dudson,28 Daniel B. Seaton,29, 30 Luca Comisso,31, 32 Alexa J. Halford,33 D. H.
Barnak,6 R. S. Weigel,34, 35 A. Tavant,36 Jon D. Vandegriff,37 Miguel de Val-Borro,8 and
Antonia Savcheva2

1)PlasmaPy Coordinating Committee
2)Center for Astrophysics | Harvard & Smithsonian
3)University of Warsaw
4)Aperio Software
5)University of Delaware
6)Los Alamos National Laboratory
7)University of Michigan
8)NASA Goddard Space Flight Center
9)Athabasca University
10)Stanford University
11)Rice University
12)Atmospheric and Space Technologies Research Associates (ASTRA) LLC
13)SRI International
14)MIT Haystack Observatory
15)Space Sciences Laboratory, University of California Berkeley
16)Max Planck Institute for Plasma Physics
17)University of Southampton
18)Trinity College Dublin
19)Dublin Institute for Advanced Studies
20)European Space Agency
21)Lockheed Martin Solar & Astrophysics Laboratory
22)Hansen Experimental Physics Laboratory, Stanford University
23)Imperial College London
24)National Astronomical Observatories, Chinese Academy of Sciences
25)Department of Astrophysical Sciences, Princeton University
26)Department of Physics & Astronomy, Swarthmore College

https://doi.org/10.5281/zenodo.2578277


27)General Atomics

28)University of York, UK

29)Cooperative Institute for Research in Environmental Sciences,

University of Colorado

30)National Centers for Environmental Information, National Oceanic and Atmospheric

Administration, Boulder, Colorado

31)Department of Astronomy, Columbia University

32)Columbia Astrophysics Laboratory, Columbia University

33)The Aerospace Corporation

34)Department of Physics and Astronomy, George Mason University

35)Space Weather Laboratory, George Mason University

36)Laboratoire de Physique des Plasmas, CNRS, Ecole polytechnique, Saclay,

France

37)Johns Hopkins University Applied Physics Laboratory

a)Email: namurphy@cfa.harvard.edu

mailto:namurphy@cfa.harvard.edu
https://creativecommons.org/publicdomain/zero/1.0


I. SCIENTIFIC SOFTWARE FOR PLASMA PHYSICS

Software is crucial to all areas of modern plasma science research. Laboratory
plasma physicists use software to interpret plasma diagnostics, analyze experimental results,
and glean insights using advanced techniques from data science. Space scientists use software
to reduce and understand in situ observations. Numericists use software to simulate the be-
havior of laboratory, heliospheric, and astrophysical plasmas, and then analyze or visualize
the results. Theorists use symbolic manipulation software to perform or check derivations.
Cross-disciplinary research and cross-comparisons between experiments, observations, sim-
ulations, and theories all require software. Despite our heavy reliance on software,
funding agencies have traditionally had few avenues available to support devel-
opment of general purpose research software infrastructure.1

The lack of investment in community-wide software infrastructure has resulted in several
adverse consequences. Different researchers and groups frequently duplicate software with
essentially the same functionality. These different software packages typically lack inter-
operability, thus impeding interdisciplinary and cross-disciplinary collaboration. Access to
these codes is frequently restricted in some way. Packages tend to be difficult to install,
especially if they depend on external libraries. Pressure to publish leads to code written
in a rush to get the next research paper out. Documentation is frequently a low priority.
Packages often lack a testing framework. Most scientific programmers are self-taught, and
constant time pressure prevents us from taking time to learn new programming skills and
best practices for scientific computing. The combination of all of these factors leads to the
following consequences.

1. It is difficult for newcomers to begin research in plasma physics because of
the state of software.

2. Cross-disciplinary research is hampered due to the lack of interoperability.

3. Reproducing plasma research is difficult and time-consuming.

Over the past decade, researchers in different scientific disciplines have collaboratively
developed open source Python packages for their fields.2 These packages provide essential
functionality, frameworks for data analysis and visualization, and educational resources.
Projects such as Astropy3 are fundamentally transforming the way scientific research is
being done in astronomy by making it more open, collaborative, and reproducible. The
Astropy core package contains the functionality needed by most astronomers across subfields.
Astropy’s affiliated packages contain more specialized functionality. Astropy’s coordination
committee regulates intercompatibility among the core and affiliated packages. Astropy
and its affiliated packages constitute a software ecosystem for astronomy.

Solar physicists are following Astropy’s model for open development through SunPy4

and affiliated packages. SunPy is intercompatible with Astropy to enable cross-disciplinary
studies. The Python in Heliophysics Community began in 2018 to promote interoperability
and reduce duplication of functionality to create an open source software ecosystem for the
whole heliosphere.5 NASA provided seed funding for the first coordination meeting.

The open source revolution that is well underway in astronomy and helio-
physics has only just begun in plasma science. The PlasmaPy project began in 2017

1

http://www.astropy.org/
http://docs.astropy.org/en/stable/
https://www.astropy.org/affiliated/
https://www.astropy.org/team.html#role-responsibilities
https://www.astropy.org/team.html#role-responsibilities
https://docs.sunpy.org/en/stable/
http://heliopython.org/
http://docs.plasmapy.org/en/stable


as a community effort to create a shared Python package for plasma physics. PlasmaPy6

aims to provide the foundation for an open source software ecosystem for plasma science that
is intercompatible with the astronomy and heliophysics ecosystem. The version 0.1 develop-
ment release of PlasmaPy in 2018 serves an invitation to the plasma physics community to
contribute to this project.7 The continued development of an open source software
ecosystem for plasma science hinges on both community participation and stable
funding.

Because of the importance of open scientific software infrastructure, we suggest a series
of recommendations for the plasma science decadal review. For more contextual information
and related recommendations, we encourage the committee to refer to Refs. 8–11.

II. PROPOSED RECOMMENDATIONS

Conclusion: Software infrastructure is a critical enabling technology for modern
scientific research. In order for research to be reproducible, the software used to
analyze results must be openly available for use, modification, and redistribution.
Plasma physics will not be able to perform at its full potential without investment
in open source software infrastructure using modern best practices for scientific
programming.

A fully open source software ecosystem for plasma physics research and education will
have numerous benefits. Research will be more reproducible and transparent by making
software open for inspection and modification. Adopting best practices for scientific pro-
gramming will improve code readability, reliability, and maintainability. Barriers to entry
for newcomers to the field will be reduced by providing thorough documentation, access to
an active user/developer community, and an intuitive interface. Students and scientists will
be introduced to collaborative code development practices that are widely used in industry.
Costly duplication of functionality will decrease. Interoperability between different software
packages will improve, thus enabling both interdisciplinary and cross-disciplinary collabora-
tions. An open, well-documented code base will reduce the financial burden associated with
developing software for new experiments.

Recommendation: The plasma physics community should collaboratively de-
velop an open source software ecosystem for research and education.

The creation of this software ecosystem should follow the open development model used
by Astropy. Software should be written using modern best practices for scientific code
development,12,13 such as prioritizing readability, implementing a straightforward and in-
tuitive user interface, optimizing code only if necessary, using a version control system,
using continuous integration testing, adopting test-driven development, turning bugs into
test cases, performing code reviews, and producing useful error messages. Documentation
should be prioritized, and be clear and understandable enough for a student taking their
first class in plasma physics. Open source projects should create materials that can be used
in plasma education, including examples in formats such as Jupyter notebooks. Packages
in this ecosystem must be released under a license approved by the Open Source Initiative
(OSI). All projects must have a code of conduct.

2

http://docs.plasmapy.org
https://opensource.org/licenses
https://opensource.org/licenses


Python is recommended as a primary programming language of this software ecosystem
for the following reasons.14 The scientific Python community is highly active and there exist
many well-developed Python packages for numerical and scientific analysis and visualization.
Choosing Python will enable intercompatibility with the existing Python ecosystems for as-
tronomy and heliophysics. Python can be used without paying the subscription fees often
required for proprietary languages. Python can call code written in Fortran, C, C++, and
Julia. High performance can be achieved by calling compiled code or by using a just-in-time
compiler. These features have made Python one of the most commonly used languages in
industry, and have brought Python to the forefront of the data science and Big Data revo-
lutions. Building this software ecosystem using Python will enable use of these technologies
in plasma science and equip students with the tools necessary to tackle the technological
challenges of this century.

Recommendation: Funding agencies should invest in open source software
infrastructure for plasma physics and related fields.

A longstanding problem has been that funding agencies have had few mechanisms to
support open development and maintenance of research software infrastructure.1 Agencies
should create, modify, or expand funding opportunities to fulfill this community need.

DOE and NSF should establish a new competitive funding opportunity with the goal
of developing and sustaining open source plasma science software infrastructure.15 Each
awardee would be responsible for developing and maintaining a component of a new open
source software ecosystem. Awardees would be required to form a team and work together to
coordinate interoperability (including with software packages widely used in fields related to
plasma physics), reduce software duplication, identify and address gaps in functionality, es-
tablish community code development guidelines, and seek feedback from the broader plasma
physics community. This team should hold biannual in-person meetings, with representa-
tion from funding agencies. These meetings and other communications should be open to
members of the broader plasma community, including prospective users and developers.

Software that is not actively maintained will gradually decrease in usability and usefulness
due to changes in external dependencies, evolving user needs, and lost expertise. Open
source projects that become essential to the community should be supported by longer-term
contracts in order to provide stability and enable continued development.

Recommendation: Software projects, funding agencies, and the broader
plasma science community should jointly take responsibility for software sus-
tainability.

Software sustainability describes the technical, institutional, and cultural practices that
allow software to continue operating as expected in the future. Software sustainability in-
creases research trustworthiness, scientific return on investment, and the rate of discovery.9

The responsibility for software sustainability should be shared among all stakeholders.

Individual projects should support software sustainability by creating transparent orga-
nizational infrastructure, involving the community, providing guidance to new contributors,
releasing sufficient documentation, making their software products citable and discoverable,
and fostering a welcoming and inclusive environment.

Funding agencies should act as stewards of the open source software ecosystem for plasma
physics. These agencies should regularly evaluate the status of this software ecosystem and

3

https://www.python.org/
https://en.wikipedia.org/wiki/Software_rot


ensure that important packages do not become abandoned. They should identify gaps in
functionality with help from the community, and tailor funding opportunities to address
these gaps. DOE should clarify guidance on export control restrictions related to making
software for plasma science open source.

Research and educational institutions should enact policies that enable contributions to
open source projects under any license approved by OSI. Journals should encourage authors
to cite important software used in a project. Authors should archive data and software used
in publications so that they become citable. Institutions should hold workshops that cover
best practices for scientific computing such as those by the Carpentries. Contributions to
open source software projects and efforts to make research reproducible should be recognized
as strengths in decisions on hiring and tenure.

Recommendation: Funding agencies and the greater plasma physics commu-
nity should invest in data science innovations enabled by an open and collabo-
rative software ecosystem.

The growth in size and complexity of data sets produced by plasma physics experiments,
observations, and simulations highlights how critical openly available data science tools are
to the infrastructure of plasma physics research.16,17 Examples of data science tools which
could be built within an open ecosystem include, but are not limited to: automated and
reproducible feature detection and tracking in images (such as x-ray radiographs), rapid
exploration of multi-dimensional parameter problems (as in designing inertial confinement
fusion experiments), automated and reproducible processing of atomic spectra, big data
processing using results from high repetition rate facilities, and searches for unexpected
patterns in large data sets. Automation efforts would save scientists time from conducting
repetitive tasks, and would enable real-time analysis of data during experimental campaigns.
The development of these tools would integrate existing open source data science libraries
such as scikit-learn, TensorFlow, and Keras into the plasma science software ecosystem. This
effort would further the role of plasma science in pushing the frontiers of data science and
computational techniques.

III. FINAL THOUGHTS

A software ecosystem for plasma research and education will be most beneficial if it is com-
patible with open source frameworks for related fields such as astronomy3 and heliophysics.4,5

Plasma science would benefit from functionality that already exists in other fields, and re-
lated fields would benefit from functionality that we create. The resulting intercompatibility
would simplify cross-disciplinary research. The fusion plasma community would ideally par-
ticipate as well.

Plasma education will benefit from investment in open source software infrastructure.
Well-documented software with an intuitive interface will let students hit the ground running
when beginning their first research projects. The need to re-write functionality that already
exists but is hard to read, inadequately documented, and/or closed source will be reduced.
Students who enter industry upon graduation will have a job search advantage if they have
experience with Python and collaborative code development practices. Examples provided by
open source projects may be used in courses to help students understand plasma phenomena.

4

https://carpentries.org
https://scikit-learn.org
https://www.tensorflow.org/
https://keras.io/


Even if an open source ecosystem is not funded, research software will continue to be
paid for through various grants and projects. Indeed, it will be paid for multiple times as
different groups duplicate, triplicate, and quadruplicate the same functionality. Packages
that are created will continue to lack interoperability. If the decadal review is silent on
general-purpose research software needs, then it risks committing our field to not funding
open research software infrastructure for the next ten years.1 A software ecosystem for
plasma research and education is a sound investment for our community with
very tangible benefits and few drawbacks that will reduce the time, effort, and
frustration needed to reach scientific understanding.

REFERENCES

1D. Muna et al., “The Astropy Problem,” arXiv:1610.03159 (2016).
2Examples include Astropy for astronomy; SunPy for solar physics; HelioPy, SpacePy, and pysat for space

physics; MetPy for meteorology; SatPy for earth-observing satellite data processing; ObsPy for seismology;

pyQuil for quantum computing; MDAnalysis for molecular dynamics; and QuantEcon for economics.
3Astropy Collaboration et al., “The Astropy Project: Building an Open-science Project and Status of the

v2.0 Core Package,” Astronomical Journal 156, 123 (2018), see also astropy.org.
4SunPy Community et al., “SunPy – Python for solar physics,” Computational Science and Discovery 8, 1

(2015), see also sunpy.org.
5A. Burrell et al., “Snakes on a Spaceship – An Overview of Python in Heliophysics,” Journal of Geophysical

Research 123, 10384 (2018), see also heliopython.org.
6PlasmaPy Community et al., “PlasmaPy: an open source community-developed Python package for plasma

physics,” 10.5281/zenodo.1238132 (2018), Zenodo, see also docs.plasmapy.org.
7Please let us know if you have ideas or would like to contribute!
8National Academies of Sciences, Engineering, and Medicine, Open Source Software Policy Options for

NASA Earth and Space Sciences (National Academies Press, 2018).
9S. Hettrick, “Research Software Sustainability: Report on a Knowledge Exchange Workshop,” (2016).

10Mark D. Wilkinson et al., “The FAIR Guiding Principles for scientific data management and stewardship,”

Scientific Data 3, sdata201618 (2016).
11Engineering and Physical Sciences Research Council, “Software as an infrastructure,” (2012).
12G. Wilson et al., “Best Practices for Scientific Computing,” PLOS Biology 12, 1–7 (2014).
13A. Scopatz and K. D. Huff, Effective Computation in Physics: Field Guide to Research with Python

(O’Reilly Media, 2015).
14Julia, which to our knowledge is the only interactive dynamically typed language to achieve petascale

computing, is also a valid choice. Because Julia can be called from Python and Python can be called from

Julia, these two languages can co-exist in a software ecosystem.
15This suggested opportunity is inspired by NASA’s Living With a Star Targeted Research & Technology

program and PyHC.
16B. K. Spears et al., “Deep learning: A guide for practitioners in the physical sciences,” Physics of Plasmas

25, 080901 (2018).
17D. R. Smith et al., “Highlights from the community white paper ‘Enhancing US fusion science with data-

centric technologies’,” in APS DPP Meeting Abstracts (2018).

5

https://arxiv.org/abs/1610.03159
http://www.astropy.org
https://sunpy.org
https://docs.heliopy.org/en/stable/
https://pythonhosted.org/SpacePy/
https://github.com/rstoneback/pysat
https://unidata.github.io/MetPy/latest/index.html
https://satpy.readthedocs.io/en/latest/
https://github.com/obspy/obspy/wiki
https://github.com/rigetti/pyquil
https://www.mdanalysis.org/
https://quantecon.org/
https://doi.org/10.3847/1538-3881/aabc4f
http://astropy.org
https://doi.org/10.1088/1749-4699/8/1/014009
https://doi.org/10.1088/1749-4699/8/1/014009
http://sunpy.org
https://doi.org/10.1029/2018JA025877
https://doi.org/10.1029/2018JA025877
http://heliopython.org
https://doi.org/10.5281/zenodo.1238132
http://docs.plasmapy.org
https://doi.org/10.17226/25217
https://doi.org/10.17226/25217
http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1005&context=scholcom
https://doi.org/10.1038/sdata.2016.18
https://epsrc.ukri.org/newsevents/pubs/software-as-an-infrastructure
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
http://shop.oreilly.com/product/0636920033424.do
https://julialang.org/
https://github.com/JuliaPy/pyjulia
https://github.com/JuliaPy/PyCall.jl
https://github.com/JuliaPy/PyCall.jl
https://lws.gsfc.nasa.gov
https://lwstrt.gsfc.nasa.gov/
http://heliopython.org
https://doi.org/10.1063/1.5020791
https://doi.org/10.1063/1.5020791

	Building an open source software ecosystem for cross-disciplinary plasma research and education
	SCIENTIFIC SOFTWARE FOR PLASMA PHYSICS
	PROPOSED RECOMMENDATIONS
	FINAL THOUGHTS


