Automated Reporting of Anti-Patterns and Decay in
Continuous Integration

Sebastian Proksch
Department of Informatics
University of Zurich
Zurich, Switzerland
proksch@ifi.uzh.ch

Carmine Vassallo
Department of Informatics
University of Zurich
Zurich, Switzerland
vassallo@ifi.uzh.ch

Abstract—Continuous Integration (CI) is a widely-used soft-
ware engineering practice. The software is continuously built
so that changes can be easily integrated and issues such as
unmet quality goals or style inconsistencies get detected early.
Unfortunately, it is not only hard to introduce CI into an
existing project, but it is also challenging to live up to the
CI principles when facing tough deadlines or business decisions.
Previous work has identified common anti-patterns that reduce
the promised benefits of CI. Typically, these anti-patterns slowly
creep into a project over time before they are identified. We argue
that automated detection can help with early identification and
prevent such a process decay. In this work, we further analyze
this assumption and survey 124 developers about CI anti-patterns.
From the results, we build CI-ODOR, a reporting tool for CI
processes that detects the existence of four relevant anti-patterns
by analyzing regular build logs and repository information. In a
study on the 18,474 build logs of 36 popular JAVA projects, we
reveal the presence of 3,823 high-severity warnings spread across
projects. We validate our reports in a survey among 13 original
developers of these projects and through general feedback from
42 developers that confirm the relevance of our reports.

Index Terms—Continuous Integration, Anti-Pattern, Detection,
CI-Smell, CI-Decay

I. INTRODUCTION

Continuous Integration (CI) is a common development
practice and its great benefits on quality and productivity are
widely accepted [29]. CI advocates full automation of all build
steps (i.e., compilation, testing, and code quality assessment)
to create a new version of the software [3]. The CI process is
most effective when developers follow best practices, such as
commit often, that reduce conflicts in the team and ensure that
the build is continuously executable [3]. In practice, it is often
challenging to live up to these standards and anti-patterns can
be observed: common but ineffective solutions to a recurring
problem that should be avoided. For example, failing tests
are removed instead of fixing the root cause. Over the years,
researchers have defined catalogs of CI anti-patterns [4], [13],
which eventually become a threatening maintainability problem
for a software project, if not properly addressed [3].

A creeping decay of quality has been described before in
other contexts. Fowler [5] popularized the term code smell to
describe a symptom that indicates the existence of a deeper
problem in the source code. While the perception of smell is
subjective, previous work could show that code smell intensity

Harald C. Gall
Department of Informatics
University of Zurich
Zurich, Switzerland
gall@ifi.uzh.ch

Massimiliano Di Penta
Department of Engineering
University of Sannio
Benevento, Italy
dipenta@unisannio.it

correlates with the likelihood of the existence of a deeper
issue [19]. The smell metaphor was later adopted in other
areas such as system design [17], configuration files [23],
or spreadsheets [10]. Hence, the idea that a CI anti-pattern
manifests itself as a CI smell as well. In contrast to anti-patterns
in development artifacts, CI anti-patterns affect the software
development process and provoke CI decay.

In this paper, we further study this phenomenon. Our results
of a broad survey among 124 professional developers confirm
that CI decay is indeed a relevant problem. Most participants
confirm that deviations from CI best practices happen in
practice, both intentionally and unintentionally, and that the
benefits of CI diminish when many deviations exist in a project.
The awareness about the presence of anti-patterns in the CI
pipeline is key for an educated decision about whether a
deviation needs to be fixed. Inspired by Duvall’s catalog of
Continuous Integration and Delivery (CD) anti-patterns [4], we
built CI-ODOR, an automated detection and reporting tool that
provides awareness about CI decay caused by four different
anti-patterns. Through the analysis of build log and repository
information our tool identifies (1) slow builds, and especially
increasing trends of build time, (2) broken release branch, and
the corresponding time-to-fix, (3) skipped failing tests, and (4)
late merging of development branches.

By analyzing a total of 18,474 recent builds logs of 36 popular
JAVA projects, we identified 3,823 high-severity anti-pattern
instances, and 4,697 with medium severity, spread across all
projects. To evaluate our tool, we have surveyed 13 original
developers about the relevance of reports (containing recent
instances of detected smells) generated for their project and
42 developers about the general usefulness of CI-ODOR. The
reports are perceived as useful, relevant, and most participants
would integrate CI-ODOR in their CI pipeline to increase their
awareness about the CI process. We also find untapped potential
for future detectors and that more work on CI anti-patterns is
necessary to improve the handling of project specifics.

In summary, this paper presents the following contributions:

e Verification of the relevance of CI decay in practice;

e Detectors of four relevant CI anti-patterns;

o CI-ODOR, an automated CI anti-patterns reporting tool,

o An empirical study on the presence of CI decay and on the
developers awareness about CI anti-patterns.

II. METHODOLOGY OVERVIEW

In this paper, we introduce CI-ODOR, an automated reporting
tool that can be integrated into CI pipelines to increase the
awareness about anti-patterns in CI. Figure 1 illustrates our
methodology to create and evaluate the tool.

This work is based on the existing anti-patterns catalog (1) of
Duvall [4], which describes 50 patterns and anti-patterns that
influence the effectiveness of a CI/CD pipeline. In an internal
selection, we identified a subset of CI anti-patterns from this
catalog that can be automatically detected by analyzing build
log and versioning information (2). For each of these anti-
patterns, we added an explanation and an illustration of the
detection strategy and validated their selection in a survey
among 124 professional software developers (3). We asked the
participants about the relevance of the anti-patterns in practice
and the suitability of our detection strategies. Based on the
results of the survey, we eliminated several candidates, refined
our detection strategies, and ended up implementing a set of
four detectors (4). We integrated these detectors in a reporting
tool, CI-ODOR (5), that aggregates the different analysis results
and that presents statistics such as a trend analyses to increase
the awareness about the different anti-patterns.

We evaluated the usefulness and relevance of the reports
created by CI-ODOR in a second survey (6). For the survey,
we conducted a case study, in which we analyzed the build
logs of 36 projects (7). The resulting reports (8) are publicly
available and we asked the original developers of these projects
to rate them (9). In addition, we selected reports that illustrate
the full capabilities of our reporting (e.g., there is at least one
detected instance of each anti-pattern). We ask both the original
developers and other developers with experience in CI (10) to
rate these example reports.

III. WHICH ANTI-PATTERNS TO DETECT, AND HOwW?

The existing anti-pattern catalog of Duvall [4] is extensive
and contains several examples that go beyond the scope of
automated tools, e.g., decisions regarding the deployment
strategies. We started with selecting a subset of anti-patterns, for
which we could develop appropriate detectors. In this section,
we first introduce our pre-selected list of candidates and the
survey that we used to validate and finalize our selection.

A. Pre-Selection

The rationale of our pre-selection was two-fold. We wanted
to cover different aspects of the CI pipeline such as version
control or build failure management and exclude others that are
more related to CD. At the same time, we selected anti-patterns
that can be detected using data that is typically produced by
every CI pipeline independently from custom settings, i.e.,
build logs and repository. The following list introduces all anti-
pattern candidates, proposes a detection strategy, and justifies
their relevance for the CI process quality. For traceability, we
include the name of Duvall’s positive example [4].

Late Merging (Merge Daily) Agile teams often develop in
features branches. Integration effort and conflict potential
increase if completed features are not integrated timely. We

propose to warn about cases in which the last commit of a
branch is older than a predefined threshold.

Aged Branches (Short-Lived Branches) Infrequently synced
feature branches substantially diverge over time and end
up being very hard to integrate. We propose to warn when an
open branch has not been merged into master for a release.

Broken Release Branch (Stop the Line) A broken build that
is not fixed timely prevents the CI pipeline from properly
assessing the effect of new changes. We propose to warn
when a build stays broken for longer than usual.

Bloated Repository (Repository) Artifacts that can be created
in a build or fetched through provisioning mechanisms should
not be committed to the version control system. We propose
to warn when binaries can be found in the repository.

Scheduled Builds (Continuous Integration) A scheduled build
either (unnecessarily) builds a change a second time or is a
sign that a change is not automatically built, which breaks
the idea of always ensuring a working system. We propose
to warn about build configurations that schedule builds.

Absent Feedback (Continuous Feedback) Developers are miss-
ing out on required feedback, when they are not automatically
notified about relevant build events, especially build failures.
We propose to warn about configuration files that do not
enable any notification channels.

Email-Only Notifications (Visible Dashboards) According to
Duvall [3], email is inappropriate as a single notification
channel, because developers might not have access or
notifications get lost among other messages. We propose
to warn about configurations files that only notify by email.

Skip Failed Tests (Automate Tests) Skipping a failed test can
fix a broken build but addresses a symptom rather than fixing
the cause. It threatens the safety provided by the test suite.
We propose to warn about cases in which a previously failed
test does no longer occur in the next (fixed) build.

Slow Build (Fast Builds) A slow build, caused by a coding
issue or by a high workload of build server, produces waiting
times for developers and adds overhead to the CI process.
We propose to warn about significant build slow-downs.

Please note that these descriptions are shortened introductions

from our survey. A complete version of the first survey is

available on our artifact page [30].

B. Survey on the Practical Relevance

We conducted a survey to validate the relevance of the
selected anti-patterns and the proposed detection rules.

Survey Design. The survey contains three sections. The first
section is about the perceived severity of the problem of
deviations from CI best practices. The second section has
a focus on the anti-patterns. We introduced each one with an
elaborated description that includes explanatory images and
asked participants to evaluate the anti-pattern relevance and
our proposed detection strategy. Finally, we asked for a general
validation of the idea of anti-patterns detection.

All survey questions were optional and had Likert scales [18]
with either five (Strong Disagree to Strong Agree) or four levels
(None to High). The survey also contained open questions for

Pre-Selection (== Refinement "¢ Me_rging O\ CI-ODOR

> — > Slow Build O\\ — »

— Broken Master O—1 1=

Existing P Skipped Failed-Test ? .

® Catalogue Anti-Pattern 3 O/ . (® Project © Original
Of Anti-Patterns Candidates @ Anti-Pattern . Reports Developers :
3 Detectors :

Validation 3

Example Other

3 i Source-Code _, o ..\ Reports Developers ;

@ Survey Study 1 -~ Repository @ BuildLogs ' (® Survey Study 2 -

Fig. 1: Overview over the Different Parts of This Paper

feedback in all sections. Figure 2 includes an excerpt of our
survey; a complete export is available on our artifact page [30].

Advertisement. We advertised the survey on social media
(i.e., TWITTER, REDDIT sub-forums dedicated to DEVOPS and
CONTINUOUS INTEGRATION), in Cl-related newsletters, and by
sending it to personal contacts. We promised to raffle off two
vouchers to reward participation.

Demographics. In the end, 605 developers opened our ques-
tionnaire, out of which 144 finished all questions, leaving
us with a completion rate of 23.8%. We included three
control questions in the survey that asked about the proficiency
in programming, CI theory, and CI practice. We excluded
responses from participants that reported less than moderate
experience in any of these questions. After the filtering,
we ended up with 124 qualified participants. Most of our
participants (79.8%) report that they got in contact with CI
in an industry position. 68% of our participants hold an
academic degree related to computer science (32.3% Bachelor,
28.2% Master, 8% Ph.D.). The large majority reports a high
level of experience in programming (76.6%), CI theory (69.4%),
and CI practice (59.7%).

Data-Analysis Methodology. To analyze the Likert-scale an-
swers, we create asymmetric stacked bar charts with proportions
for various agreement levels that are shown in Figure 3. We
performed card sorting to analyze the open answers [25]. We
started by splitting the answers into individual statements,
grouped common arguments, and finally organized these
arguments hierarchically.

Problem Statement

o CI best-practices are no strict rules, they can be adapted for a project.
e One can deviate from CI best-practices unintentionally.
o The benefit of using CI diminishes, the more best-practice deviations exist.

Relevance and Sufficiency of Smell Detection (for all anti-patterns)

o Anti-pattern X is relevant in a typical CI pipeline.
o The detection strategy is sufficient to identify occurrences of an anti-pattern.

General Validation of Idea
o I would integrate such a tool in my CI pipeline.

Fig. 2: Questions of First Survey (Shortened)

Problem Statement. The survey results show that deviations
from CI best practices happen in practice. Most participants
state that a project can intentionally deviate from CI best-
practices (67.7%) and even more participants agree that a
deviation might be unintentional (77.3%). The majority of
participants (77.4%) agree that the CI benefits diminish when
many best-practice deviations exist. These answers confirm our
conjecture that CI decay is a relevant problem in practice.

Relevance & Detection. Our survey contains questions about
the practical relevance of each anti-pattern and we received a
very high level of agreement. Six detectors have an agreement
of >75% and other two have an agreement of >60%. The
only notable exception is Email-Only Notifications for which
30.3% participants disagree with its relevance. These results
confirm that we had pre-selected relevant anti-patterns.

We asked our participants to rate the sufficiency of our
detection strategy for all anti-patterns. Also here, the agreement
is very high (8, >60%, 2, >75%), with the notable exception
being Late Merging (54.1%), for which many participants
point out specific ways to use version control that would have
not been detected. The high agreement makes us confident
that we have successfully identified the “common case” for
our detection. However, several people made use of the open
question for each anti-pattern to provide feedback on the
detection strategies, such as pointing out alternate development
processes that we did not cover so far.

Revised Detection Strategies. On average, 43 participants
answered the open question about each anti-pattern and we
carefully analyzed these answers to revise or exclude some
detectors. Next, we discuss the results of our open card sorting
and how we revised our detection strategies based on the
suggestions from the survey.

Late Merging & Aged Branches Many participants point out
similarities between both anti-patterns. Also, the suggestions
for improving the detection strategies overlap in our answers.
As a result, we decided to merge both anti-patterns. The
feedback contains valuable suggestions to improve our
simplistic detection strategies: 1) a GIT-based detector must
support both merge and rebase commands; 2) a feature

Bl Strongly Disagree

Problem: Cl is not strict 4

Problem: Unintentional deviation 4
Problem: CI decays

Late Merging: Relevance

Late Merging: Detection

Aged Branches: Relevance

Aged Branches: Detection

Broken Release Branch: Relevance 1
Broken Release Branch: Detection -
Bloated Repo: Relevance

Disagree

Neutral m Agree
HE |
[BEE 77
0.3 e A
[R 5]
| DRk]
(B 7o)
.
[EEE _87.51
5.0/ I
2]

I Strongly Agree

124 answers
123 answers
124 answers
124 answers
122 answers
124 answers
122 answers
123 answers
120 answers
123 answers

122 answers
124 answers
121 answers
123 answers
122 answers
122 answers
123 answers
124 answers
124 answers
2[R EECEREY | 124 answers
124 answers
124 answers

Bloated Repo: Detection -
Scheduled Builds: Relevance 5
Scheduled Builds: Detection -
Absent Feedback: Relevance
Absent Feedback: Detection q

Email-Only: Relevance - |

Email-Only: Detection -

Skip Failed Tests: Relevance

Skip Failed Tests: Detection

Slow Build: Relevance -

Slow Build: Detection q

| would use summaries in my Cl process

Question

Level of Agreement

Fig. 3: Likert-Scale Answers to First Survey

branch should not be considered aged when no changes in
other branches occur; 3) the age of a branch is irrelevant, as
long as it is frequently synced with the master; 4) branches
marked with release names, e.g., rel-1.2. 3, should not
be reported; 5) projects can release multiple times per day, so
open branches frequently span several releases. Overall, we
decided to revise our strategy to incorporate these suggestions
and keep the Late Merging anti-pattern.

Broken Release Branch The survey participants broadly agree
to the detection of the anti-pattern (87.8%). Several partic-
ipants point out that a broken release branch should never
happen, so everybody would be aware of it even without
notification. In addition, we got some minor comments on
our detection strategy, e.g., 1) providing an overview for
incidents over time, 2) avoiding to consider the average time
between commits as the commit frequency varies a lot. We
decided to incorporate these suggestions into our detection
strategy and to keep Broken Release Branch.

Bloated Repository Despite the high agreement among the
participants (68.8%), we received several comments against
the detection of this anti-pattern: 1) offending files are
language and project specific, but can be easily fixed with
a well-defined .gitignore file; 2) this anti-pattern is not
CI specific; 3) several participants mention good reasons
to include binaries, e.g., the availability, reliability, and
convenience of provisioning sources. We agreed with these
concerns and eliminated the anti-pattern candidate.

Scheduled Builds Despite a high agreement with the proposed
detection strategy (64.5%), many survey participants point out
good reasons for scheduled builds. These include, for example,
running extensive performance tests, Ul tests, or frequently
asserting the compatibility with a changing environment.
We could not distinguish between good and bad cases of
scheduled builds, so we decided to drop this candidate.

Absent Feedback & Email-Only Notifications The agreement
rate to the detection strategy of both anti-patterns is high
(69.6% and 61.0% respectively). However, many participants
state doubts regarding the detection feasibility: 1) feedback
might be delivered in ways that cannot be automatically

checked, e.g., physical build lights; 2) it is impossible
to validate successful notification delivery; 3) the best
notification channel is a personal preference. We agreed with
these concerns and decided to drop both candidates.

Skip Failed Tests The detection strategy for this anti-pattern
has a very high agreement rate (75.8%), but several partici-
pants mention good reasons to remove a test, e.g., removal of
functionality. We believe that in these scenarios tests would
either be removed together with production code, or the build
would fail due to a compilation error. Both scenarios would
not trigger our detector. Other participants point out that
removing, commenting, and skipping tests have the same
effect, so we should cover all of these cases. Apart from this,
we did not receive further suggestions for improvement. We
decided to keep this anti-pattern.

Slow Build Most participants agree with the detection strategy
for this anti-pattern (81.4%). The main concern mentioned
by several participants is the threshold that is used to identify
slow builds. At the same time, previous work mention that a
slow creep is the worst-case scenario for build times [11].
We kept this anti-pattern.

Overall, we received valuable feedback on all presented anti-
pattern candidates. Following the suggestions of our partici-
pants, we dropped Schedule Builds, Absent Feedback, Email-
Only Notifications, and Bloated Repository for the reasons
mentioned above. We revised the detection strategies of the
remaining anti-patterns Late Merging (which is now merged
with Aged Branches), Slow Build, Broken Release Branch, and
Skip Failed Test and kept them for the remainder of the paper.

General Feedback. The last part of the survey contains a
general open question to provide feedback on the whole Cl-
ODOR idea, which was filled by all 124 participants. Most of
them (30%) mention CI-ODOR as useful for CI training and
for learning to adopt CI best practices rigorously also when
developers are not familiar with CI yet [12]. Furthermore,
13% of our participants believe that CI-ODOR can reduce
maintenance effort and improve reliability on the CI pipeline.
As stated by 18%, some anti-patterns might go unnoticed
without such a tool, which can be useful to monitor the CI
health and take countermeasures when needed. 12% of the
participants suggest to have highly-configurable detectors to
support team/organization specifics in CI pipelines. Finally,
18% of the participants are quite skeptical about our detectors.
As it happens with many quality check tools [33], their main
concern is the likelihood of generating several false positives.

IV. REPORTING CI PRACTICES

To implement a proof-of-concept of CI-ODOR, our CI anti-
pattern detector, we first chose supported technologies. We
analyzed whether the perceived relevance of each smell varies
across people working on different programming languages.
Based on responses to our previous survey, a Kruskal-Wallis test
[24] did not indicate, for any of the anti-patterns, a statistically
significant difference among the four main programming
languages the study participants reported as their main working

» plLoshar pljs plpn plpython plriby plgo plbasn

False Fase Fase Fase Fase Fake Fake

Fase Fase Fase Fase

Build Logs
¥ True False False True
& Repository

Tue Fase Fase Fase

Fase Twe Fase Fase

Cl Report

Cl-related Metrics

©

Fig. 4: CI-Reporting Process in CI-ODOR

Detectors

language (p-value > 0.05), i.e., Java, JavaScript, Python, and
Ruby. Thus, based on their popularity, we decided to focus
on JAVA and MAVEN as our target programming language and
respective build tool. To lower the likelihood of build-log
deletion [29], we mined build data from TRAVISCI [27] and
consequently repository data from GITHUB [7].

The overview of our reporting process is shown in Fig. 4.
Given the TRAVISCI build logs of a particular project, we
first extract Cl-related metrics for every build (1). We then run
detectors on top of this raw data (2) to derive additional metrics
that either indicate the presence of a phenomenon (e.g., a test
has been removed) or a change in a metric (e.g., a change in
build time). From all metrics, we provide a reporting utility
that visualizes several dimensions of the CI process, Figure 5
shows screenshots for the four different summaries that we
include in our reports. Next, we discuss the details of the
detection strategies for the four anti-patterns.

A. Slow Build

Figure 5a shows an example summary of Slow Build that
contains the following items. 1) A bar chart highlighting
the average build duration per week over the considered
time window (3 months in our example and in the study
of Section V). 2) A linear regression trend line, along with
a textual message highlighting whether the build time is
increasing, stable, or decreasing over the observed period.
We also experimented with the use of kernel smoothing, but
the resulting trend did not drastically change, so we favored
simplicity here. 3) A list of possible warnings for the last builds
of each branch. Specifically, we report: (i) a Medium-severity
warning when a build was slower than 75% of more builds on
the master branch, i.e., it is in the fourth quartile; (ii) a High-
severity warning when the build duration is an outlier with
respect to the distribution of master builds in the observed time
window. We used the box and whisker plot outlier definition
[28], i.e., a build is an outlier when its duration is greater than
3Q + 1.5 - IQR, where 3(Q is the third quartile and IQR the
inter-quartile difference.

In some cases, and this is especially true for the considered
CI infrastructure (i.e.,TRAVIS-CI), the build time might depend
on many external factors, including the priority given to the
project (in TRAVIS-CI projects with a free account get a low
priority). However, we do not consider this a threat in our

measurements, because even in these cases CI-ODOR would
highlight the need for using a better infrastructure.

B. Skip Failed Tests

We first extract the executions of all JUNIT tests and their
outcomes from each build log, i.e., the containing MAVEN
module, the test suite name, the number of executed tests, the
number of failed tests (incl. test errors), and the number of
skipped test cases. We then derive a set of test-related CI metrics
by matching tests run in jobs (with the same id) belonging
to consecutive builds on the same branch. Specifically, we
compute Agyps, i.€., @ change in the number of executed tests,
ABreaks» 1.€., a change in the number of failed tests, and Agyipped,
i.e., a change in the number of skipped tests. To mark a test as
skipped (in the next build), we evaluate whether the following
expression is true:

(ABreaks < 0) A (ARuns <0V ASkipped > 0)

Fig. 5b shows an example summary that contains: 1) a bar
chart depicting the number of builds per month affected by
skip failed tests (note that we adopted a granularity of one
month for this smell, due to its lower frequency than Slow
Build); 2) for each build where such an incident occurred, the
list of test suites affected by the skip failed tests issue.

C. Broken Release Branch

To detect a broken release branch, we compute the final
status of each master branch build, i.e., its build status, in
the build history of a project. In particular, a build is errored
when the install phase, which retrieves and installs the needed
dependencies, returns a non-zero exit code. Instead, it is failed
when any subsequent phase returns a non-zero exit code. We
determine the final status of each build and consider all the
errored and failed builds as broken. Fig. 5¢c shows an example
summary that reports: 1) the average time a release branch
remains broken over the observed time period, considering
consecutive broken builds; 2) a bar chart showing, for each
week of the observed period, the number of broken builds; 3) a
linear-regression line and a textual message highlighting the
presence of an increasing or decreasing trend, if any.

D. Late Merging

We consider four different metrics about version control
that help us to identify the Late Merging anti-pattern: Missed
Activity, Branch Deviation, Branch Activity, and Branch Age.
In the following, we introduce the different metrics using the
example history of Fig. 6, which contains a master branch
and £1 with several merge commits.

Missed Activity (tya). Quantifies the amount of activity on
other branches of the same repository since the current branch
was last synced with the master, tma = tLo — tsync, Where
t10 is the date of the last commit on other branches and Zgyy is
the date of the last merge commit. If tyj4 grows, the potential
integration effort increases. To allow for more specific warnings
in the summary, we break this metric further down into its two
components Branch Deviation and Unsynced Activity.

/" Uptrend: Over the last 90 days, your build duration increased by 51.4%.
Average build duration for master branch

1000 4

Avg. build duration [s]
N B2
s 2 8
1 1

]

8-05-14
8-05-21
8-05-28
8-08-04
8-07-16
8-07-23
8-07-30
8-08-06
8-08-13

20
20
20
20
20
2

2

2

2

20
20
20
20
20

Week (starting date)
Recent slow builds:

Severity Branch Date Build Duration Description
[High] master Aug 10, 414698176 24.7 minutes Slower than 98.35% of your
21:10:47 builds on master.

featureX July 17, 414698172 16.1 minutes

9:27:18

Slower than 76.3% of your
builds on master.

(a) Slow Build

In the last 80 days, your master branch was broken 36 times and

it took on average 14.8 hours to fix it again.

“» Downtrend: Over the last 90 days, the number of broken release
builds decreased by 93.1%.

Number of broken release builds per week

Number of broken release builds

o [S] =
1 1

- @ g ~ 0 O &N & © O O WU o
F 8§y 2888 28857
W oW ®w W W W o~ e S W
g3 25 235 33 35 55 3
@ @ W @ W W O ®© W W W W @
o o o o o o o o o o o o 9
NN N N NN NN N NN NN

Week (starting date)

(c) Broken Release Branch

Instead of fixing a failed test, we found 6 cases over the last 6 months, in
which the failing test has simply been ignored.

of builds with skip tests per month
3.0

of affected builds

02-2018
03-2018
04-2018
05-2018
06-2018
07-2018

08-2018

=
g
2
5

Recent cases, in which previously failing tests have been ignored:

Date Build Test Suite with Skipped Test Cases

2018-07-20 20:24:10 406408692 org.openmrs.api.PatientServiceTest

2018-04-18 02:07:52 368440156 org.openmrs.api.db.PatientDAOTest

2018-03-07 12:10:22 350286288 org.openmrs.api.PatientServiceTest

(b) Skip Failed Tests

E*D In your project, branches are typically synced with master every 2.8 days.
However, branch featureX was last synced with master on Nov 23, 10:25 and
branch master has commits that are 19 days newer than that.

Your latest commits were performed on branch featureX. While you
typically merge branches within 1.8 days in your project, branch featureY was
last changed 3.7 days ago and has not been merged into featureX yet.

G In your project, branches typically do not run in parallel for more than 2.6
weeks. However, work on branch featureX started 5.1 weeks ago and the
branch has not been synchronized with its parent since.

[E*D Your feature branches are typically open for 2.3 weeks, however, you
have been working on featureX for 7.3 weeks now.

Tip: Make sure that you do not forget to sync these branches from time to time.
Tip: Frequently synchronized branches are easier to integrate.

Tip: Break features into smaller tasks to finish them faster.

(d) Late Merging

Fig. 5: Example Summaries of the Four Anti-Pattern Detectors

Branch Deviation (tgp). Quantifies the amount of activity in
other branches since the last change in the current branch,
tep = tLo — tic, where t1 o is the last commit date on other

branches and t; ¢ is the last commit date on the current branch.

If tgp grows, other branches deviate from the current branch,
which again increases the potential integration effort. Negative

values mean that the current branch is ahead of other branches.

Unsynced Activity (tys). Quantifies the amount of activity
in the current branch since the last sync with the master,
tya = tLc — tsync- A growing tya indicates a deviation from

the master, and that the potential integration effort increases.

Total Activity (t74). Quantifies the total amount of activity on
a branch since its creation, tta = tL.c — trork, Where trox 1S
the date of the branch creation. Feature branches should be
merged back into the master timely, a growing t1s indicates
a long-running deviation from the master.

When Cl-ODOR raises a warning. For each of the four metrics
mentioned above, we compare their values with distributions
in recent history and consider a Medium-severity warning if a

value is above the third quartile, a High-severity warning if it is
an outlier (using a similar approach to the one in Section IV-A).

History Rewrite. GIT history can be rewritten, which makes
it harder to analyze [2]. We include a second branch £2 in
our example to illustrate our handling. We detect rebasing in
build logs by matching the meta-data of a commit that is built
(id, time, committer, message) to meta-data of previous builds
on the same branch. When all meta-data but the id can be
matched to a previous commit, we mark this as a rebasing.
In the example, the rebasing of (4) triggers a new build of
(4°) at the date tsync; trork is the date at which the first build
of this branch was triggered. Now all derived metrics can be
calculated as for the previous merge case.

Improved Detection Strategies. We consider two suggested
improvements for the detection strategy. First, in addition to
analyzing the build logs, we also analyze the current repository
snapshot for every build to identify deleted branches that do not
need to be reported anymore. Second, we filter out branches
that mark releases, e.g., rel-1.2.

Fork

= Timeline for f2

£
s
o ®
= Timeline for f1
Fork Sync LC LO

Missed Activity —

Branch Deviation [

Unsynced Activity —/1

Total Activity []

Fig. 6: Example of Different Late Merging Scenarios

V. EMPIRICAL ASSESSMENT OF THE CI-ODOR SUMMARIES

We conducted a study on open source software projects to
assess the accuracy and usefulness of our reporting. We first
performed a selection of candidate projects. After detecting anti-
patterns on such projects, we sent the generated summaries to
the mailing lists/forums of said projects and we asked original
developers to fill out a survey. In addition, we also asked
participants to the study of Section III to answer the part of
the survey concerning the usefulness of the summaries and of
CI-ODOR in general.

A. Projects Selection

We used data from GHTORRENT [8] (version Apr-01-2018)
to identify suitable projects for our study. We filtered projects
according to the following criteria: they are written in JAVA,
have not been deleted, have at least one commit in 2018, have
at least two project members, are no forks, and have been
forked at least once. This initial filtering left us with a set of
2,155 project candidates.

To find projects in this set that perform CI and that are
compatible with CI-ODOR, we required the existence of
configuration files for MAVEN (pom.xml) and TRAVISCI
(.travis.yml), which further reduced our candidates to
467 projects. We then excluded projects with less than five
project members to ensure a certain community size.

We then extracted build logs from TRAVISCI for the remaining
103 project candidates. For some projects, we could not access
the logs or only found a very limited number. As CI-ODOR is
based on historical analyses and to ensure a minimum level of
activity, we excluded the first quartile from the distribution of
available build logs for these projects, which left us with 70
candidates that have had at least 54 builds in 2018.

As the final step, we manually identified the main communi-
cation channels for all remaining projects, because we need
to contact the corresponding developers. Keeping only these
projects, for which we found a public mailing list or could join
a closed group channel (such as GOOGLE GROUPS or SLACK),
we ended up with a final selection of 36 projects for the
validation. These projects cover various domains like business-
oriented software, image processing, development tools and
have a diverse sizes (from 2 thousand to 12 million LOC),
ages (from 457 to 25 thousand commits), activity levels (from

TABLE I: Detected CI Anti-patterns over the 36 Analyzed

Projects
SLOW BUILD
Proj. with incr. trend 20
Proj. with decr. trend 11
Proj. with stable trend 5
Overall # of medium sev. warnings 4,634
Overall # of high sev. warnings 229
Min 1Q Median 3Q Max
% of medium sev. warn. 0% 16.80% 25.67% 35.76% 93.87%
% of high sev. warn. 0% 0.44% 1.20% 2.95% 26.73%
BROKEN RELEASE BRANCH
Affected projects 36
Total # of incidents 3,423/18,474
Proj. with incr. trend 16
Proj. with decr. trend 19
Min 1Q Median 3Q Max
% of incidents 0.31% 6.46% 11.51% 28.69% 51.10%
Fixing time 5418m 944h 17.07h 3.10d 6.04 w
SKIP FAILED TESTS
Affected projects 15
Overall # of detected incidents 56
Min 1Q Median 3Q Max
% of affected builds 0.17% 0.24% 0.65% 1.35% 2.47%
LATE MERGING
Affected projects 35
of medium severity warnings 63
of high severity warnings 115
Min 1Q Median 3Q Max
of affected branches 1 1.5 2 4 20
% of affected branches 25.00% 46.28% 66.67% 100.00% 100.00%

60 to 2 thousand builds), team sizes (from 7 to 385 members
with a median number of 60.5), and popularity (from 15 to 26
thousand GITHUB stars). The full list of these projects on the
artifact page of this paper [30].

B. Quantification of the Phenomenon

This section provides a short overview of the anti-pattern
instances and CI decay for the 36 projects for which we asked
for feedback, with the goal of highlighting the magnitude of
the investigated phenomenon. The analysis concerns a total of
18,474 builds from January 1, 2018 to August 15, 2018. This
results in 8,520 detected incidents, 3,823 if we consider only
high-severity warnings for Slow Build and Late Merging.

Concerning Slow Build, 20 projects exhibit an increasing
trend in build time, whereas only 11 had a decrease, and 5 were
stable. The percentage of cases in which a medium-severity
warning could be generated is fairly high, with a median of
25% of the builds and a maximum (authorjapps/zerocode),
where nearly all builds (93%) are slower than the third quartile
of the previous time window. This indicates a slow increase
in the build time, which can be normal project evolution. A
single incident might not be worrisome per se, so we visualize
the overall trend (see Fig. 5a). High-severity warnings (i.e.,
outliers) are not particularly frequent (75% of the projects have
less than 3% of their builds exhibiting this warning), indicating
that while the Slow Build phenomenon is quite pervasive, in
most cases it manifests quite slowly over time.

Even though working on master is discouraged and a pull
request paradigm has been advocated [9], we find Broken
Release Branch in all projects: a median of 11.51% of the
master builds are broken. At the same time, our data indicates
that breaks are typically fixed within one day (i.e., the median

Concrete Questions About a Report (for original developers)
o The report is useful for my project and contains relevant warnings.
o I learned something about my project that I have not been aware of before.
o The results made me curious and I plan to investigate the different warnings.
General Questions About Usefulness of Examples
Slow Build, Failed-Test Skipping, Late Merging:
o This summary helps me to identify anti-pattern X.
o I know how to address the different warnings about anti-pattern X.
o High-severity warnings about anti-pattern X should fail the build.
Broken Release Branch:
o This summary improves awareness about...
— ... the frequency of release-branch failures.
— ... the time it takes to fix release-branch failures.
o I know how to improve the trend of this summary in the future.
General Validation of Tool and Idea
The CI report provides information that is not available in any other tool.
The reports provide a good overview of the CI practices used in a project.

Frequent reports would have a positive influence on CI practices.

L]
L]
L]
o I would like to integrate such a reporting in my own CI pipeline.

Fig. 7: Questions of Second Survey (Shortened)

is about 17h), even though the median fix time is above 3
days for the upper quartile of projects. We found one project
(rackerlabs/blueflood) for which the master branch remained
broken on average for over 6 weeks.

Skip Failed Test is the least prominent problem in the
analyzed project histories. We found instances of this smell for
15 out of the 36 projects, in a total of 56 builds. The percentage
of builds affected by this anti-pattern is below 2.5%. While
instances of the anti-pattern can be found, developers seem to
take failed tests seriously and do not skip them.

Concerning Late Merging, the anti-pattern affected nearly
all projects (35 out of 36), and we raised a total of 115 high
severity warnings, and 63 medium severity warnings. The
median number of branches affected by a warning is 2, and
only in one project Evolveum/midpoint the problem affected 20
branches, although the median percentage of affected branches
is quite substantial (66.67%).

C. Survey on Generated Reports

We have conducted a second survey study to validate the
usefulness of our generated reports.

Survey Design. To perform the study, we designed a question-
naire composed of a demographics section plus three sections,
each one comprising Likert-scale questions and a field for open
comments. In the first section, we asked original developers
about the report that we have generated for their project. This
part was automatically skipped for developers that have not
seen a report. In the second section, we introduced the four
different detector categories through an exemplary screenshot.
We then ask questions about the understandability of the
summary, its actionability, and whether detected deviations
should fail the build (if applicable). A final section of the
survey contained general questions about the usefulness of
the presented summaries. An excerpt (shortened questions, no
demographics) of the survey questionnaire (the complete one
is on our artifact page [30]), is depicted in Fig. 7.

Il Strongly Disagree Disagree Neutral I Strongly Agree

B Agree

13 answers
13 answers
13 answers
53 answers
51 answers
52 answers
45 answers
43 answers
45 answers
44 answers
44 answers
44 answers
| |44 answers
44 answers
44 answers
41 answers
43 answers
43 answers
42 answers

Report is useful/relevant

I learned from report

Report made me curious

Slow Build: Appropriate Identification

Slow Build: Know how to address

Slow Build: Should Fail the Build

Skip Failed Tests: Appropriate Identification y
Skip Failed Tests: Know how to address R5.
Skip Failed Tests: Should Fail the Build |
Late Merging: Appropriate Identification
Late Merging: Know how to address

Late Merging: Should Fail the Build

Broken Rel. Branch: Frequency Awareness
Broken Rel. Branch: Time-to-Fix Awareness
Broken Rel. Branch: | know how to improve I
Info is unavailable in other tools I

The reports provide a good overview

| expect a positive effect

| would integrate Cl-Odor |

Question

Level of Agreement

Fig. 8: Likert-Scale Answers to Second Survey

Advertisement. We had two separate advertisement strategies
to find study participants. To find original developers, we
have created up-to-date summaries for our selected target
projects and posted them on their corresponding communication
channels, asking project members for feedback. At the same
time, to receive enough general feedback about our summaries,
we advertised the survey on TWITTER, REDDIT (targeting the
same sub-forums of the previous survey) and we also sent a
follow-up email to every participant of our first survey that
allowed us to contact her again.

Demographics. In the end, 113 developers opened our survey,
out of which 50 answered all questions (11 original and 39
general developers), resulting in a completion rate of 44.2%.
We cannot calculate the return rate for the general population,
but we know that we sent the reports out to 36 projects and we
heard back from 7 projects (return rate of 19%). We included
the control questions from our first survey again and excluded
from the analysis 7 participants that indicated low experience.
To increase the number of answers, we also kept partial answers.
In total, we considered 42 answers as valid, out of which 13
were given by original developers.

Data-Analysis Methodology. As for the Likert-scale answers
in the first survey (see Section III), we present the results
in asymmetric stacked bar charts (Fig. 8). We have received
considerably less open answers, so we did not open-code all
answers, but we will rather discuss the main points raised.

Report Rating. When we asked original developers about the
usefulness of the reports for their projects, almost two-thirds
(61.6%) of them agree that the report was useful and contained
relevant information. We analyzed the open answers of the
23.1% that disagree and found that most either complain about
project specifics that are not considered in the reports or about
a bug that we had in the beginning. We got mixed answers
about the novelty of information, the same amount (38.5%)
of agreements and disagreements. This could be a sign that
experienced developers are aware of these deviations in their
project, but we did not have a question in the survey to back up
this conjecture. We got a similar result when we asked about
their reaction. 38.5% of original developers agree that the report
made them curious and that they plan an investigation. Overall,

we see these results as a sign that the reports are insightful for
developers and introduce a minimal overhead.

Identification and Awareness. Across all anti-pattern detectors,
the large majority (Slow Build: 81.1%, Skip Failed Tests: 84.4%,
Late Merging: 75%, Broken Release Branch: 86.4% and 72.7%)
of participants agree that the summaries are useful for anti-
patterns identification and for increased awareness respectively.
This makes us confident that we opted for the right statistics
and picked good visualization strategies.

Actionability. The majority of participants agree that they know
how to address the warnings for Skip Failed Tests (60.5%) and
Late Merging (61.4%), which is unsurprising because the report
points to concrete problems to fix. However, a considerable
number of participants disagree for Broken Release Branch
(20.5%) and especially for Slow Build (25.5%). Given the high
agreement on Identification and Awareness, we think that the
disagreement on actionability is a sign that the report unveils
the problem, but that deriving a fix is harder because it affects
the process and team practices.

On Using CI-ODOR to Fail Builds. The majority of participants
disagree with the idea that a build should fail when it is slow
(59.6%) or when signs of a Late Merging exist (65.9%) and
only a small group agrees with this idea (25% and 20.4%).
Although build failures provide feedback about issues in newly
committed code such as bugs [1] or poor quality [34], our
participants typically do not want detected anti-patterns in the
CI process to break the build. The only exception is represented
by Skip Failed Tests, where 53.3% are in favor of failing the
build. From the open answers in the first survey, we know that
some developers see this anti-pattern as a serious problem.

General Validation. The last part of the survey contained several
statements about the validity of the reports and the general
idea. 58.2% of the participants agree that the summaries are
useful and that they contain relevant information for the project.
67.4% expect a positive effect from integrating our tool to their
CI discipline and 54.7% are willing to integrate CI-ODOR in
their pipeline.

VI. DISCUSSION

This paper has introduced the idea that monitoring the CI
process might be useful to discover the decay of best practices
over time. Building a proof-of-concept implementation, Cl-
ODOR, and surveying developers about the idea and our tool, we
gained several valuable insights into the perceived or expected
benefits of such an approach and actionable findings that have
an impact on future work.

Positive Effect & Awareness. The first survey has shown us
that anti-patterns are a relevant problem for CI. Best practices
are not always being followed, and can even be accidentally
broken. Almost two-thirds of the participants to the second
survey expect that using such a reporting frequently would
have a positive influence on their CI discipline.

Transparency. The study participants suggested that the tool
should make the detection strategy fully transparent to
increase the trust and acceptance among its users. We only

briefly described the detection rules in the summary pages,
to allow study participants performing their task efficiently,
but a production-ready tool could involve a fully-fledged
description of the detectors.

Learnability. Participants of our first survey confirmed the
usefulness of the proposed CI monitoring, especially in the
early stages of CI adoption or to train project newcomers.
Nearly half of the participants of our second survey were
already aware of most of the highlight problems, but it is
important to remark that our analysis excluded inexperienced
developers about CI. The potential of a regular CI report can
be seen by the 38.5% of participants that got curious from
the report and started to investigate the reported issues.

Configurability. Our first survey indicated that since projects
are very different, developers may want the reports and the
detection thresholds to be customized based on their needs.
While half of our participants are willing to integrate an
anti-pattern detector in their pipeline, this percentage could
increase by enhancing usability and reconfigurability, e.g.,
giving the freedom to enable/disable specific detectors or
configure thresholds.

Ultimately, the important question is how useful a concrete
report is, therefore we have asked original developers to
rate the report that we have generated for their project. The
low disagreement rate in this question (23%) and the high
agreement for the integration in their own pipeline (55%)
make us confident that the described reporting is a promising
tool for software development teams that follow CI principles.

A. Threats to Validity

Threats to construct validity are related to the relationship
between theory and observations. They mainly concern:

Implementation Bugs. Our implementation might contain bugs
that cause the tool to report false positives or false negatives.
While the absence of a labeled dataset made it hard to evaluate
the detection strategies, we mitigated this threat through a
manual review of a sample of the generated results and
through a pilot study conducted before the second survey.

Build Cleanup. TRAVIS-CI allows projects to delete their old
build logs, e.g., as part of regular maintenance activities, and
this could affect the historical analyses our tool performs.
However, previous work has shown that such deletions are
unlikely [29], so we do not expect that our results are
significantly affected.

Threats to internal validity are related to confounding factors
internal to our study. In particular, the validation of our
summaries could be affected by our selection of projects. We
have mitigated this by selecting a diverse set of projects from
GITHUB and ensured a certain level of maturity by considering
the popularity of a project. Unfortunately, our data source,
GHTORRENT, only approximates the number of committers in
a project, which might result in a less diverse project sample.

Threats to external validity concern the work’s generalizabil-
ity and are related to:

Sample Size and Diversity. Our evaluation would surely bene-
fit from the analysis of a larger sample of projects, as well
as of the participation of more developers. In this work, the
analysis of projects was limited to the ones for which we ask
for feedback, and the technological limitations (Java, MAVEN)
do not affect the relevance of the detected anti-patterns, as
explained in Section IV.

Irrelevant Selection of Anti-Patterns. It is possible that our
work missed anti-patterns that are highly-relevant for de-
velopers. We have reduced this threat through a first internal
pre-selection of supported anti-patterns, which we validated
in our first survey. Also, it is important to remark that it
is not our goal to provide a comprehensive detector for all
anti-patterns proposed by Duvall [4], but rather to propose
and validate the idea — and its implementation in CI-ODOR
— of reporting CI decay to developers.

B. Future Work

Add Additional Detectors. While, as stated above, we vali-
dated the general CI-ODOR perspective and four relevant
anti-patterns, our future work primarily goes into providing
additional detectors for new anti-patterns.

Consider More Contextual Information. Right now, we only
leverage information from the TRAVIS-CI logs and basic
information from the code repositories. However, future work
would integrate additional process-related metrics derived
from other sources like bug trackers, task management
systems, or communication platforms.

Support More Project-Specific Policies. A Cl-supporting tool
with smart capabilities could learn the problems/warnings
in which developers are interested in, and personalize the
recommendation consequently.

Derive Project-Specific Thresholds. While we considered
thresholds based on consolidated statistics, future work could
also consider adaptive, project-specific threshold learning
and calibration.

VII. RELATED WORK

Researchers have investigated the CI adoption [12], [14],
[15], [26], finding, in particular, numerous barriers for CI
adoption [11], e.g., related to assurance, security, and flexibility
in performing tasks such as source code debugging. In such
a context, approaches like CI-ODOR can be used to help
developers understanding when they are not using CI properly.

Previous work has investigated best practices while using
CI [35]. In their landmark work, Duvall et al. [3] identified
principles and key practices of CI but also pointed out the
risks deriving from the misuse of CI. Furthermore, Humble
and Farley [13] performed a broader study, analyzing the key
ingredients of a Continuous Delivery (CD) pipeline, as well
as anti-patterns to be avoided. Such anti-patterns were better
explained in the follow-up work by Duvall [4] where all the
practices contained in books about CI [3] and CD [13] were
condensed in a catalog of bad/good practices regarding the
adoption of the whole CD pipeline with specific focus on the
core part of CD, i.e., CI. Such a catalog is a comprehensive

set of 50 patterns and anti-patterns regarding several phases or
relevant topics in the CI/CD process. As explained in Section
III, Duvall’s catalog constitutes the inception of our work.

One of the best practices associated with CI is the use of
Infrastructure as Code (IaC) in order to implement the desired
pipeline. Sharma et al., leveraged best practices associated
with code quality management to assess configuration code
quality and proposed a catalog of 13 implementation and 11
design configuration smells [23]. Recent work by Gallaba et
al., [6] also investigated configuration smells and based on rules
provided by linters (e.g., TRAVISLINT) they measure smells and
derive automated fixes for them. Our smells have a different
focus, because we look at process-related smells rather than at
configuration issues.

Rahman and Williams [21], [20] proposed a text-mining
approach to identify defective [aC scripts, focusing on security
and privacy issues, e.g., related to file permissions or user
accounts. Their work is complementary to ours as it deals with
a very specific category of problems.

Studying and proposing automated fixed for build failures
has also been a topic of investigation. Previous work has
investigated the phenomenon of build failures [22], [32] from
different perspectives, such as testing [1] and code analysis [34].
Also, researchers have proposed fixes for some kinds of build
failures, e.g., broken dependencies related [16], or proposed
approaches to augment the comprehensibility of build logs
while inspecting the cause of such failures [31]. Our CI smells
detector increases the awareness of developers about problems
degrading their current CI practice. Given that our smells
are just symptoms of bad practices we do not provide any
automated fix for such issues but we let developers decide
whether taking action or not.

VIII. SUMMARY

This paper investigates the phenomenon that CI development
practices decay over time. We survey 124 developers (80%
from industry) to understand the problem. Beyond agreeing
on the problem relevance, our respondents also confirm that
CI anti-patterns are a major cause for the degradation of CI
processes. To support developers in preventing CI pipeline from
deteriorating we propose CIl-ODOR, an automated reporting
tool of CI anti-patterns. We validate our approach, CI-ODOR,
by surveying 13 original developers about summaries for
their projects, and by asking another 42 developers about the
general usefulness. The results show that CI-ODOR increases
the awareness about CI anti-patterns, is perceived as useful,
and that developers would integrate it into their pipeline.

IX. ACKNOWLEDGMENTS

We would like to thank all the study participants. C. Vassallo
and H. C. Gall acknowledge the support of the Swiss National
Science Foundation for their project SURF-MobileAppsData
(SNF Project No. 200021-166275). C. Vassallo also acknowl-
edges the student sponsoring support by CHOOSE, the Swiss
Group for Software Engineering.

[1]

[2

—

[3

[t}

[4]

[5]

[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

M. Beller, G. Gousios, and A. Zaidman. Oops, my tests broke the build:
an explorative analysis of travis CI with GitHub. In Proceedings of the
14th International Conference on Mining Software Repositories, MSR
2017, Buenos Aires, Argentina, May 20-28, 2017, pages 356-367, 2017.
C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu. The promises and perils of mining git. In 2009 6th IEEE
International Working Conference on Mining Software Repositories, pages
1-10, May 2009.

P. Duvall, S. M. Matyas, and A. Glover. Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-Wesley, 2007.
P. M. Duvall. Continuous delivery: Patterns and antipatterns in the soft-
ware life cycle - https://dzone.com/refcardz/continuous-delivery- patterns.
DZone refcard #145, 2011.

M. Fowler and K. Beck. Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

K. Gallaba and S. McIntosh. Use and misuse of continuous integration
features: An empirical study of projects that (mis)use Travis CI. I[EEE
Transactions on Software Engineering, (to appear):1, 2018.

GitHub APIs. https://developer.github.com/v3/. Accessed: 2018-02-08.
G. Gousios. The GHTorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories, MSR 13,
San Francisco, CA, USA, May 18-19, 2013, pages 233-236, 2013.

G. Gousios, M.-A. Storey, and A. Bacchelli. Work practices and
challenges in pull-based development: The contributor’s perspective.
In Proceedings of the 38th International Conference on Software
Engineering, ICSE 16, pages 285-296, New York, NY, USA, 2016.
ACM.

F. Hermans, M. Pinzger, and A. van Deursen. Detecting and visualizing
inter-worksheet smells in spreadsheets. In Proceedings of the 34th
International Conference on Software Engineering, pages 441-451. IEEE
Press, 2012.

M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. Trade-offs in
continuous integration: assurance, security, and flexibility. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages
197-207, 2017.

M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage,
costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 426437, 2016.

J. Humble and D. Farley. Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 2010.

S. Kim, S. Park, J. Yun, and Y. Lee. Automated continuous integration
of component-based software: An industrial experience. In Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, pages 423-426. IEEE Computer Society, 2008.
E. Laukkanen, M. Paasivaara, and T. Arvonen. Stakeholder perceptions of
the adoption of continuous integration—a case study. In Agile Conference
(AGILE), 2015, pages 11-20. IEEE, 2015.

C. Macho, S. Mclntosh, and M. Pinzger. Automatically repairing
dependency-related build breakage. In Proc. of the International
Conference on Software Analysis, Evolution, and Reengineering (SANER),
pages 106-117, 2018.

N. Moha, Y. Guéhéneuc, L. Duchien, and A. L. Meur. DECOR: A
method for the specification and detection of code and design smells.
IEEE Trans. Software Eng., 36(1):20-36, 2010.

A. N. Oppenheim. Questionnaire Design, Interviewing and Attitude
Measurement. Pinter, London, 1992.

[19]

[20]

[21]

(22]

(23]

[24]
[25]

[26]

[27]
(28]
[29]

[30]

[31]

[32]

(33]

[34]

[35]

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia. Do
they really smell bad? A study on developers’ perception of bad code
smells. In 30th IEEE International Conference on Software Maintenance
and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014,
pages 101-110, 2014.

A. Rahman. Characteristics of defective infrastructure as code scripts in
devops. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, ICSE ’18, pages 476-479, New
York, NY, USA, 2018. ACM.

A. Rahman and L. Williams. Characterizing defective configuration
scripts used for continuous deployment. In 1/th IEEE International
Conference on Software Testing, Verification and Validation, ICST 2018,
Viisterds, Sweden, April 9-13, 2018, pages 34-45, 2018.

T. Rausch, W. Hummer, P. Leitner, and S. Schulte. An empirical
analysis of build failures in the continuous integration workflows of Java-
based open-source software. In Proceedings of the 14th International
Conference on Mining Software Repositories, MSR 2017, Buenos Aires,
Argentina, May 20-28, 2017, pages 345-355, 2017.

T. Sharma, M. Fragkoulis, and D. Spinellis. Does your configuration
code smell? In Proceedings of the International Conference on Mining
Software Repositories (MSR), pages 189-200, 2016.

D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical
Procedures (fourth edition). Chapman & All, 2007.

D. Spencer. Card sorting: Designing usable categories. Rosenfeld Media,
2009.

D. Stahl and J. Bosch. Automated Software Integration Flows in
Industry: A Multiple-case Study. In International Conference on Software
Engineering (Companion), pages 54-63, 2014.

Travis-CI. https://travis-ci.org. Accessed: 2018-02-08.

J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

B. Vasilescu, Y. Yu, H. Wang, P. T. Devanbu, and V. Filkov. Quality and
productivity outcomes relating to continuous integration in GitHub. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4,
2015, pages 805-816, 2015.

C. Vassallo, S. Proksch, H. C. Gall, and M. Di Penta. Artifact Page
- Automated Reporting of Anti-Patterns and Decay in Continuous
Integration. https://doi.org/10.5281/zenodo.2566032.

C. Vassallo, S. Proksch, T. Zemp, and H. C. Gall. Un-break my build:
assisting developers with build repair hints. In Proceedings of the
26th Conference on Program Comprehension, ICPC 2018, Gothenburg,
Sweden, May 27-28, 2018, pages 41-51, 2018.

C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner,
A. Zaidman, M. Di Penta, and S. Panichella. A tale of CI build failures:
An open source and a financial organization perspective. In 2017 IEEE
International Conference on Software Maintenance and Evolution, ICSME
2017, Shanghai, China, September 17-22, 2017, pages 183-193, 2017.
F. Wedyan, D. Alrmuny, and J. M. Bieman. The effectiveness of
automated static analysis tools for fault detection and refactoring
prediction. In 2009 International Conference on Software Testing
Verification and Validation, pages 141-150. IEEE, 2009.

F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta.
How open source projects use static code analysis tools in continuous
integration pipelines. In Proceedings of the 14th International Conference
on Mining Software Repositories, pages 334-344. IEEE Press, 2017.
Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The impact
of continuous integration on other software development practices: A
large-scale empirical study. In Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ASE
2017, pages 6071, Piscataway, NJ, USA, 2017. IEEE Press.

