3D Taylor-Green vortex Direct Numerical Simulation statistics from Re=1250 to Re=20000
- 1. Imperial College London
- 2. University of Poitiers
Description
Statistical data for the 3D Taylor Green flow from Re=1250 to Re=20000 obtained with the flow solver Incompact3d.
# ===========================================================================================
# When publishing results using this data, the following paper should be cited as the source:
# Thibault Dairay, Eric Lamballais, Sylvain Laizet and John Christos Vassilicos
# Numerical dissipation vs. subgrid-scale modelling for large eddy simulation
# Journal of Computational Physics 337 (2017) 252–274
# https://doi.org/10.1016/j.jcp.2017.02.035
# ===========================================================================================
# Column 1 : time t
# Column 2 : kinetic energy E_k [=(u^2+v^2+w^2)/2]
# Column 3 : dissipation epsilon_t [=-dE_k/dt]
# Column 4 : dissipation epsilon [= nu ((du/dx)^2+(du/dy)^2+(du/dz)^2+(dv/dx)^2+(dv/dy)^2+(dv/dz)^2+(dw/dx)^2+(dw/dy)^2+ dw/dz)^2)]
# Column 5 : enstrophy Dzeta [=2 nu epsilon]
# Column 6 : mean square u^2
# Column 7 : mean square v^2
# Column 8 : mean square w^2
# Column 9 : mean square (du/dx)^2
# Column 10 : mean square (du/dy)^2
# Column 11 : mean square (du/dz)^2
# Column 12 : mean square (dv/dx)^2
# Column 13 : mean square (dv/dy)^2
# Column 14 : mean square (dv/dz)^2
# Column 15 : mean square (dw/dx)^2
# Column 16 : mean square (dw/dy)^2
# Column 17 : mean square (dw/dz)^2
Files
Files
(1.9 MB)
Name | Size | Download all |
---|---|---|
md5:0b2c670cad1a1e3ee482d0fa0348e275
|
275.4 kB | Download |
md5:c8836df856f355a62e7f1cdbf30936e7
|
343.6 kB | Download |
md5:5516e1d4d91ce1727915dcfd8a63d2d1
|
343.6 kB | Download |
md5:2fa0c05928edde564ec105a771436faa
|
343.6 kB | Download |
md5:f28e29c26b0a428aa05ce84264a64824
|
343.6 kB | Download |
md5:f33d7787250717cc50819bac8770457e
|
275.4 kB | Download |
Additional details
References
- Dairay, T., Lamballais, E., Laizet, S., & Vassilicos, J. C. (2017). Numerical dissipation vs. subgrid-scale modelling for large eddy simulation. Journal of Computational Physics, 337, 252-274.
- Laizet, S., & Lamballais, E. (2009). High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy. Journal of Computational Physics, 228(16), 5989-6015.