Prosodic context in computational modeling of tone: citation tones vs. running speech

RIKKER DOCKUM YALE UNIVERSITY

BLS43, UC BERKELEY FEBRUARY 5, 2017

Goals

• Explore computational modeling of tonal systems

- Expand on work by Shosted et al 2014, 2015
- Use in identifying toneme categories, yes, but...
- Computational modeling is a back-and-forth process

Identify the uses and limitations of the method

- Citation tones vs. running speech
- Demonstrate how it can identify places where more human attention is needed
- Model data gathered under very imperfect conditions
 - Which, given limited time in field/limited access to speakers, can accelerate and improve results

Background

Tai Khamti tonemes

Data gathering locations: Upper Chindwin river valley

Data gathering

#	Form	Gloss	#	Form	Gloss	#	Form	Gloss	#	Form	Gloss
1	maː1	dog	2	k ^h aw²	rice	3	paː ⁴	fish	4	kai ⁶	chicken
5	mi ¹	bear	6	maː²	horse	7	k [⊾] aːi⁴	buffalo	8	khaː6	galangal
9	p ^h aː ¹	wall	10	Эi²	sugarcane	11	naːw ⁴	star	12	taw ⁶	turtle
13	S ^h γ ¹	tiger	14	saːng²	elephant	15	nɣn⁴	moon	16	t ^h 0 ⁶	bean/nut
Tone 1				Ton	e 2		Tone	4		Ton	e 6

Frame questions:

- 1. Have you ever seen / eaten / etc _____?
- 2. What kind of _____ have you seen / eaten / etc?
- 3. Where have you seen ____ / Where can _____ be found / etc?

Corpora

- 1. Question answering (stimuli response corpus)
 - 750 tokens
 - 16 types
 - 5 speakers (of 37 recorded)
 - Controlled for syllable shape (14 CV, 2 CVN)
- 2. Wordlist reading
 - 173 tokens
 - ° ~50 types
 - 1 speaker (of 5 recorded)
 - Controlled for syllable shape (all CV)

Corpora

ID	Sex	Age	Data type	Tone 1	Tone 2	Tone 4	Tone 6	Total
LP5	F	24	Wordlist reading	54 (31%)	43 (25%)	47 (27%)	29 (17%)	173
MN2	F	42	Stimuli responses	35 (28%)	18 (14%)	39 (31%)	32 (26%)	124
SN2	Μ	74	Stimuli responses	49 (31%)	37 (23%)	39 (25%)	34 (21%)	159
SN3	F	40	Stimuli responses	47 (31%)	34 (22%)	37 (24%)	34 (22%)	152
SN5	F	20	Stimuli responses	40 (24%)	43 (26%)	43 (26%)	40 (24%)	166
KT5	Μ	65	Stimuli responses	33 (22%)	34 (23%)	41 (28%)	41 (28%)	149
				204	166	199	181	750

Normalized pitch tracks

Wordlist reading n = 173 (tones in isolation)

Stimuli responses n = 750 (tones in situ)

Computational Modeling

Methods

Principal component analysis (PCA)

- e.g. Joliffe 1986, Johnson 2008
- Dimensionality reduction

K-means clustering

- Hartigan & Wong 1979
- One of many possible clustering techniques

Traditionally-classified tones = "ground truth"

Principal Components Analysis

Principal Components Analysis

Dimensionality reduction

	pitchstep1 🌼	pitchstep2 🍦	pitchstep3 🍦	pitchstep4 🔅	pitchstep5 🌼	pitchstep6 🍦	pitchstep7 🔅
1	1.086929934	0.450587307	0.483235657	0.655530171	1.102906335	1.44515143	1.440590791
2	0.607606651	0.338903221	0.372242407	0.402931670	0.618526143	0.91845228	1.196864524
3	0.450851789	0.126137969	0.264717697	0.450897779	0.711481611	0.95368215	1.174989172
4	-0.504643927	-0.360536037	-0.137285978	0.371874477	0.739305016	1.14582241	1.290947897
5	-0.725597388	-0.463384357	-0.286780011	0.059922230	0.671011203	1.03863363	1.104717024
6	-0.768527739	-0.949704933	-0.517437858	-0.097089133	0.526519200	0.95343230	0.978498179
7	-1.213585513	-0.572240997	-0.244463835	0.151368409	0.583430711	0.97442031	1.011408001
8	0.408315294	0.215909355	0.307380727	0.393959592	0.541063253	0.71207016	1.011795175
9	0.156641030	-0.354174286	0.075335465	0.301133094	0.503122246	0.85323952	1.041414014
10	-0.362067897	-0.135754143	0.133953775	0.380156395	0.720650687	0.94268843	1.133367927
11	0.068417189	-0.184881004	0.008392662	0.331155047	0.667533277	0.83400051	1.039284555
12	0.182635555	0.507843073	0.644175868	0.962996379	1.370706611	1.50736590	1.402066941
13	-0.128511030	0.053684686	0.030938165	0.224180272	0.548967630	0.77603362	0.989532649
14	-0.560965397	-0.252739689	-0.032882953	0.237293309	0.684606730	0.91145627	1.000373531
15	-0.388062422	-0.096523341	0.275470168	0.644832694	0.878422042	0.91470442	0.872993163
16	1.032183889	1.205515178	1.401704796	1.628655543	1.951520197	2.04231035	2.043614874
17	0.651324715	0.988155328	1.115897178	1.289787063	1.548713170	1.67327114	1.680445314
18	0.202722234	0.611044823	1.049648083	1.282540384	1.530375017	1.66802413	2.022901045
19	0.583975264	0.925244672	0.962587753	1.145543656	1.426037247	1.47538417	1.450463737
20	-1.675185257	-1.093904639	-0.645080094	-0.322081240	0.284329104	0.85973581	0.977336656
21	-1.840604960	-1.355796751	-1.061998488	-0.762403217	-0.225977443	0.31304807	0.480204763
22	-1.303384780	-1.194278944	-0.921522656	-0.463218927	0.077550615	0.43397900	0.649980725
23	0.520170522	0.736512704	0.869630906	1.184537687	1.560095472	1.60206181	1.416973154
24	-0.330559382	0.055098408	0.133606921	0.326669008	0.809495879	1.10559538	1.267330260

PCA2 PCA1 1 -2.4169825015 -0.97576080 2 -1.5956611265 -0.76044886 3 -1.4801442446 -0.95699041 4 -0.8704152590 -1.81333082 5 -0.4375612131 -1.83175525 6 0.0510062678 -1.95933833 7 -0.1936571278 -1.95211841 8 -1.2898404271 -0.68502753 9 -0.8907753308 -1.14810871 10 -0.9961026222 -1.40490895 11 -0.9705493451 -1.16477252 12 -2.4371604947 -1.33307986 13 -0.8710089612 -1.07370114 14 -0.6867905593 -1.48647940 15 -1.1525733951 -1.21832554 16 -4.2136089546 -1.22648444 17 -3.3320837262 -1.08861056 18 -3.0901902518 -1.62464215 19 -2.9727961740 -0.93688689 20 0.7094457043 -2.33669529 21 1.7740247948 -1.98265422 22 1.1184813592 -1.86693098 23 -2.9468046171 -1.12894111 24 -1.1895248665 -1.49867652

...to this

From this...

Principal Components Analysis

Wordlist corpus Speaker = LP5 Measures = pitch (7 steps)

Stimuli corpus Speakers = KT5, MN2, SN2, SN3, SN5 Measures = pitch (7 steps)

Identifying the PCs

Pitch Height

k-means clustering

[image from http://learnbymarketing.com/methods/k-means-clustering/]

Wordlist corpus (pitch only)

Tones assigned by k-means (PCs = 2)

Tone 6 -0.1852 0.2093 0.1489 0.8621 Fitted tone cluster Tone 5 - 2 -0.8511 0.1034 0.7907 Tone 1 -0.8148 0.0345 Tone 1 Tone 2 Tone 6 Tone 4 Expected tone cluster

corpus = wordlist measures = pitch PCs = 2 k = 4

	Precision	Recall	F-score
T1	0.9778	0.8148	0.8889
T2	1.0000	0.7907	0.8831
T4	0.9302	0.8511	0.8889
T6	0.4902	0.8621	0.6250
Overall	0.8266	0.8266	0.8266

Wordlist corpus (pitch only)

Tones assigned by k-means (PCs = 2)

corpus = wordlist measures = pitch PCs = 2 k = 4

	Precision	Recall	F-score
T1	0.9778	0.8148	0.8889
T2	1.0000	0.7907	0.8831
T4	0.9302	0.8511	0.8889
T6	0.4902	0.8621	0.6250
Overall	0.8266	0.8266	0.8266

T1 = rising
T2 = low falling
T4 = high falling
T6 = mid level

Wordlist corpus

Expected clusters + normalized pitch tracks

Fitted clusters + normalized pitch tracks

Tones assigned by k-means (PCs = 2)

corpus = stimuli measures = pitch PCs = 2 k = 4

	Precision	Recall	F-score
T1	0.3668	0.3579	0.3623
T2	0.6272	0.6386	0.6328
T4	0.4526	0.2161	0.2925
T6	0.2788	0.4420	0.3419
Overall	0.4027	0.4027	0.4027

Q&A corpus (pitch only)

Tones assigned by k-means (PCs = 2)

corpus = stimuli measures = pitch PCs = 2 k = 4

	Precision	Recall	F-score
T1	0.3668	0.3579	0.3623
T2	0.6272	0.6386	0.6328
T4	0.4526	0.2161	0.2925
T6	0.2788	0.4420	0.3419
Overall	0.4027	0.4027	0.4027

T1 = rising
T2 = low falling
T4 = high falling
T6 = mid level

Expected clusters + normalized pitch tracks

Fitted clusters + normalized pitch tracks

Adding new columns to our input to PCA

	pitchstep1 🌼	pitchstep2 🌼	pitchstep3 🌼	pitchstep4 🔅	pitchstep5 🌼	pitchstep6 🌻	pitchstep7 🌼
1	1.086929934	0.450587307	0.483235657	0.655530171	1.102906335	1.44515143	1.440590791
2	0.607606651	0.338903221	0.372242407	0.402931670	0.618526143	0.91845228	1.196864524
3	0.450851789	0.126137969	0.264717697	0.450897779	0.711481611	0.95368215	1.174989172
4	-0.504643927	-0.360536037	-0.137285978	0.371874477	0.739305016	1.14582241	1.290947897
5	-0.725597388	-0.463384357	-0.286780011	0.059922230	0.671011203	1.03863363	1.104717024
6	-0.768527739	-0.949704933	-0.517437858	-0.097089133	0.526519200	0.95343230	0.978498179
7	-1.213585513	-0.572240997	-0.244463835	0.151368409	0.583430711	0.97442031	1.011408001
8	0.408315294	0.215909355	0.307380727	0.393959592	0.541063253	0.71207016	1.011795175
9	0.156641030	-0.354174286	0.075335465	0.301133094	0.503122246	0.85323952	1.041414014
10	-0.362067897	-0.135754143	0.133953775	0.380156395	0.720650687	0.94268843	1.133367927
11	0.068417189	-0.184881004	0.008392662	0.331155047	0.667533277	0.83400051	1.039284555
12	0.182635555	0.507843073	0.644175868	0.962996379	1.370706611	1.50736590	1.402066941
13	-0.128511030	0.053684686	0.030938165	0.224180272	0.548967630	0.77603362	0.989532649
14	-0.560965397	-0.252739689	-0.032882953	0.237293309	0.684606730	0.91145627	1.000373531
15	-0.388062422	-0.096523341	0.275470168	0.644832694	0.878422042	0.91470442	0.872993163
16	1.032183889	1.205515178	1.401704796	1.628655543	1.951520197	2.04231035	2.043614874
17	0.651324715	0.988155328	1.115897178	1.289787063	1.548713170	1.67327114	1.680445314
18	0.202722234	0.611044823	1.049648083	1.282540384	1.530375017	1.66802413	2.022901045
19	0.583975264	0.925244672	0.962587753	1.145543656	1.426037247	1.47538417	1.450463737
20	-1.675185257	-1.093904639	-0.645080094	-0.322081240	0.284329104	0.85973581	0.977336656
21	-1.840604960	-1.355796751	-1.061998488	-0.762403217	-0.225977443	0.31304807	0.480204763
22	-1.303384780	-1.194278944	-0.921522656	-0.463218927	0.077550615	0.43397900	0.649980725
23	0.520170522	0.736512704	0.869630906	1.184537687	1.560095472	1.60206181	1.416973154
24	-0.330559382	0.055098408	0.133606921	0.326669008	0.809495879	1.10559538	1.267330260

2 -1.5956611265 -0.76044886 3 -1.4801442446 -0.95699041 4 -0.8704152590 -1.81333082 5 -0.4375612131 -1.83175525 6 0.0510062678 -1.95933833 7 -0.1936571278 -1.95211841 8 -1.2898404271 -0.68502753 9 -0.8907753308 -1.14810871 10 -0.9961026222 -1.40490895 11 -0.9705493451 -1.16477252 12 -2.4371604947 -1.33307986 13 -0.8710089612 -1.07370114 14 -0.6867905593 -1.48647940 15 -1.1525733951 -1.21832554 16 -4.2136089546 -1.22648444 17 -3.3320837262 -1.08861056 18 -3.0901902518 -1.62464215 19 -2.9727961740 -0.93688689 20 0.7094457043 -2.33669529 21 1.7740247948 -1.98265422 22 1.1184813592 -1.86693098 23 -2.9468046171 -1.12894111 24 -1.1895248665 -1.49867652

PCA2

1 -2.4169825015 -0.97576080

PCA1

...to this

From this...

Adding new columns to our input to PCA

	pitchstep1 🌻	pitchstep2 🌻	pitchstep3 🏺	pitchstep4 🏺	pitchstep5 🏺	pitchstep6 🏺	pitchstep7 🏺	H1.H2step1 🌻	H1.H2step2 🌻	H1.H2step3 🤤		PCA1	PCA2
2	0.18596266	0.41522682	0.38338457	0.50580031	0.44801254	0.26450686	0.2873861	-0.96585201	-1.26525328	0.02025606	1	-2.4169825015	-0.97576080
3	0.39895189	0.56594677	0.61996066	0.55462509	0.43433216	0.36569444	0.3980084	-1.29228627	-1.12152687	0.19173676	2	-1.5956611265	-0.76044886
4	-0.45772242	-0.22421263	-0.06217098	0.18195289	0.56948480	0.60816723	0.6017988	0.15676950	-0.18678774	-0.03895307	3	-1.4801442446	-0.95699041
5	-0.57919469	-0.43720186	-0.16689659	0.12982596	0.37772373	0.49919600	0.6515670	-0.21081010	-0.24577735	0.14883522	4	-0.8704152590	-1 81333082
6	-0.58391206	-0.38531080	-0.04683953	0.09232287	0.23761785	0.34399454	0.6152433	-0.12252953	-0.43036685	-0.47587133	5	-0.4375612131	-1 83175525
7	0.16921599	0.67586149	1.00065238	1.51154350	1.69882308	1.49125882	1.4837110	0.10292305	1.93668139	2.70972438	5	-0.4373012131	1.05022822
13	0.02132646	0.41593442	0.74544269	1.01338928	1.51720435	1.76345104	1.7860944	-0.19465930	1.47401594	2.46134708	6	0.0510062678	-1.95955855
14	0.03925246	0.28148939	0.66265285	1.18863956	1.54126293	1.62428864	1.9160579	-0.29463743	0.95725316	2.30366513	7	-0.1936571278	-1.95211841
15	0.07180231	0.51193289	0.97187643	1.23510565	1.38134410	1.57216170	1.8368061	-0.47110449	0.33806611	2.17401970	8	-1.2898404271	-0.68502753
16	0.56736199	1.17165703	1.63702553	2.34415923	2.77603442	3.00506271	3.7268203	0.92278768	1.90249815	3.04550415	9	-0.8907753308	-1.14810871
17	0.48858191	1.03390984	1.72075884	2.37387866	2.69348045	3.19658791	3.9445269	1.43133393	1.87132554	2.92050012	10	-0.9961026222	.40490895
18	0.89333222	1.28133587	1.66367867	2.26302048	2.64701436	2.87745786	3.4088695	0.86633829	0.42650348	1.95941795	11	-0.970549345	-1.16477252
19	0.03642204	0.51924482	0.63647145	0.85040416	1.01975773	1.16410924	1.3308682	0.34976368	-0.55991819	2.58509668	12	-2.4371604947	-1.33307986
20	0.45697554	0.98201877	1.17684613	1.23274696	1.40422335	1.61013653	1.7063709	1.30322518	0.45789562	1.99350711	13	-0.8710089612	-1.07370114
21	0.08807724	0.48598736	0.81360868	1.02423923	1.18840369	1.35280402	1.4473873	0.11029283	1.23642674	1.94931978	14	-0.6867905593	-1.48647940
22	0.50768726	0.86148998	1.04829781	1.17778961	1.34336928	1.34997360	1.2615229	0.72706511	0.77846541	1.87279950	15	-1.1525733951	-1.21832554
23	0.33951304	0.73129058	1.03485331	1.23864367	1.19783843	1.17849721	1.3999777	-0.08320312	-0.06357128	1.12302620	16	-4.2136089546	-1.22648444
24	0.68647557	0.98862309	1.11174643	1.16528858	1.20161232	1.37285284	1.5631987	0.14613820	-0.60921732	0.81675691	17	-3.3320837262	-1.08861056
25	0.83247816	0.87729317	0.99192525	1.18934716	1.17330811	0.94923305	0.9857927	-0.48518548	-0.31279532	2.02471107	18	-3 0901902518	-1 62464215
26	0.22488095	0.51830134	0.80653262	1.04145763	1.20491448	1.28534563	1.1700059	0.80825814	1.35349650	2.95643956	10	-2.9727961740	-0.02688680
27	0.22417335	0.33833369	0.51948068	0.66902130	0.83837487	0.94097766	1.0617423	1.10907065	1.10138727	2.25583995	20	0.7004457043	2 22660520
28	0.54353927	0.48952539	0.71855368	0.97447098	1.26010771	1.35539857	1.3693148	1.15971830	1.57183018	1.82306132	20	0.7094437043	-2.55009529
29	0.22228640	0.59259991	0.62349868	0.67161585	0.69850486	0.81455215	0.8529987	1.35512726	0.61670656	0.49035401	21	1.7740247948	-1.98265422
30	0.02368514	0.14114765	0.36168467	0.47891131	0.65510506	0.72751668	0.7485090	0.42399462	0.48605759	0.97174184	22	1.1184813592	-1.86693098
31	0.14657262	0.31050121	0.58292931	0.71430805	0.46971244	0.41121705	0.6326976	0.66443765	0.37996410	0.22105908	23	-2.9468046171	-1.12894111
32	0.82634557	0.99923717	1.11127470	1.22708612	1.44361338	1.65518741	1.7311371	-0.30398294	-0.81089844	1.20572455	24	-1.1895248665	-1.49867652

From this...

...to this

Wordlist corpus (pitch + phon)

Tones assigned by k-means (PCs = 3) Tone 6 -0.4630 0.1702 0.8276 0.0698 Fitted tone cluster Tone 5 - 2 -0.4468 0.2407 0.0698 0.1379 0.8605 0.0345 Tone 1 -0.2963 0.3830 Tone 1 Tone 2 Tone 4 Tone 6 Expected tone cluster

corpus = wordlist measures = pitch, spec. tilt PCs = 3 k = 4

	Precision	Recall	F-score
T1	0.4706	0.2963	0.3636
T2	0.9737	0.8605	0.9136
T4	0.5122	0.4468	0.4773
T6	0.4	0.8276	0.5393
Overall	0.5665	0.5665	0.5665

T1 = rising
T2 = low falling
T4 = high falling
T6 = mid level

Wordlist corpus

	Precision	Recall	F-score		Precision	Recall	F-score
T1	0.9778	0.8148	0.8889	T1	0.4706	0.2963	0.3636
T2	1.0000	0.7907	0.8831	T2	0.9737	0.8605	0.9136
T4	0.9302	0.8511	0.8889	T4	0.5122	0.4468	0.4773
T6	0.4902	0.8621	0.6250	T6	0.4	0.8276	0.5393
Overall	0.8266	0.8266	0.8266	Overall	0.5665	0.5665	0.5665

Pitch only

Pitch + spectral tilt

Q&A corpus (pitch + phon)

Speakers = KT5, MN2, SN2, SN3, SN5 Corpus = stimuli Measures = pitch (x7), spectral tilt (x3)

Q&A corpus (pitch + phon)

Tones assigned by k-means clustering

corpus = stimuli measures = pitch, spec. tilt PCs = 4 k = 4

	Precision	Recall	F-score
T1	0.5591	0.2549	0.3502
T2	0.6073	0.6988	0.6499
T4	0.3788	0.2513	0.3021
T6	0.3024	0.5580	0.3922
Overall	0.4253	0.4253	0.4253

Q&A corpus (pitch + phon)

Tones assigned by k-means (PCs = 4)

corpus = stimuli measures = pitch, spec. tilt PCs = 4 k = 4

	Precision	Recall	F-score
T1	0.5591	0.2549	0.3502
T2	0.6073	0.6988	0.6499
T4	0.3788	0.2513	0.3021
T6	0.3024	0.5580	0.3922
Overall	0.4253	0.4253	0.4253

Q&A corpus

Pitch only

Pitch + spectral tilt

Conclusions

- There's a significant performance gap between citation tones and running speech
 - Excellent results on wordlist corpus (citation tones)
 - Poor results on stimuli corpus (tones in context)
- Generally verifies tonemes identified by linguist / native speakers
 - Thus has potential to tag new lexical material when access to a native speaker is limited, or even to help correct mistakes in analysis
- Other observations
 - Phonation possibly a cue in tone 2
 - Consistent with historical analysis
 - Combining pitch-only analysis and pitch+phonation analysis helped a case in which non-modal phonation acts as a phonetic cue

Future directions

- Identifying the limits of the method
 - Is the in-context data salvageable?
- Testing other clustering algorithms
- Testing performance on additional syllable structures
- Implementing as a classifier
 - Use wordlist data as a training corpus for new data
 - Determine how much data is "enough" data to converge at the same approximate centers; then use k-means as a classifier step for further input
 - (The question of how minimum sufficient dataset size is important in fieldwork, where time and access to native speakers can be limited resources)

Thank you!

Research supported by: NSF grant BCS-1528386 and the Yale MacMillan Center

References

Bennett, Ryan. 2015. All measures extractor. Script for the Praat software program.

Boersma, Paul and David Weenink. 2016. Praat: doing phonetics by computer [Computer program]. Version 5.3.7.1. < http://www.praat.org >

Chao, Yuen-Ren. 1930. A system of tone-letters. Le Maître Phonétique 45: 24-27.

Charrad, Malika, Nadia Ghazzali, Veronique Boiteau, and Azam Niknafs. NbClust. Package for R < https://cran.r-project.org/web/packages/NbClust/NbClust.pdf >

Dockum, Rikker. 2015. Tonal evidence and language classification: The place of Khamti in Southwestern Tai. Qualifying Paper, Yale University. Unpublished MS.

Dockum, Rikker. 2016. Chindwin Khamti tone: computational modeling and language documentation. Qualifying Paper, Yale University. Unpublished MS.

Halkidi, M., M. Vazirgiannis, and I. Batistakis. 2000. Quality scheme assessment in the clustering process. Proceedings of PKDD, Lyon, France.

Harris, Jimmy G. 1976. Notes on Khamti Shan. Tai Linguistics in Honor of Fang-Kuei Li. 113–141.

Hartigan, J. A. and M. A. Wong. 1979. Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society, Series C 28 (1): 100–108.

Inglis, Douglas. 2014. This here thing: Specifying Morphemes an3, nai1, and mai2 in Tai Khamti Reference-point Constructions. PhD Dissertation. University of Alberta. Johnson, Keith. 2008. *Quantitative Methods in Linguistics*. Wiley-Blackwell.

Jolliffe, I. T. 1986. Principal Component Analysis. Springer-Verlag. < doi:10.1007/b98835 >

Ketchen, David J. and Christopher L. Shook. 1996. The application of cluster analysis in strategic management research: an analysis and critique. *Strategic Management Journal* 17(6): 441-458.

Kirk, P. L., Ladefoged, J., & Ladefoged, P. 1993. Quantifying acoustic properties of modal, breathy and creaky vowels in Jalapa Mazatec. In A. Mattina & T. Montler (Eds.), American Indian linguistics and ethnography in honor of Laurence C. Thompson. Missoula, MT: University of Montana Press.

Krzanowski, W. J. and Y. T. Lai. 1988. A criterion for determining the number of groups in a data set using sum-of-squares clustering. *Biometrics* 44(1): 23-34.

Lewis, M. Paul, Gary F. Simons, and Charles D. Fennig (eds.). 2016. *Ethnologue: Languages of the World, Nineteenth edition.* Dallas, Texas: SIL International. <<u>http://www.ethnologue.com</u>.>

Morey, Stephen. 2005. Tonal Change in the Tai Languages of Northeast India. Linguistics of the Tibeto-Burman Area 28.2: 139–202.

Needham, J. F. 1894. Outline Grammar of the Tai (Khamti) Language.

R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Robinson, William. 1849. Notes on the Languages Spoken by the Various Tribes Inhabiting the Valley of Assam and Its Mountain Confines [Section: The Khamti]. *Journal of the Royal Asiatic Society of Bengal 18.1*: 183–237, 310–349.

Shosted, Ryan, Marissa Barlaz, and Di Wu. 2015. Modeling Iu Mien tone with eigenpitch representations. In The Scottish Consortium for ICPhS 2015 (ed.), *Proceedings of the 18th International Congress of Phonetic Sciences*. Glasgow, UK: University of Glasgow. ISBN 978-0-85261-941-4. Paper number 0728. http://www.icphs2015.info/pdfs/Papers/ICPHS1041.pdf

SIL International. 2002. Mainlaind Southeast comparative wordlist.

Scott, A. J. and M. J. Symons. 1971. Clustering methods based on likelihood ratio criteria. Biometrics 27(2):387-397.

Stanford, James N. 2008. A sociotonetic analysis of Sui dialect contact. Language Variation and Change 20(3):409-50.

Bonus slides

Additional speaker variation

Background

Proto-Tai consonants

	А	В	С	D-short	D-long
Voiceless w⁄ friction *pʰ, *tʰ, *kʰ, *s, *ຫॢ, etc.	A1	B1	C1	DS1	DL1
Voiceless unaspirated *p, *t, *k, etc.	A2	В2	C2	DS2	DL2
Glottalized *?, *?b, *?j, etc.	A3	В3	C3	DS3	DL3
Voiced *b, *m, *l, *z, etc.	A4	B4	C4	DS4	DL4

Background

Chindwin Khamti tone splits

Testing other *k*-values

k = 3

k = 5